Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Роль микроРНК в диагностике сердечно-сосудистых заболеваний у пациентов с ожирением
Роль микроРНК в диагностике сердечно-сосудистых заболеваний у пациентов с ожирением
Швангирадзе Т.А., Бондаренко И.З., Трошина Е.А. Роль микроРНК в диагностике сердечно-сосудистых заболеваний у пациентов с ожирением. Consilium Medicum. 2021; 23 (4): 358–362. DOI: 10.26442/20751753.2021.4.200827
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Ожирение остается глобальной проблемой современного общества и часто ассоциируется с повышенным риском сердечно-сосудистых заболеваний (ССЗ). Продолжается поиск высокоспецифичных и высокочувствительных биомаркеров ССЗ. В настоящее время активно проводятся исследования, направленные на изучение микроРНК (миРНК) в качестве новых потенциальных маркеров ССЗ. Роль миРНК описана для различных звеньев патогенеза ССЗ. Эндотелиальная дисфункция считается начальным этапом патогенеза многих ССЗ и атеросклероза в частности. Изменение экспрессии ряда миРНК ассоциируется с развитием эндотелиальной дисфункции, в том числе и при ожирении. Некоторые миРНК рассматриваются как потенциальные терапевтические мишени. Дальнейшее изучение роли миРНК в патогенезе ССЗ позволит персонифицировать стратегию по выделению группы пациентов с более тяжелым прогнозом.
Ключевые слова: ожирение, атеросклероз, микроРНК, сердечно-сосудистые заболевания, эндотелиальная дисфункция
Keywords: obesity, atherosclerosis, microRNA, cardiovascular diseases, endothelial dysfunction
Ключевые слова: ожирение, атеросклероз, микроРНК, сердечно-сосудистые заболевания, эндотелиальная дисфункция
________________________________________________
Keywords: obesity, atherosclerosis, microRNA, cardiovascular diseases, endothelial dysfunction
Полный текст
Список литературы
1. Khan LK, Bowman BA. Obesity: A major global public health problem. Annu Rev Nutr. 1999;19. DOI:10.1146/annurev.nutr.19.1.0
2. Pi-Sunyer X. The medical risks of obesity. Postgrad Med. 2009;121. DOI:10.3810/pgm.2009.11.2074
3. Zhou SS, Jin JP, Wang JQ, et al. MiRNAS in cardiovascular diseases: Potential biomarkers, therapeutic targets and challenges review-article. Acta Pharmacol Sin. 2018;39. DOI:10.1038/aps.2018.30
4. Jonk AM, Houben AJHM, De Jongh RT, et al. Microvascular dysfunction in obesity: A potential mechanism in the pathogenesis of obesity-associated insulin resistance and hypertension. Physiology. 2007;22. DOI:10.1152/physiol.00012.2007
5. Echahidi N, Mohty D, Pibarot P, et al. Obesity and metabolic syndrome are independent risk factors for atrial fibrillation after coronary artery bypass graft surgery. Circulation. 2007;116. DOI:10.1161/CIRCULATIONAHA.106.681304
6. Vanhoutte PM. Endothelial dysfunction – The first step toward coronary arteriosclerosis. Circ J. 2009;73. DOI:10.1253/circj.CJ-08-1169
7. Caballero AE. Endothelial dysfunction in obesity and insulin resistance: A road to diabetes and heart disease. Obes Res. 2003;11. DOI:10.1038/oby.2003.174
8. Petrie JR, Guzik TJ, Touyz RM. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can J Cardiol. 2018;34. DOI:10.1016/j.cjca.2017.12.005
9. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12. DOI:10.1038/nrg3074
10. Tüfekci KU, Öner MG, Meuwissen RLJ, Genç Ş. The role of microRNAs in human diseases. Methods Mol Biol. 2014;1107. DOI:10.1007/978-1-62703-748-8_3
11. Pordzik J, Jakubik D, Jarosz-Popek J, et al. Significance of circulating microRNAs in diabetes mellitus type 2 and platelet reactivity: Bioinformatic analysis and review. Cardiovasc Diabetol. 2019;18. DOI:10.1186/s12933-019-0918-x
12. Швангирадзе Т.А., Бондаренко И.З., Трошина Е.А., Шестакова М.В. МикроРНК в диагностике сердечно-сосудистых заболеваний, ассоциированных с сахарным диабетом 2-го типа и ожирением. Терапевтический архив. 2016;88(10):87-92 [Shvangiradze TA, Bondarenko IZ, Troshina EA, Shestakova MV. MiRNAs in the diagnosis of cardiovascular diseases associated with type 2 diabetes mellitus and obesity. Terapevticheskii Arkhiv (Ter. Arkh.). 2016;88(10):87-92 (in Russian)]. DOI:10.17116/terarkh201688687-92
13. Iacomino G, Siani A. Role of microRNAs in obesity and obesity-related diseases. Genes Nutr. 2017;12. DOI:10.1186/s12263-017-0577-z
14. Kozomara A, Birgaoanu M, Griffiths-Jones S. MiRBase: From microRNA sequences to function. Nucleic Acids Res. 2019;47. DOI:10.1093/nar/gky1141
15. Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of Mammalian MicroRNA Targets. Cell. 2003;115. DOI:10.1016/S0092-8674(03)01018-3
16. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: A marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23. DOI:10.1161/01.ATV.0000051384.43104.FC
17. Lerman A, Burnett JC. Intact and altered endothelium in regulation of vasomotion. Circulation. 1992;86.
18. Lerman A, Zeiher AM. Endothelial function: Cardiac events. Circulation. 2005;111.
DOI:10.1161/01.CIR.0000153339.27064.14
19. Ignarro LJ. Endothelium-derived nitric oxide: actions and properties. FASEB J. 1989;3. DOI:10.1096/fasebj.3.1.2642868
20. Epstein FH, Vane JR, Änggård EE, Botting RM. Regulatory Functions of the Vascular Endothelium. N Engl J Med. 1990;323. DOI:10.1056/nejm199007053230106
21. Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol. 2004;15.
DOI:10.1097/01.ASN.0000132474.50966.DA
22. Stapleton PA, James ME, Goodwill AG, Frisbee JC. Obesity and vascular dysfunction. Pathophysiology. 2008;15. DOI:10.1016/j.pathophys.2008.04.007
23. Avogaro A, De Kreutzenberg SV. Mechanisms of endothelial dysfunction in obesity. Clin Chim Acta. 2005;360. DOI:10.1016/j.cccn.2005.04.020
24. Gamez-Mendez AM, Vargas-Robles H, Ríos A, Escalante B. Oxidative stress-dependent coronary endothelial dysfunction in obese mice. PLoS One. 2015;10. DOI:10.1371/journal.pone.0138609
25. Austin RC, Lentz SR, Werstuck GH. Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ. 2004;11. DOI:10.1038/sj.cdd.4401451
26. Kaplon RE, Chung E, Reese L, et al. Activation of the unfolded protein response in vascular endothelial cells of Nondiabetic obese adults. J Clin Endocrinol Metab. 2013;98.
DOI:10.1210/jc.2013-1841
27. Bharath LP, Cho JM, Park SK, et al. Endothelial Cell Autophagy Maintains Shear Stress-Induced Nitric Oxide Generation via Glycolysis-Dependent Purinergic Signaling to Endothelial Nitric Oxide Synthase. Arterioscler Thromb Vasc Biol. 2017;37. DOI:10.1161/ATVBAHA.117.309510
28. Iantorno M, Campia U, Di Daniele N, et al. Obesity, inflammation and endothelial dysfunction. J Biol Regul Homeost Agents. 2014;28.
29. Zhang W, Yan L, Li Y, et al. Roles of miRNA-24 in regulating endothelial nitric oxide synthase expression and vascular endothelial cell proliferation. Mol Cell Biochem. 2015;405. DOI:10.1007/s11010-015-2418-y
30. Li HT, Wang J, Li SF, et al. Upregulation of microRNA-24 causes vasospasm following subarachnoid hemorrhage by suppressing the expression of endothelial nitric oxide synthase. Mol Med Rep. 2018;18. DOI:10.3892/mmr.2018.9050
31. Zheng Y, Li Y, Liu G,et al. MicroRNA-24 inhibits the proliferation and migration of endothelial cells in patients with atherosclerosis by targeting importin-α3 and regulating inflammatory responses. Exp Ther Med. 2018;15. DOI:10.3892/etm.2017.5355
32. Chen W, Ou HS. Regulation of miR-24 on vascular endothelial cell function and its role in the development of cardiovascular disease. Sheng Li Xue Bao. 2016;68.
33. Ren K, Zhu X, Zheng Z, et al. MicroRNA-24 aggravates atherosclerosis by inhibiting selective lipid uptake from HDL cholesterol via the post-transcriptional repression of scavenger receptor class B type I. Atherosclerosis. 2018;270. DOI:10.1016/j.atherosclerosis.2018.01.045
34. Sun HX, Zeng DY, Li RT, et al. Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension. 2012;60. DOI:10.1161/HYPERTENSIONAHA.112.197301
35. Muniyappa R, Sowers JR. Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord. 2013;14. DOI:10.1007/s11154-012-9229-1
36. Sayed D, Abdellatif M. AKT-ing via microRNA. Cell Cycle. 2010;9. DOI:10.4161/cc.9.16.12634
37. Sun X, Lin J, Zhang Y, et al. MicroRNA-181b improves glucose homeostasis and insulin sensitivity by regulating endothelial function in white adipose tissue. Circ Res. 2016;118. DOI:10.1161/CIRCRESAHA.115.308166
38. Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38. DOI:10.1038/ng1725
39. Sayed D, Abdellatif M. Micrornas in development and disease. Physiol Rev. 2011;91.
DOI:10.1152/physrev.00006.2010
40. Thum T, Catalucci D, Bauersachs J. MicroRNAs: Novel regulators in cardiac development and disease. Cardiovasc Res. 2008;79. DOI:10.1093/cvr/cvn137
41. Maegdefessel L. The emerging role of microRNAs in cardiovascular disease. J Intern Med. 2014;276. DOI:10.1111/joim.12298
42. Arunachalam G, Upadhyay R, Ding H, Triggle CR. MicroRNA signature and cardiovascular dysfunction. J Cardiovasc Pharmacol. 2015;65. DOI:10.1097/FJC.0000000000000178
43. da Silva DCP, Carneiro FD, Almeida KC de, Bottino CFDS. Role of miRNAs on the pathophysiology of cardiovascular diseases. Arq Bras Cardiol. 2018;111. DOI:10.5935/abc.20180215
44. Halushka PV, Goodwin AJ, MKH. Opportunities for microRNAs in the Crowded Field of Cardiovascular Biomarkers. Annu Rev Pathol. 2019;24:211-38. DOI:10.1146/annurev-pathmechdis-012418-012827
45. Çakmak HA, Demir M. Microrna and cardiovascular diseases. Balkan Med J. 2020;37:60-71. DOI:10.4274/balkanmedj.galenos.2020.2020.1.94
46. Liu X, Dong Y, Chen S, et al. Circulating MicroRNA-146a and MicroRNA-21 Predict Left Ventricular Remodeling after ST-Elevation Myocardial Infarction. Cardiol. 2015;132. DOI:10.1159/000437090
47. Widera C, Gupta SK, Lorenzen JM, et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol. 2011;51. DOI:10.1016/j.yjmcc.2011.07.011
48. Devaux Y, Mueller M, Haaf P, et al. Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain. J Intern Med. 2015;277. DOI:10.1111/joim.12183
49. Goretti E, Vausort M, Wagner DR, Devaux Y. Association between circulating microRNAs, cardiovascular risk factors and outcome in patients with acute myocardial infarction. Int J Cardiol. 2013;168. DOI:10.1016/j.ijcard.2013.06.092
50. Wang GK, Zhu JQ, Zhang JT, et al. Circulating microRNA: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31:659–66. DOI:10.1093/eurheartj/ehq013
51. Shvangiradze T, Bondarenko I, Troshina E, et al. Profile of microRNAs associated with coronary heart disease in patients with type 2 diabetes. Obe Metab. 2016;13:34. DOI:10.14341/omet2016434-38
2. Pi-Sunyer X. The medical risks of obesity. Postgrad Med. 2009;121. DOI:10.3810/pgm.2009.11.2074
3. Zhou SS, Jin JP, Wang JQ, et al. MiRNAS in cardiovascular diseases: Potential biomarkers, therapeutic targets and challenges review-article. Acta Pharmacol Sin. 2018;39. DOI:10.1038/aps.2018.30
4. Jonk AM, Houben AJHM, De Jongh RT, et al. Microvascular dysfunction in obesity: A potential mechanism in the pathogenesis of obesity-associated insulin resistance and hypertension. Physiology. 2007;22. DOI:10.1152/physiol.00012.2007
5. Echahidi N, Mohty D, Pibarot P, et al. Obesity and metabolic syndrome are independent risk factors for atrial fibrillation after coronary artery bypass graft surgery. Circulation. 2007;116. DOI:10.1161/CIRCULATIONAHA.106.681304
6. Vanhoutte PM. Endothelial dysfunction – The first step toward coronary arteriosclerosis. Circ J. 2009;73. DOI:10.1253/circj.CJ-08-1169
7. Caballero AE. Endothelial dysfunction in obesity and insulin resistance: A road to diabetes and heart disease. Obes Res. 2003;11. DOI:10.1038/oby.2003.174
8. Petrie JR, Guzik TJ, Touyz RM. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can J Cardiol. 2018;34. DOI:10.1016/j.cjca.2017.12.005
9. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12. DOI:10.1038/nrg3074
10. Tüfekci KU, Öner MG, Meuwissen RLJ, Genç Ş. The role of microRNAs in human diseases. Methods Mol Biol. 2014;1107. DOI:10.1007/978-1-62703-748-8_3
11. Pordzik J, Jakubik D, Jarosz-Popek J, et al. Significance of circulating microRNAs in diabetes mellitus type 2 and platelet reactivity: Bioinformatic analysis and review. Cardiovasc Diabetol. 2019;18. DOI:10.1186/s12933-019-0918-x
12. Shvangiradze TA, Bondarenko IZ, Troshina EA, Shestakova MV. MiRNAs in the diagnosis of cardiovascular diseases associated with type 2 diabetes mellitus and obesity. Terapevticheskii Arkhiv (Ter. Arkh.). 2016;88(10):87-92 (in Russian)
DOI:10.17116/terarkh201688687-92
13. Iacomino G, Siani A. Role of microRNAs in obesity and obesity-related diseases. Genes Nutr. 2017;12. DOI:10.1186/s12263-017-0577-z
14. Kozomara A, Birgaoanu M, Griffiths-Jones S. MiRBase: From microRNA sequences to function. Nucleic Acids Res. 2019;47. DOI:10.1093/nar/gky1141
15. Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of Mammalian MicroRNA Targets. Cell. 2003;115. DOI:10.1016/S0092-8674(03)01018-3
16. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: A marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23. DOI:10.1161/01.ATV.0000051384.43104.FC
17. Lerman A, Burnett JC. Intact and altered endothelium in regulation of vasomotion. Circulation. 1992;86.
18. Lerman A, Zeiher AM. Endothelial function: Cardiac events. Circulation. 2005;111.
DOI:10.1161/01.CIR.0000153339.27064.14
19. Ignarro LJ. Endothelium-derived nitric oxide: actions and properties. FASEB J. 1989;3. DOI:10.1096/fasebj.3.1.2642868
20. Epstein FH, Vane JR, Änggård EE, Botting RM. Regulatory Functions of the Vascular Endothelium. N Engl J Med. 1990;323. DOI:10.1056/nejm199007053230106
21. Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol. 2004;15.
DOI:10.1097/01.ASN.0000132474.50966.DA
22. Stapleton PA, James ME, Goodwill AG, Frisbee JC. Obesity and vascular dysfunction. Pathophysiology. 2008;15. DOI:10.1016/j.pathophys.2008.04.007
23. Avogaro A, De Kreutzenberg SV. Mechanisms of endothelial dysfunction in obesity. Clin Chim Acta. 2005;360. DOI:10.1016/j.cccn.2005.04.020
24. Gamez-Mendez AM, Vargas-Robles H, Ríos A, Escalante B. Oxidative stress-dependent coronary endothelial dysfunction in obese mice. PLoS One. 2015;10. DOI:10.1371/journal.pone.0138609
25. Austin RC, Lentz SR, Werstuck GH. Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ. 2004;11. DOI:10.1038/sj.cdd.4401451
26. Kaplon RE, Chung E, Reese L, et al. Activation of the unfolded protein response in vascular endothelial cells of Nondiabetic obese adults. J Clin Endocrinol Metab. 2013;98.
DOI:10.1210/jc.2013-1841
27. Bharath LP, Cho JM, Park SK, et al. Endothelial Cell Autophagy Maintains Shear Stress-Induced Nitric Oxide Generation via Glycolysis-Dependent Purinergic Signaling to Endothelial Nitric Oxide Synthase. Arterioscler Thromb Vasc Biol. 2017;37. DOI:10.1161/ATVBAHA.117.309510
28. Iantorno M, Campia U, Di Daniele N, et al. Obesity, inflammation and endothelial dysfunction. J Biol Regul Homeost Agents. 2014;28.
29. Zhang W, Yan L, Li Y, et al. Roles of miRNA-24 in regulating endothelial nitric oxide synthase expression and vascular endothelial cell proliferation. Mol Cell Biochem. 2015;405. DOI:10.1007/s11010-015-2418-y
30. Li HT, Wang J, Li SF, et al. Upregulation of microRNA-24 causes vasospasm following subarachnoid hemorrhage by suppressing the expression of endothelial nitric oxide synthase. Mol Med Rep. 2018;18. DOI:10.3892/mmr.2018.9050
31. Zheng Y, Li Y, Liu G,et al. MicroRNA-24 inhibits the proliferation and migration of endothelial cells in patients with atherosclerosis by targeting importin-α3 and regulating inflammatory responses. Exp Ther Med. 2018;15. DOI:10.3892/etm.2017.5355
32. Chen W, Ou HS. Regulation of miR-24 on vascular endothelial cell function and its role in the development of cardiovascular disease. Sheng Li Xue Bao. 2016;68.
33. Ren K, Zhu X, Zheng Z, et al. MicroRNA-24 aggravates atherosclerosis by inhibiting selective lipid uptake from HDL cholesterol via the post-transcriptional repression of scavenger receptor class B type I. Atherosclerosis. 2018;270. DOI:10.1016/j.atherosclerosis.2018.01.045
34. Sun HX, Zeng DY, Li RT, et al. Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension. 2012;60. DOI:10.1161/HYPERTENSIONAHA.112.197301
35. Muniyappa R, Sowers JR. Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord. 2013;14. DOI:10.1007/s11154-012-9229-1
36. Sayed D, Abdellatif M. AKT-ing via microRNA. Cell Cycle. 2010;9. DOI:10.4161/cc.9.16.12634
37. Sun X, Lin J, Zhang Y, et al. MicroRNA-181b improves glucose homeostasis and insulin sensitivity by regulating endothelial function in white adipose tissue. Circ Res. 2016;118. DOI:10.1161/CIRCRESAHA.115.308166
38. Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38. DOI:10.1038/ng1725
39. Sayed D, Abdellatif M. Micrornas in development and disease. Physiol Rev. 2011;91.
DOI:10.1152/physrev.00006.2010
40. Thum T, Catalucci D, Bauersachs J. MicroRNAs: Novel regulators in cardiac development and disease. Cardiovasc Res. 2008;79. DOI:10.1093/cvr/cvn137
41. Maegdefessel L. The emerging role of microRNAs in cardiovascular disease. J Intern Med. 2014;276. DOI:10.1111/joim.12298
42. Arunachalam G, Upadhyay R, Ding H, Triggle CR. MicroRNA signature and cardiovascular dysfunction. J Cardiovasc Pharmacol. 2015;65. DOI:10.1097/FJC.0000000000000178
43. da Silva DCP, Carneiro FD, Almeida KC de, Bottino CFDS. Role of miRNAs on the pathophysiology of cardiovascular diseases. Arq Bras Cardiol. 2018;111. DOI:10.5935/abc.20180215
44. Halushka PV, Goodwin AJ, MKH. Opportunities for microRNAs in the Crowded Field of Cardiovascular Biomarkers. Annu Rev Pathol. 2019;24:211-38. DOI:10.1146/annurev-pathmechdis-012418-012827
45. Çakmak HA, Demir M. Microrna and cardiovascular diseases. Balkan Med J. 2020;37:60-71. DOI:10.4274/balkanmedj.galenos.2020.2020.1.94
46. Liu X, Dong Y, Chen S, et al. Circulating MicroRNA-146a and MicroRNA-21 Predict Left Ventricular Remodeling after ST-Elevation Myocardial Infarction. Cardiol. 2015;132. DOI:10.1159/000437090
47. Widera C, Gupta SK, Lorenzen JM, et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol. 2011;51. DOI:10.1016/j.yjmcc.2011.07.011
48. Devaux Y, Mueller M, Haaf P, et al. Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain. J Intern Med. 2015;277. DOI:10.1111/joim.12183
49. Goretti E, Vausort M, Wagner DR, Devaux Y. Association between circulating microRNAs, cardiovascular risk factors and outcome in patients with acute myocardial infarction. Int J Cardiol. 2013;168. DOI:10.1016/j.ijcard.2013.06.092
50. Wang GK, Zhu JQ, Zhang JT, et al. Circulating microRNA: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31:659–66. DOI:10.1093/eurheartj/ehq013
51. Shvangiradze T, Bondarenko I, Troshina E, et al. Profile of microRNAs associated with coronary heart disease in patients with type 2 diabetes. Obe Metab. 2016;13:34. DOI:10.14341/omet2016434-38
2. Pi-Sunyer X. The medical risks of obesity. Postgrad Med. 2009;121. DOI:10.3810/pgm.2009.11.2074
3. Zhou SS, Jin JP, Wang JQ, et al. MiRNAS in cardiovascular diseases: Potential biomarkers, therapeutic targets and challenges review-article. Acta Pharmacol Sin. 2018;39. DOI:10.1038/aps.2018.30
4. Jonk AM, Houben AJHM, De Jongh RT, et al. Microvascular dysfunction in obesity: A potential mechanism in the pathogenesis of obesity-associated insulin resistance and hypertension. Physiology. 2007;22. DOI:10.1152/physiol.00012.2007
5. Echahidi N, Mohty D, Pibarot P, et al. Obesity and metabolic syndrome are independent risk factors for atrial fibrillation after coronary artery bypass graft surgery. Circulation. 2007;116. DOI:10.1161/CIRCULATIONAHA.106.681304
6. Vanhoutte PM. Endothelial dysfunction – The first step toward coronary arteriosclerosis. Circ J. 2009;73. DOI:10.1253/circj.CJ-08-1169
7. Caballero AE. Endothelial dysfunction in obesity and insulin resistance: A road to diabetes and heart disease. Obes Res. 2003;11. DOI:10.1038/oby.2003.174
8. Petrie JR, Guzik TJ, Touyz RM. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can J Cardiol. 2018;34. DOI:10.1016/j.cjca.2017.12.005
9. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12. DOI:10.1038/nrg3074
10. Tüfekci KU, Öner MG, Meuwissen RLJ, Genç Ş. The role of microRNAs in human diseases. Methods Mol Biol. 2014;1107. DOI:10.1007/978-1-62703-748-8_3
11. Pordzik J, Jakubik D, Jarosz-Popek J, et al. Significance of circulating microRNAs in diabetes mellitus type 2 and platelet reactivity: Bioinformatic analysis and review. Cardiovasc Diabetol. 2019;18. DOI:10.1186/s12933-019-0918-x
12. Швангирадзе Т.А., Бондаренко И.З., Трошина Е.А., Шестакова М.В. МикроРНК в диагностике сердечно-сосудистых заболеваний, ассоциированных с сахарным диабетом 2-го типа и ожирением. Терапевтический архив. 2016;88(10):87-92 [Shvangiradze TA, Bondarenko IZ, Troshina EA, Shestakova MV. MiRNAs in the diagnosis of cardiovascular diseases associated with type 2 diabetes mellitus and obesity. Terapevticheskii Arkhiv (Ter. Arkh.). 2016;88(10):87-92 (in Russian)]. DOI:10.17116/terarkh201688687-92
13. Iacomino G, Siani A. Role of microRNAs in obesity and obesity-related diseases. Genes Nutr. 2017;12. DOI:10.1186/s12263-017-0577-z
14. Kozomara A, Birgaoanu M, Griffiths-Jones S. MiRBase: From microRNA sequences to function. Nucleic Acids Res. 2019;47. DOI:10.1093/nar/gky1141
15. Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of Mammalian MicroRNA Targets. Cell. 2003;115. DOI:10.1016/S0092-8674(03)01018-3
16. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: A marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23. DOI:10.1161/01.ATV.0000051384.43104.FC
17. Lerman A, Burnett JC. Intact and altered endothelium in regulation of vasomotion. Circulation. 1992;86.
18. Lerman A, Zeiher AM. Endothelial function: Cardiac events. Circulation. 2005;111.
DOI:10.1161/01.CIR.0000153339.27064.14
19. Ignarro LJ. Endothelium-derived nitric oxide: actions and properties. FASEB J. 1989;3. DOI:10.1096/fasebj.3.1.2642868
20. Epstein FH, Vane JR, Änggård EE, Botting RM. Regulatory Functions of the Vascular Endothelium. N Engl J Med. 1990;323. DOI:10.1056/nejm199007053230106
21. Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol. 2004;15.
DOI:10.1097/01.ASN.0000132474.50966.DA
22. Stapleton PA, James ME, Goodwill AG, Frisbee JC. Obesity and vascular dysfunction. Pathophysiology. 2008;15. DOI:10.1016/j.pathophys.2008.04.007
23. Avogaro A, De Kreutzenberg SV. Mechanisms of endothelial dysfunction in obesity. Clin Chim Acta. 2005;360. DOI:10.1016/j.cccn.2005.04.020
24. Gamez-Mendez AM, Vargas-Robles H, Ríos A, Escalante B. Oxidative stress-dependent coronary endothelial dysfunction in obese mice. PLoS One. 2015;10. DOI:10.1371/journal.pone.0138609
25. Austin RC, Lentz SR, Werstuck GH. Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ. 2004;11. DOI:10.1038/sj.cdd.4401451
26. Kaplon RE, Chung E, Reese L, et al. Activation of the unfolded protein response in vascular endothelial cells of Nondiabetic obese adults. J Clin Endocrinol Metab. 2013;98.
DOI:10.1210/jc.2013-1841
27. Bharath LP, Cho JM, Park SK, et al. Endothelial Cell Autophagy Maintains Shear Stress-Induced Nitric Oxide Generation via Glycolysis-Dependent Purinergic Signaling to Endothelial Nitric Oxide Synthase. Arterioscler Thromb Vasc Biol. 2017;37. DOI:10.1161/ATVBAHA.117.309510
28. Iantorno M, Campia U, Di Daniele N, et al. Obesity, inflammation and endothelial dysfunction. J Biol Regul Homeost Agents. 2014;28.
29. Zhang W, Yan L, Li Y, et al. Roles of miRNA-24 in regulating endothelial nitric oxide synthase expression and vascular endothelial cell proliferation. Mol Cell Biochem. 2015;405. DOI:10.1007/s11010-015-2418-y
30. Li HT, Wang J, Li SF, et al. Upregulation of microRNA-24 causes vasospasm following subarachnoid hemorrhage by suppressing the expression of endothelial nitric oxide synthase. Mol Med Rep. 2018;18. DOI:10.3892/mmr.2018.9050
31. Zheng Y, Li Y, Liu G,et al. MicroRNA-24 inhibits the proliferation and migration of endothelial cells in patients with atherosclerosis by targeting importin-α3 and regulating inflammatory responses. Exp Ther Med. 2018;15. DOI:10.3892/etm.2017.5355
32. Chen W, Ou HS. Regulation of miR-24 on vascular endothelial cell function and its role in the development of cardiovascular disease. Sheng Li Xue Bao. 2016;68.
33. Ren K, Zhu X, Zheng Z, et al. MicroRNA-24 aggravates atherosclerosis by inhibiting selective lipid uptake from HDL cholesterol via the post-transcriptional repression of scavenger receptor class B type I. Atherosclerosis. 2018;270. DOI:10.1016/j.atherosclerosis.2018.01.045
34. Sun HX, Zeng DY, Li RT, et al. Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension. 2012;60. DOI:10.1161/HYPERTENSIONAHA.112.197301
35. Muniyappa R, Sowers JR. Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord. 2013;14. DOI:10.1007/s11154-012-9229-1
36. Sayed D, Abdellatif M. AKT-ing via microRNA. Cell Cycle. 2010;9. DOI:10.4161/cc.9.16.12634
37. Sun X, Lin J, Zhang Y, et al. MicroRNA-181b improves glucose homeostasis and insulin sensitivity by regulating endothelial function in white adipose tissue. Circ Res. 2016;118. DOI:10.1161/CIRCRESAHA.115.308166
38. Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38. DOI:10.1038/ng1725
39. Sayed D, Abdellatif M. Micrornas in development and disease. Physiol Rev. 2011;91.
DOI:10.1152/physrev.00006.2010
40. Thum T, Catalucci D, Bauersachs J. MicroRNAs: Novel regulators in cardiac development and disease. Cardiovasc Res. 2008;79. DOI:10.1093/cvr/cvn137
41. Maegdefessel L. The emerging role of microRNAs in cardiovascular disease. J Intern Med. 2014;276. DOI:10.1111/joim.12298
42. Arunachalam G, Upadhyay R, Ding H, Triggle CR. MicroRNA signature and cardiovascular dysfunction. J Cardiovasc Pharmacol. 2015;65. DOI:10.1097/FJC.0000000000000178
43. da Silva DCP, Carneiro FD, Almeida KC de, Bottino CFDS. Role of miRNAs on the pathophysiology of cardiovascular diseases. Arq Bras Cardiol. 2018;111. DOI:10.5935/abc.20180215
44. Halushka PV, Goodwin AJ, MKH. Opportunities for microRNAs in the Crowded Field of Cardiovascular Biomarkers. Annu Rev Pathol. 2019;24:211-38. DOI:10.1146/annurev-pathmechdis-012418-012827
45. Çakmak HA, Demir M. Microrna and cardiovascular diseases. Balkan Med J. 2020;37:60-71. DOI:10.4274/balkanmedj.galenos.2020.2020.1.94
46. Liu X, Dong Y, Chen S, et al. Circulating MicroRNA-146a and MicroRNA-21 Predict Left Ventricular Remodeling after ST-Elevation Myocardial Infarction. Cardiol. 2015;132. DOI:10.1159/000437090
47. Widera C, Gupta SK, Lorenzen JM, et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol. 2011;51. DOI:10.1016/j.yjmcc.2011.07.011
48. Devaux Y, Mueller M, Haaf P, et al. Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain. J Intern Med. 2015;277. DOI:10.1111/joim.12183
49. Goretti E, Vausort M, Wagner DR, Devaux Y. Association between circulating microRNAs, cardiovascular risk factors and outcome in patients with acute myocardial infarction. Int J Cardiol. 2013;168. DOI:10.1016/j.ijcard.2013.06.092
50. Wang GK, Zhu JQ, Zhang JT, et al. Circulating microRNA: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31:659–66. DOI:10.1093/eurheartj/ehq013
51. Shvangiradze T, Bondarenko I, Troshina E, et al. Profile of microRNAs associated with coronary heart disease in patients with type 2 diabetes. Obe Metab. 2016;13:34. DOI:10.14341/omet2016434-38
________________________________________________
2. Pi-Sunyer X. The medical risks of obesity. Postgrad Med. 2009;121. DOI:10.3810/pgm.2009.11.2074
3. Zhou SS, Jin JP, Wang JQ, et al. MiRNAS in cardiovascular diseases: Potential biomarkers, therapeutic targets and challenges review-article. Acta Pharmacol Sin. 2018;39. DOI:10.1038/aps.2018.30
4. Jonk AM, Houben AJHM, De Jongh RT, et al. Microvascular dysfunction in obesity: A potential mechanism in the pathogenesis of obesity-associated insulin resistance and hypertension. Physiology. 2007;22. DOI:10.1152/physiol.00012.2007
5. Echahidi N, Mohty D, Pibarot P, et al. Obesity and metabolic syndrome are independent risk factors for atrial fibrillation after coronary artery bypass graft surgery. Circulation. 2007;116. DOI:10.1161/CIRCULATIONAHA.106.681304
6. Vanhoutte PM. Endothelial dysfunction – The first step toward coronary arteriosclerosis. Circ J. 2009;73. DOI:10.1253/circj.CJ-08-1169
7. Caballero AE. Endothelial dysfunction in obesity and insulin resistance: A road to diabetes and heart disease. Obes Res. 2003;11. DOI:10.1038/oby.2003.174
8. Petrie JR, Guzik TJ, Touyz RM. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can J Cardiol. 2018;34. DOI:10.1016/j.cjca.2017.12.005
9. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12. DOI:10.1038/nrg3074
10. Tüfekci KU, Öner MG, Meuwissen RLJ, Genç Ş. The role of microRNAs in human diseases. Methods Mol Biol. 2014;1107. DOI:10.1007/978-1-62703-748-8_3
11. Pordzik J, Jakubik D, Jarosz-Popek J, et al. Significance of circulating microRNAs in diabetes mellitus type 2 and platelet reactivity: Bioinformatic analysis and review. Cardiovasc Diabetol. 2019;18. DOI:10.1186/s12933-019-0918-x
12. Shvangiradze TA, Bondarenko IZ, Troshina EA, Shestakova MV. MiRNAs in the diagnosis of cardiovascular diseases associated with type 2 diabetes mellitus and obesity. Terapevticheskii Arkhiv (Ter. Arkh.). 2016;88(10):87-92 (in Russian)
DOI:10.17116/terarkh201688687-92
13. Iacomino G, Siani A. Role of microRNAs in obesity and obesity-related diseases. Genes Nutr. 2017;12. DOI:10.1186/s12263-017-0577-z
14. Kozomara A, Birgaoanu M, Griffiths-Jones S. MiRBase: From microRNA sequences to function. Nucleic Acids Res. 2019;47. DOI:10.1093/nar/gky1141
15. Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of Mammalian MicroRNA Targets. Cell. 2003;115. DOI:10.1016/S0092-8674(03)01018-3
16. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: A marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23. DOI:10.1161/01.ATV.0000051384.43104.FC
17. Lerman A, Burnett JC. Intact and altered endothelium in regulation of vasomotion. Circulation. 1992;86.
18. Lerman A, Zeiher AM. Endothelial function: Cardiac events. Circulation. 2005;111.
DOI:10.1161/01.CIR.0000153339.27064.14
19. Ignarro LJ. Endothelium-derived nitric oxide: actions and properties. FASEB J. 1989;3. DOI:10.1096/fasebj.3.1.2642868
20. Epstein FH, Vane JR, Änggård EE, Botting RM. Regulatory Functions of the Vascular Endothelium. N Engl J Med. 1990;323. DOI:10.1056/nejm199007053230106
21. Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol. 2004;15.
DOI:10.1097/01.ASN.0000132474.50966.DA
22. Stapleton PA, James ME, Goodwill AG, Frisbee JC. Obesity and vascular dysfunction. Pathophysiology. 2008;15. DOI:10.1016/j.pathophys.2008.04.007
23. Avogaro A, De Kreutzenberg SV. Mechanisms of endothelial dysfunction in obesity. Clin Chim Acta. 2005;360. DOI:10.1016/j.cccn.2005.04.020
24. Gamez-Mendez AM, Vargas-Robles H, Ríos A, Escalante B. Oxidative stress-dependent coronary endothelial dysfunction in obese mice. PLoS One. 2015;10. DOI:10.1371/journal.pone.0138609
25. Austin RC, Lentz SR, Werstuck GH. Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ. 2004;11. DOI:10.1038/sj.cdd.4401451
26. Kaplon RE, Chung E, Reese L, et al. Activation of the unfolded protein response in vascular endothelial cells of Nondiabetic obese adults. J Clin Endocrinol Metab. 2013;98.
DOI:10.1210/jc.2013-1841
27. Bharath LP, Cho JM, Park SK, et al. Endothelial Cell Autophagy Maintains Shear Stress-Induced Nitric Oxide Generation via Glycolysis-Dependent Purinergic Signaling to Endothelial Nitric Oxide Synthase. Arterioscler Thromb Vasc Biol. 2017;37. DOI:10.1161/ATVBAHA.117.309510
28. Iantorno M, Campia U, Di Daniele N, et al. Obesity, inflammation and endothelial dysfunction. J Biol Regul Homeost Agents. 2014;28.
29. Zhang W, Yan L, Li Y, et al. Roles of miRNA-24 in regulating endothelial nitric oxide synthase expression and vascular endothelial cell proliferation. Mol Cell Biochem. 2015;405. DOI:10.1007/s11010-015-2418-y
30. Li HT, Wang J, Li SF, et al. Upregulation of microRNA-24 causes vasospasm following subarachnoid hemorrhage by suppressing the expression of endothelial nitric oxide synthase. Mol Med Rep. 2018;18. DOI:10.3892/mmr.2018.9050
31. Zheng Y, Li Y, Liu G,et al. MicroRNA-24 inhibits the proliferation and migration of endothelial cells in patients with atherosclerosis by targeting importin-α3 and regulating inflammatory responses. Exp Ther Med. 2018;15. DOI:10.3892/etm.2017.5355
32. Chen W, Ou HS. Regulation of miR-24 on vascular endothelial cell function and its role in the development of cardiovascular disease. Sheng Li Xue Bao. 2016;68.
33. Ren K, Zhu X, Zheng Z, et al. MicroRNA-24 aggravates atherosclerosis by inhibiting selective lipid uptake from HDL cholesterol via the post-transcriptional repression of scavenger receptor class B type I. Atherosclerosis. 2018;270. DOI:10.1016/j.atherosclerosis.2018.01.045
34. Sun HX, Zeng DY, Li RT, et al. Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension. 2012;60. DOI:10.1161/HYPERTENSIONAHA.112.197301
35. Muniyappa R, Sowers JR. Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord. 2013;14. DOI:10.1007/s11154-012-9229-1
36. Sayed D, Abdellatif M. AKT-ing via microRNA. Cell Cycle. 2010;9. DOI:10.4161/cc.9.16.12634
37. Sun X, Lin J, Zhang Y, et al. MicroRNA-181b improves glucose homeostasis and insulin sensitivity by regulating endothelial function in white adipose tissue. Circ Res. 2016;118. DOI:10.1161/CIRCRESAHA.115.308166
38. Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38. DOI:10.1038/ng1725
39. Sayed D, Abdellatif M. Micrornas in development and disease. Physiol Rev. 2011;91.
DOI:10.1152/physrev.00006.2010
40. Thum T, Catalucci D, Bauersachs J. MicroRNAs: Novel regulators in cardiac development and disease. Cardiovasc Res. 2008;79. DOI:10.1093/cvr/cvn137
41. Maegdefessel L. The emerging role of microRNAs in cardiovascular disease. J Intern Med. 2014;276. DOI:10.1111/joim.12298
42. Arunachalam G, Upadhyay R, Ding H, Triggle CR. MicroRNA signature and cardiovascular dysfunction. J Cardiovasc Pharmacol. 2015;65. DOI:10.1097/FJC.0000000000000178
43. da Silva DCP, Carneiro FD, Almeida KC de, Bottino CFDS. Role of miRNAs on the pathophysiology of cardiovascular diseases. Arq Bras Cardiol. 2018;111. DOI:10.5935/abc.20180215
44. Halushka PV, Goodwin AJ, MKH. Opportunities for microRNAs in the Crowded Field of Cardiovascular Biomarkers. Annu Rev Pathol. 2019;24:211-38. DOI:10.1146/annurev-pathmechdis-012418-012827
45. Çakmak HA, Demir M. Microrna and cardiovascular diseases. Balkan Med J. 2020;37:60-71. DOI:10.4274/balkanmedj.galenos.2020.2020.1.94
46. Liu X, Dong Y, Chen S, et al. Circulating MicroRNA-146a and MicroRNA-21 Predict Left Ventricular Remodeling after ST-Elevation Myocardial Infarction. Cardiol. 2015;132. DOI:10.1159/000437090
47. Widera C, Gupta SK, Lorenzen JM, et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol. 2011;51. DOI:10.1016/j.yjmcc.2011.07.011
48. Devaux Y, Mueller M, Haaf P, et al. Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain. J Intern Med. 2015;277. DOI:10.1111/joim.12183
49. Goretti E, Vausort M, Wagner DR, Devaux Y. Association between circulating microRNAs, cardiovascular risk factors and outcome in patients with acute myocardial infarction. Int J Cardiol. 2013;168. DOI:10.1016/j.ijcard.2013.06.092
50. Wang GK, Zhu JQ, Zhang JT, et al. Circulating microRNA: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31:659–66. DOI:10.1093/eurheartj/ehq013
51. Shvangiradze T, Bondarenko I, Troshina E, et al. Profile of microRNAs associated with coronary heart disease in patients with type 2 diabetes. Obe Metab. 2016;13:34. DOI:10.14341/omet2016434-38
Авторы
Т.А. Швангирадзе*1, И.З. Бондаренко2, Е.А. Трошина2
1 АО «Клиника К+31», Москва, Россия;
2 ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России, Москва, Россия
*teona.endo@gmail.com
1 Clinic K+31, Moscow, Russia;
2 Endocrinology Research Centre, Moscow, Russia
*teona.endo@gmail.com
1 АО «Клиника К+31», Москва, Россия;
2 ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России, Москва, Россия
*teona.endo@gmail.com
________________________________________________
1 Clinic K+31, Moscow, Russia;
2 Endocrinology Research Centre, Moscow, Russia
*teona.endo@gmail.com
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
