Внеклеточные ловушки как важная часть патогенеза при хроническом риносинусите
Внеклеточные ловушки как важная часть патогенеза при хроническом риносинусите
Свистушкин В.М., Никифорова Г.Н., Воробьева Н.В., Деханов А.С. Внеклеточные ловушки как важная часть патогенеза при хроническом риносинусите. Consilium Medicum. 2021; 23 (9): 395–399.
DOI: 10.26442/20751753.2021.9.201025
________________________________________________
Svistushkin VM, Nikiforova GN, Vorobyeva NV, Dekhanov AS. Extracellular traps as an important part of the pathogenesis in chronic rhinosinusitis. Consilium Medicum. 2021; 23 (9): 395–399.
DOI: 10.26442/20751753.2021.9.201025
Внеклеточные ловушки как важная часть патогенеза при хроническом риносинусите
Свистушкин В.М., Никифорова Г.Н., Воробьева Н.В., Деханов А.С. Внеклеточные ловушки как важная часть патогенеза при хроническом риносинусите. Consilium Medicum. 2021; 23 (9): 395–399.
DOI: 10.26442/20751753.2021.9.201025
________________________________________________
Svistushkin VM, Nikiforova GN, Vorobyeva NV, Dekhanov AS. Extracellular traps as an important part of the pathogenesis in chronic rhinosinusitis. Consilium Medicum. 2021; 23 (9): 395–399.
DOI: 10.26442/20751753.2021.9.201025
Хронический риносинусит (ХРС) является одним из самых распространенных заболеваний в структуре ЛОР-патологии. К хронизации этого заболевания часто приводит сочетание нескольких факторов, что существенно усложняет выбор тактики лечения при сохранении стойкого воспаления в слизистой оболочке полости носа и околоносовых пазух. Появление новых данных об изменениях, происходящих на клеточно-молекулярном уровне, существенно влияет на понимание процессов, возникающих при патогенезе ХРС и других заболеваниях ЛОР-органов. В последние годы накапливается все больше информации о роли нейтрофилов и эозинофилов, а также такого механизма иммунного ответа, как образование внеклеточных ловушек, в структуре заболеваний верхних и нижних дыхательных путей. В обзоре представлены актуальные сведения о влиянии нейтрофильных и эозинофильных внеклеточных ловушек на хронический воспалительный процесс в слизистой оболочке дыхательных путей на примере ХРС.
Chronic rhinosinusitis is one of the most common diseases in the structure of ENT pathology. A combination of several factors often leads to the chronicity of this disease, which significantly complicates the choice of treatment tactics while maintaining persistent inflammation in the mucous membrane of the nasal cavity and paranasal sinuses. The emergence of new data on changes occurring at the cellular-molecular level significantly affects the understanding of the processes occurring during the pathogenesis of chronic rhinosinusitis and other diseases of the ENT organs. In recent years, more and more information has been accumulating on the role of neutrophils and eosinophils, as well as on such an immune response mechanism as the formation of extracellular traps in the structure of diseases of the upper and lower respiratory tract. The review presents current information on the effect of neutrophilic and eosinophilic extracellular traps on the chronic inflammatory process in the mucous membrane of the respiratory tract using the example of chronic rhinosinusitis.
1. Fokkens WJ, Lund VJ, Hopkins C, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology. 2020;58(Suppl. S29):1-464. DOI:10.4193/Rhin20.600.2
2. Шамкина П.А., Кривопалов А.А., Рязанцев С.В., и др. Эпидемиология хронических риносинуситов. Современные проблемы науки и образования. 2019;3:188 [Shamkina PA, Krivopalov AA, Ryazancev SV, et al. Epidemiologiia khronicheskikh rinosinusitov. Sovremennye problemy nauki i obrazovaniia. 2019;3:188 (in Russian)]. DOI:10.17513/spno.28891
3. Hwang JW, Kim JH, Kim HJ, et al. Neutrophil extracellular traps in nasal secretions of patients with stable and exacerbated chronic rhinosinusitis and their contribution to induce chemokine secretion and strengthen the epithelial barrier. Clin Exp Allergy. 2019;49(10):1306-20. DOI:10.1111/cea.13448
4. Jun YJ, Park SJ, Kim TH, et al. Expression of 11β-hydroxysteroid dehydrogenase 1 and 2 in patients with chronic rhinosinusitis and their possible contribution to local glucocorticoid activation in sinus mucosa. J Allergy Clin Immunol. 2014;134:926-34.e6. DOI:10.1016/j.jaci.2014.03.033
5. Delemarre T, Holtappels G, De Ruyck N, et al. A substantial neutrophilic inflammation as regular part of severe type 2 chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2021;147(1):179-88.e2.
DOI:10.1016/j.jaci.2020.08.036
6. Cao Y, Chen F, Sun Y, et al. LL-37 promotes neutrophil extracellular trap formation in chronic rhinosinusitis with nasal polyps. Clin Exp Allergy. 2019;49(7):990-9. DOI:10.1111/cea.13408
7. Takei H, Araki A, Watanabe H, et al. Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J Leukos Biol. 1996;59:229-40. DOI:10.1002/jlb.59.2.229
8. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532-5. DOI:10.1126/science.1092385
9. Altincicek B, Stotzel S, Wygrecka M, et al. Host-derived extracellular nucleic acids enhance innate immune responses, induce coagulation, and prolong survival upon infection in insects. J Immunol. 2008;181(4):2705-12. DOI:10.4049/jimmunol.181.4.2705
10. Yousefi S, Gold JA, Andina N, et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med. 2008;14(9):949-53. DOI:10.1038/nm.1855
11. Branzk N, Lubojemska A, Hardison SE, et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol. 2014;15(11):1017-25. DOI:10.1038/ni.2987
12. Ueki S, Konno Y, Takeda M, et al. Eosinophil extracellular trap cell death-derived DNA traps: Their presence in secretions and functional attributes. J Allergy Clin Immunol. 2016;137(1):258-67. DOI:10.1016/j.jaci.2015.04.041
13. Sollberger G, Tilley DO, Zychlinsky A. Neutrophil Extracellular Traps: The Biology of Chromatin Externalization. Dev Cell. 2018;44(5):542-53. DOI:10.1016/j.devcel.2018.01.019
14. Bianchi M, Hakkim A, Brinkmann V, et al. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood. 2009;114(13):2619-22. DOI:10.1182/blood-2009-05-221606
15. Dicker AJ, Crichton ML, Pumphrey EG, et al. Neutrophil extracellular traps are associated with disease severity and microbiota diversity in patients with chronic obstructive pulmonary disease.
J Allergy Clin Immunol. 2018;141(1):117-27. DOI:10.1016/j.jaci.2017.04.022
16. Caudrillier A, Kessenbrock K, Gilliss BM, et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest. 2012;122(7):2661-71. DOI:10.1172/JCI61303
17. Jin X, Zhao Y, Zhang F, et al. Neutrophil extracellular traps involvement in corneal fungal infection. Mol Vis. 2016;22:944-52.
18. Jiménez-Alcázar M, Rangaswamy C, Panda R, et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science. 2017;358(6367):1202-6. DOI:10.1126/science.aam8897
19. Kambas K, Mitroulis I, Ritis K. The emerging role of neutrophils in thrombosis-the journey of TF through NETs. Front Immunol. 2012;3:385. DOI:10.3389/fimmu.2012.00385
20. Park SY, Shrestha S, Youn YJ, et al. Autophagy Primes Neutrophils for Neutrophil Extracellular Trap Formation during Sepsis. Am J Respir Crit Care Med. 2017;196(5):577-89.
DOI:10.1164/rccm.201603-0596OC
21. Muniz VS, Silva JC, Braga YAV, et al. Eosinophils release extracellular DNA traps in response to Aspergillus fumigatus. J Allergy Clin Immunol. 2018;141(2):571-85.e7.
DOI:10.1016/j.jaci.2017.07.048
22. Hatano Y, Taniuchi S, Masuda M, et al. Phagocytosis of heat-killed Staphylococcus aureus by eosinophils: comparison with neutrophils. APMIS. 2009;117(2):115-23.
DOI:10.1111/j.1600-0463.2008.00022.x
23. Linch SN, Kelly AM, Danielson ET, et al. Mouse eosinophils possess potent antibacterial properties in vivo. Infect Immun. 2009;77(11):4976-82. DOI:10.1128/IAI.00306-09
24. Ueki S, Melo RC, Ghiran I, et al. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood. 2013;121(11):2074-83. DOI:10.1182/blood-2012-05-432088
25. Kita H. Eosinophils: multifaceted biological properties and roles in health and disease. Immunol Rev. 2011;242(1):161-77. DOI:10.1111/j.1600-065X.2011.01026.x
26. Persson C, Uller L. Theirs but to die and do: primary lysis of eosinophils and free eosinophil granules in asthma. Am J Respir Crit Care Med. 2014;189(6):628-33. DOI:10.1164/rccm.201311-2069OE
27. Melo RC, Liu L, Xenakis JJ, Spencer LA. Eosinophil-derived cytokines in health and disease: unraveling novel mechanisms of selective secretion. Allergy. 2013;68(3):274-84. DOI:10.1111/all.12103
28. Spencer LA, Bonjour K, Melo RC, Weller PF. Eosinophil secretion of granule-derived cytokines. Front. Immunol. 2014;5:496. DOI:10.3389/fimmu.2014.00496
29. Ponikau JU, Sherris DA, Kephart GM, et al. Striking deposition of toxic eosinophil major basic protein in mucus: implications for chronic rhinosinusitis. J Allergy Clin Immunol. 2005;116(2):362-9. DOI:10.1016/j.jaci.2005.03.049
30. Ueki S, Melo RC, Ghiran I, et al. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood. 2013;121(11):2074-83. DOI:10.1182/blood-2012-05-432088
31. Neves JS, Perez SA, Spencer LA, et al. Eosinophil granules function extracellularly as receptor-mediated secretory organelles. Proc Natl Acad Sci USA. 2008;105(47):18478-83. DOI:10.1073/pnas.0804547105
32. Neves JS, Radke AL, Weller PF. Cysteinyl leukotrienes acting via granule membrane-expressed receptors elicit secretion from within cell-free human eosinophil granules. J Allergy Clin Immunol. 2010;125(2):477-82. DOI:10.1016/j.jaci.2009.11.029
33. Hwang CS, Park SC, Cho HJ, et al. Eosinophil extracellular trap formation is closely associated with disease severity in chronic rhinosinusitis regardless of nasal polyp status. Sci Rep. 2019;9(1):8061. DOI:10.1038/s41598-019-44627-z
34. Zhang N, Van Crombruggen K, Gevaert E, Bachert C. Barrier function of the nasal mucosa in health and type-2 biased airway diseases. Allergy. 2016;71(3):295-307. DOI:10.1111/all.12809
35. Wang H, Pan L, Liu Z. Neutrophils as a Protagonist and Target in Chronic Rhinosinusitis. Clin Exp Otorhinolaryngol. 2019;12(4):337-47. DOI:10.21053/ceo.2019.00654
36. Pothoven KL, Norton JE, Suh LA, et al. Neutrophils are a major source of the epithelial barrier disrupting cytokine oncostatin M in patients with mucosal airways disease. J Allergy Clin Immunol. 2016;139(6):1966-78.e9. DOI:10.1016/j.jaci.2016.10.039
37. Choi Y, Le Pham D, Lee DH, et al. Biological function of eosinophil extracellular traps in patients with severe eosinophilic asthma. Exp Mol Med. 2018;50(8):1-8. DOI:10.1038/s12276-018-0136-8
38. Ueki S, Tokunaga T, Fujieda S, et al. Eosinophil ETosis and DNA Traps: a New Look at Eosinophilic Inflammation. Curr Allergy Asthma Rep. 2016;16(8):54. DOI:10.1007/s11882-016-0634-5
39. Collins MM, Nair SB, Der-Haroutian V, et al. Effect of using multiple culture media for the diagnosis of noninvasive fungal sinusitis. Am J Rhinol. 2005;19(1):41-5.
40. Ferguson BJ. Eosinophilic mucin rhinosinusitis: a distinct clinicopathological entity. Laryngoscope. 2000;110(5 Pt. 1):799-813. DOI:10.1097/00005537-200005000-00010
41. Peterson CL, Laniel MA. Histones and histone modifications. Curr Biol. 2004;14(14):R546-51. DOI:10.1016/j.cub.2004.07.007
42. Iino Y, Tomioka-Matsutani S, Matsubara A, et al. Diagnostic criteria of eosinophilic otitis media, a newly recognized middle ear disease. Auris Nasus Larynx. 2011;38(4):456-61.
DOI:10.1016/j.anl.2010.11.016
43. Арефьева Н.А., Вишняков В.В., Иванченко О.А., и др. Хронический риносинусит: патогенез, диагностика и принципы лечения. Клинические рекомендации. Под ред. А.С. Лопатина. Российское общество ринологов. М.: Практическая медицина, 2014 [Arefeva NA, Vishniakov VV, Ivanchenko OA, et al. Chronic rhinosinusitis: pathogenesis, diagnosis and treatment principles. Clinical guidelines. Ed. AS Lopatin. Russian Society of Rhinologists. Moscow: Practical Medicine, 2014 (in Russian)].
44. Пальчун В.Т. Оториноларинология. Национальное руководство. M.: Геотар-Медиа, 2020 [Palchun VT. Otorhinolarynology. National leadership. Moscow: Geotar-Media, 2020 (in Russian)].
45. Kim DW, Kim DK, Jo A, et al. Age-Related Decline of Neutrophilic Inflammation Is Associated with Better Postoperative Prognosis in Non-eosinophilic Nasal Polyps. PLoS One. 2016;11(2):e0148442. DOI:10.1371/journal.pone.0148442
46. Kwon E, O'Rourke MC. Chronic Sinusitis. Available at: https://www.ncbi.nlm.nih.gov/books/NBK441934/ Accessed: 20.11.2020.
47. Vargas A, Boivin R, Cano P, et al. Neutrophil extracellular trapsare downregulated by glucocorticoids in lungs in an equine model of asthma. Respir Res. 2017;18(1):207.
DOI:10.1186/s12931-017-0689-4
48. Lapponi MJ, Carestia A, Landoni VI, et al. Regulation of neutrophil extracellular trap formation by anti-inflammatory drugs. J Pharmacol Exp Ther. 2013;345(3):430-7. DOI:10.1124/jpet.112.202879
49. Beule A. Epidemiology of chronic rhinosinusitis, selected risk factors, comorbidities, and economic burden. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2015;14:Doc11. DOI:10.3205/cto000126
50. Veloso-Teles R, Cerejeira R. Endoscopic sinus surgery for chronic rhinosinusitis with nasal polyps: Clinical outcome and predictive factors of recurrence. Am J Rhinol Allergy. 2017;31(1):56-62. DOI:10.2500/ajra.2017.31.4402
________________________________________________
1. Fokkens WJ, Lund VJ, Hopkins C, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology. 2020;58(Suppl. S29):1-464. DOI:10.4193/Rhin20.600.2
2. Shamkina PA, Krivopalov AA, Ryazancev SV, et al. Epidemiologiia khronicheskikh rinosinusitov. Sovremennye problemy nauki i obrazovaniia. 2019;3:188 (in Russian)
DOI:10.17513/spno.28891
3. Hwang JW, Kim JH, Kim HJ, et al. Neutrophil extracellular traps in nasal secretions of patients with stable and exacerbated chronic rhinosinusitis and their contribution to induce chemokine secretion and strengthen the epithelial barrier. Clin Exp Allergy. 2019;49(10):1306-20. DOI:10.1111/cea.13448
4. Jun YJ, Park SJ, Kim TH, et al. Expression of 11β-hydroxysteroid dehydrogenase 1 and 2 in patients with chronic rhinosinusitis and their possible contribution to local glucocorticoid activation in sinus mucosa. J Allergy Clin Immunol. 2014;134:926-34.e6. DOI:10.1016/j.jaci.2014.03.033
5. Delemarre T, Holtappels G, De Ruyck N, et al. A substantial neutrophilic inflammation as regular part of severe type 2 chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2021;147(1):179-88.e2.
DOI:10.1016/j.jaci.2020.08.036
6. Cao Y, Chen F, Sun Y, et al. LL-37 promotes neutrophil extracellular trap formation in chronic rhinosinusitis with nasal polyps. Clin Exp Allergy. 2019;49(7):990-9. DOI:10.1111/cea.13408
7. Takei H, Araki A, Watanabe H, et al. Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J Leukos Biol. 1996;59:229-40. DOI:10.1002/jlb.59.2.229
8. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532-5. DOI:10.1126/science.1092385
9. Altincicek B, Stotzel S, Wygrecka M, et al. Host-derived extracellular nucleic acids enhance innate immune responses, induce coagulation, and prolong survival upon infection in insects. J Immunol. 2008;181(4):2705-12. DOI:10.4049/jimmunol.181.4.2705
10. Yousefi S, Gold JA, Andina N, et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med. 2008;14(9):949-53. DOI:10.1038/nm.1855
11. Branzk N, Lubojemska A, Hardison SE, et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol. 2014;15(11):1017-25. DOI:10.1038/ni.2987
12. Ueki S, Konno Y, Takeda M, et al. Eosinophil extracellular trap cell death-derived DNA traps: Their presence in secretions and functional attributes. J Allergy Clin Immunol. 2016;137(1):258-67. DOI:10.1016/j.jaci.2015.04.041
13. Sollberger G, Tilley DO, Zychlinsky A. Neutrophil Extracellular Traps: The Biology of Chromatin Externalization. Dev Cell. 2018;44(5):542-53. DOI:10.1016/j.devcel.2018.01.019
14. Bianchi M, Hakkim A, Brinkmann V, et al. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood. 2009;114(13):2619-22. DOI:10.1182/blood-2009-05-221606
15. Dicker AJ, Crichton ML, Pumphrey EG, et al. Neutrophil extracellular traps are associated with disease severity and microbiota diversity in patients with chronic obstructive pulmonary disease.
J Allergy Clin Immunol. 2018;141(1):117-27. DOI:10.1016/j.jaci.2017.04.022
16. Caudrillier A, Kessenbrock K, Gilliss BM, et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest. 2012;122(7):2661-71. DOI:10.1172/JCI61303
17. Jin X, Zhao Y, Zhang F, et al. Neutrophil extracellular traps involvement in corneal fungal infection. Mol Vis. 2016;22:944-52.
18. Jiménez-Alcázar M, Rangaswamy C, Panda R, et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science. 2017;358(6367):1202-6. DOI:10.1126/science.aam8897
19. Kambas K, Mitroulis I, Ritis K. The emerging role of neutrophils in thrombosis-the journey of TF through NETs. Front Immunol. 2012;3:385. DOI:10.3389/fimmu.2012.00385
20. Park SY, Shrestha S, Youn YJ, et al. Autophagy Primes Neutrophils for Neutrophil Extracellular Trap Formation during Sepsis. Am J Respir Crit Care Med. 2017;196(5):577-89. DOI:10.1164/rccm.201603-0596OC
21. Muniz VS, Silva JC, Braga YAV, et al. Eosinophils release extracellular DNA traps in response to Aspergillus fumigatus. J Allergy Clin Immunol. 2018;141(2):571-85.e7.
DOI:10.1016/j.jaci.2017.07.048
22. Hatano Y, Taniuchi S, Masuda M, et al. Phagocytosis of heat-killed Staphylococcus aureus by eosinophils: comparison with neutrophils. APMIS. 2009;117(2):115-23.
DOI:10.1111/j.1600-0463.2008.00022.x
23. Linch SN, Kelly AM, Danielson ET, et al. Mouse eosinophils possess potent antibacterial properties in vivo. Infect Immun. 2009;77(11):4976-82. DOI:10.1128/IAI.00306-09
24. Ueki S, Melo RC, Ghiran I, et al. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood. 2013;121(11):2074-83. DOI:10.1182/blood-2012-05-432088
25. Kita H. Eosinophils: multifaceted biological properties and roles in health and disease. Immunol Rev. 2011;242(1):161-77. DOI:10.1111/j.1600-065X.2011.01026.x
26. Persson C, Uller L. Theirs but to die and do: primary lysis of eosinophils and free eosinophil granules in asthma. Am J Respir Crit Care Med. 2014;189(6):628-33. DOI:10.1164/rccm.201311-2069OE
27. Melo RC, Liu L, Xenakis JJ, Spencer LA. Eosinophil-derived cytokines in health and disease: unraveling novel mechanisms of selective secretion. Allergy. 2013;68(3):274-84. DOI:10.1111/all.12103
28. Spencer LA, Bonjour K, Melo RC, Weller PF. Eosinophil secretion of granule-derived cytokines. Front. Immunol. 2014;5:496. DOI:10.3389/fimmu.2014.00496
29. Ponikau JU, Sherris DA, Kephart GM, et al. Striking deposition of toxic eosinophil major basic protein in mucus: implications for chronic rhinosinusitis. J Allergy Clin Immunol. 2005;116(2):362-9. DOI:10.1016/j.jaci.2005.03.049
30. Ueki S, Melo RC, Ghiran I, et al. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood. 2013;121(11):2074-83. DOI:10.1182/blood-2012-05-432088
31. Neves JS, Perez SA, Spencer LA, et al. Eosinophil granules function extracellularly as receptor-mediated secretory organelles. Proc Natl Acad Sci USA. 2008;105(47):18478-83. DOI:10.1073/pnas.0804547105
32. Neves JS, Radke AL, Weller PF. Cysteinyl leukotrienes acting via granule membrane-expressed receptors elicit secretion from within cell-free human eosinophil granules. J Allergy Clin Immunol. 2010;125(2):477-82. DOI:10.1016/j.jaci.2009.11.029
33. Hwang CS, Park SC, Cho HJ, et al. Eosinophil extracellular trap formation is closely associated with disease severity in chronic rhinosinusitis regardless of nasal polyp status. Sci Rep. 2019;9(1):8061. DOI:10.1038/s41598-019-44627-z
34. Zhang N, Van Crombruggen K, Gevaert E, Bachert C. Barrier function of the nasal mucosa in health and type-2 biased airway diseases. Allergy. 2016;71(3):295-307. DOI:10.1111/all.12809
35. Wang H, Pan L, Liu Z. Neutrophils as a Protagonist and Target in Chronic Rhinosinusitis. Clin Exp Otorhinolaryngol. 2019;12(4):337-47. DOI:10.21053/ceo.2019.00654
36. Pothoven KL, Norton JE, Suh LA, et al. Neutrophils are a major source of the epithelial barrier disrupting cytokine oncostatin M in patients with mucosal airways disease. J Allergy Clin Immunol. 2016;139(6):1966-78.e9. DOI:10.1016/j.jaci.2016.10.039
37. Choi Y, Le Pham D, Lee DH, et al. Biological function of eosinophil extracellular traps in patients with severe eosinophilic asthma. Exp Mol Med. 2018;50(8):1-8. DOI:10.1038/s12276-018-0136-8
38. Ueki S, Tokunaga T, Fujieda S, et al. Eosinophil ETosis and DNA Traps: a New Look at Eosinophilic Inflammation. Curr Allergy Asthma Rep. 2016;16(8):54. DOI:10.1007/s11882-016-0634-5
39. Collins MM, Nair SB, Der-Haroutian V, et al. Effect of using multiple culture media for the diagnosis of noninvasive fungal sinusitis. Am J Rhinol. 2005;19(1):41-5.
40. Ferguson BJ. Eosinophilic mucin rhinosinusitis: a distinct clinicopathological entity. Laryngoscope. 2000;110(5 Pt. 1):799-813. DOI:10.1097/00005537-200005000-00010
41. Peterson CL, Laniel MA. Histones and histone modifications. Curr Biol. 2004;14(14):R546-51. DOI:10.1016/j.cub.2004.07.007
42. Iino Y, Tomioka-Matsutani S, Matsubara A, et al. Diagnostic criteria of eosinophilic otitis media, a newly recognized middle ear disease. Auris Nasus Larynx. 2011;38(4):456-61. DOI:10.1016/j.anl.2010.11.016
43. Arefeva NA, Vishniakov VV, Ivanchenko OA, et al. Chronic rhinosinusitis: pathogenesis, diagnosis and treatment principles. Clinical guidelines. Ed. AS Lopatin. Russian Society of Rhinologists. Moscow: Practical Medicine, 2014 (in Russian)
44. Palchun VT. Otorhinolarynology. National leadership. Moscow: Geotar-Media, 2020 (in Russian)
45. Kim DW, Kim DK, Jo A, et al. Age-Related Decline of Neutrophilic Inflammation Is Associated with Better Postoperative Prognosis in Non-eosinophilic Nasal Polyps. PLoS One. 2016;11(2):e0148442. DOI:10.1371/journal.pone.0148442
46. Kwon E, O'Rourke MC. Chronic Sinusitis. Available at: https://www.ncbi.nlm.nih.gov/books/NBK441934/ Accessed: 20.11.2020.
47. Vargas A, Boivin R, Cano P, et al. Neutrophil extracellular trapsare downregulated by glucocorticoids in lungs in an equine model of asthma. Respir Res. 2017;18(1):207.
DOI:10.1186/s12931-017-0689-4
48. Lapponi MJ, Carestia A, Landoni VI, et al. Regulation of neutrophil extracellular trap formation by anti-inflammatory drugs. J Pharmacol Exp Ther. 2013;345(3):430-7. DOI:10.1124/jpet.112.202879
49. Beule A. Epidemiology of chronic rhinosinusitis, selected risk factors, comorbidities, and economic burden. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2015;14:Doc11. DOI:10.3205/cto000126
50. Veloso-Teles R, Cerejeira R. Endoscopic sinus surgery for chronic rhinosinusitis with nasal polyps: Clinical outcome and predictive factors of recurrence. Am J Rhinol Allergy. 2017;31(1):56-62. DOI:10.2500/ajra.2017.31.4402
1 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия;
2 ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова», Москва, Россия
*dehanovartem@rambler.ru
________________________________________________
Valery M. Svistushkin1, Galina N. Nikiforova1, Nina V. Vorobyeva2, Artem S. Dekhanov*1
1 Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia;
2 Lomonosov Moscow State University, Moscow, Russia
*dehanovartem@rambler.ru