Микропористая поверхность как новое решение модификации поверхности стентов
Микропористая поверхность как новое решение модификации поверхности стентов
Камолов И.Х., Асадов Д.А., Сандодзе Т.С., Чернышева И.Е. Микропористая поверхность как новое решение модификации поверхности стентов. Consilium Medicum. 2022;24(10):718–725.
DOI: 10.26442/20751753.2022.10.201955
Kamolov IH, Asadov DA, Sandodze TS, Chernysheva IE. Microporous surface as a new solution for stent surface modification: A review. Consilium Medicum. 2022;24(10):718–725. DOI: 10.26442/20751753.2022.10.201955
Микропористая поверхность как новое решение модификации поверхности стентов
Камолов И.Х., Асадов Д.А., Сандодзе Т.С., Чернышева И.Е. Микропористая поверхность как новое решение модификации поверхности стентов. Consilium Medicum. 2022;24(10):718–725.
DOI: 10.26442/20751753.2022.10.201955
Kamolov IH, Asadov DA, Sandodze TS, Chernysheva IE. Microporous surface as a new solution for stent surface modification: A review. Consilium Medicum. 2022;24(10):718–725. DOI: 10.26442/20751753.2022.10.201955
Внедрение в клиническую практику коронарных стентов кратно сократило частоту повторных обращений пациентов за медицинской помощью по сравнению с изолированной баллонной ангиопластикой. Позднее стентам с лекарственным покрытием удалось на порядок уменьшить частоту развития рестеноза в области вмешательства. При этом на первый план вышли более поздние осложнения, опосредованные имплантацией стента, покрытого полимером, содержащим цитостатический препарат. Механизм поздних осложнений в стенте многокомпонентен и в основном обусловлен ответной реакцией организма на длительное присутствие полимера – носителя лекарственного вещества на поверхности коронарного стента. В настоящее время наблюдается тенденция к возвращению технологий бесполимерного лекарственного покрытия, которые реализуются благодаря определенным модификациям поверхностных структур стента для лучшего удержания и правильного распределения лекарственного препарата. Прежде всего это достигается созданием «депо» препарата в виде различных резервуаров: бороздок, наночастиц в матричном кампаунде, микропор, сквозных и «слепых» микрорезервуаров и т.д. Новые перспективные технологии кристаллизации цитостатических препаратов или нанесения их в специально созданные резервуары показывают хорошие доклинические и клинические результаты, сопоставимые и даже превосходящие одобренные коронарные стенты. Создание микропор в качестве носителей антипролиферативных лекарств на поверхности стента позволяет сделать первые шаги в отказе от применения полимеров в технологии изготовления стентов будущего.
The introduction of coronary stents into clinical practice has reduced repeated patient visits compared with balloon angioplasty alone. Also, drug-eluting stents substantially reduced the restenosis incidence. Therefore, later complications related to the implantation of a stent coated with a cytostatic-containing polymer became more relevant. The mechanism of late stent complications is multifactorial. It is mainly due to the body's response to the prolonged indwelling of the drug carrier polymer on the coronary stent's surface. There is a trend towards the return of polymer-free drug coating technologies, which are implemented through certain modifications of stent surfaces for better drug retention and proper drug distribution. It is mainly achieved using drug depots in various reservoirs: grooves, nanoparticles in the matrix compound, micropores, through and blind micro reservoirs, etc. New promising technologies for crystallizing cytostatic drugs or depositing them in specially designed reservoirs show good preclinical and clinical results, comparable or even superior to approved coronary stents. Micropores as carriers for antiproliferative agents on the stent surface are a promising direction to rejecting the use of polymers in stents.
1. World Health Organization. World health statistics 2018: monitoring health for the SDGs. Luxembourg, 2018.
2. Суринов А.Е. Россия в цифрах. Краткий статистический сборник. М.: Росстат, 2018 [Surinov AE. Rossiia v tsifrakh. Kratkii statisticheskii sbornik. Moscow: Rosstat, 2018 (in Russian)].
3. Wang G, Zhao Q, Chen Q, et al. Comparison of drug-eluting balloon with repeat drug-eluting stent for recurrent drug-eluting stent in-stent restenosis: Coron Artery Dis. 2019;30(7):473-80. DOI:10.1097/MCA.0000000000000784
4. Wu T, McCarthy S. Coronary Arterial Drug-Eluting Stent: From Structure to Clinical. In: Coronary Artery Diseases. Croatia, 2012; pp. 197–224.
5. Camici G.G. What is an optimal stent? Biological requirements of drug eluting stents. Cardiovasc Med. 2008;11:2-25.
6. Chieffo A, Aranzulla TC, Colombo A. Drug eluting stents: Focus on Cypher™ sirolimus-eluting coronary stents in the treatment of patients with bifurcation lesions. Vasc Health Risk Manag. 2007;3(4):441-51.
7. Lewis AL, Tolhurst LA, Stratford PW. Analysis of a phosphorylcholine-based polymer coating on a coronary stent pre- and post-implantation. Biomaterials. 2002;23(7):1697-706.
8. Beshchasna N, Saqib M, Kraskiewicz H, et al. Recent Advances in Manufacturing Innovative Stents. Pharmaceutics. 2020;12(4):349. DOI:10.3390/pharmaceutics12040349
9. Stone GW, Ellis SG, Cox DA, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med. 2004;350:221-31.
10. Kim Y, Park JK, Seo JH, et al. A rapamycin derivative, biolimus, preferentially activates autophagy in vascular smooth muscle cells. Sci Rep. 2018;8(1):16551.
DOI:10.1038/s41598-018-34877-8
11. Mani G, Feldman MD, Patel D, Agrawal CM. Coronary stents: A materials perspective. Biomaterials. 2007;28:1689-710.
12. Khlusov IA, Dekhtyar Y, Sharkeev YP, et al. Nanoscale electrical potential and roughness of a calcium phosphate surface promotes the osteogenic phenotype of stromal cells. Materials (Basel). 2018;11(6):978. DOI:10.3390/ma11060978
13. Consigny PM. Endothelial cell seeding on prosthetic surfaces. J Long-Term Eff Med. 2000;10(1-2):79-95. DOI:10.1615/jlongtermeffmedimplants.v10.i12.80
14. Serruys P, Rensing B. Handbook of coronary stents. 2002.
15. Иоселиани Д.Г., Асадов Д.А., Бабунашвили А.М. Коронарное стентирование и стенты. М.:
ГЭОТАР-Медиа, 2019 [Ioseliani DG, Asadov DA, Babunashvili AM. Koronarnoe stentirovanie i stenty. Moscow: GEOTAR-Media, 2019 (in Russian)].
16. Hausleiter J, Kastrati A, Wessely R, et al. FASTTRACK-Prevention of restenosis by a novel drug-eluting stent system with a dose-adjustable, polymerfree, on-site stent coating. Eur Heart J. 2005;26:1475-81.
17. Palmaz JC, Bailey S, Marton D, Sprague E. Influence of stent design and material composition on procedure outcome. J Vasc Surg. 2002;36(5):1031-9. DOI:10.1067/mva.2002.129113
18. Sprague EA, Luo J, Palmaz JC. Human aortic endothelial cell migration onto stent surfaces under static and flow conditions. J Vasc Interv Radiol. 1997;8(1 Pt. 1):83-92.
19. Mikhalovska L, Chorna N, Lazarenko O, et al. Inorganic coatings for cardiovascular stents: In vitro and in vivo studies. J Biomed Mater Res B Appl Biomater. 2011;96(2):333-41. DOI:10.1002/jbm.b.31772
20. Stevenson CL, Santini JT, Langer R. Reservoir-based drug delivery systems utilizing microtechnology. Adv Drug Deliv Rev. 2012;64:1590-602.
21. Wu S, Harish S, Sanders-Millare D, Guruwaiya J, et al. Surface features of an implantable medical device. U.S. Patent 10/911,968, 10 February 2005.
22. De Scheerder I, Verbeken E, Van Humbeeck J. Metallic surface modification. Semin Interv Cardiol. 1998;3:139-44.
23. Tzafriri AR, Groothuis A, Price GS, Edelman ER. Stent elution rate determines drug deposition and receptor-mediated effects. J Controlled Release. 2012;161(3):918-26. DOI:10.1016/j.jconrel.2012.05.039
24. Vo TTN, Morgan S, McCormick C, et al. Modelling drug release from polymer-free coronary stents with microporous surfaces. Int J Pharm. 2018;544(2):392-401. DOI:10.1016/j.ijpharm.2017.12.007
25. Dibra A, Kastrati A, Mehilli J, et al. Influence of stent surface topography on the outcomes of patients undergoing coronary stenting: a randomized double-blind controlled trial. Catheter Cardiovasc Interv. 2005;65(3):374-80. DOI:10.1002/ccd.20400
26. Yang YB, Yang YX, Su B, et al. Probucol mediates vascular remodeling after percutaneous transluminal angioplasty via down-regulation of the ERK1/2 signaling pathway. Eur J Pharmacol. 2007;570:125-34.
27. Tardif JC, Gregoire J, Schwartz L, et al. Effects of AGI-1067 and probucol after percutaneous coronary interventions. Circulation. 2003;107:552-8.
28. Steigerwald K, Merl S, Kastrati A, et al. The pre-clinical assessment of rapamycin-eluting, durable polymer-free stent coating concepts. Biomaterials. 2009;30:632-7.
29. Hausleiter J, Kastrati A, Wessely R, et al. FASTTRACK-Prevention of restenosis by a novel drug-eluting stent system with a dose-adjustable, polymerfree, on-site stent coating. Eur Heart J. 2005;26:1475-81.
30. Byrne RA, Kufner S, Tiroch K, et al. Randomised trial of three rapamycin-eluting stents with different coating strategies for the reduction of coronary restenosis: 2-year follow-up results. Heart. 2009;95:1489-94. DOI:10.1136/hrt.2009.172379
31. Kufner S, Byrne RA, Valeskini M, et al. Five-year outcomes from a trial of three limus-eluting stents with different polymer coatings in patients with coronary artery disease final results from the ISAR-TEST 4 randomised trial. Eurointervention. 2016;11(12):1372-9.
32. Stefanini G, Byrne RA, Serruys PW, Waha A. Meta-Analysis ISAR-TEST 3 + 4, LEADERS, 4 years follow-up (Comparison of Yukon Choice PC + Biomatrix versus Cypher). Eur Heart J. 2012;33:1214-22.
33. Kufner S, Joner M, Thannheimer A, et al. Ten-Year Clinical Outcomes From a Trial of Three Limus-Eluting Stents With Different Polymer Coatings in Patients With Coronary Artery Disease. Circulation. 2019;139(3):325-33. DOI:10.1161/CIRCULATIONAHA.118.038065
34. Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40(2):87-165. DOI:10.1093/eurheartj/ehy394
________________________________________________
1. World Health Organization. World health statistics 2018: monitoring health for the SDGs. Luxembourg, 2018.
2. Surinov AE. Rossiia v tsifrakh. Kratkii statisticheskii sbornik. Moscow: Rosstat, 2018 (in Russian).
3. Wang G, Zhao Q, Chen Q, et al. Comparison of drug-eluting balloon with repeat drug-eluting stent for recurrent drug-eluting stent in-stent restenosis: Coron Artery Dis. 2019;30(7):473-80. DOI:10.1097/MCA.0000000000000784
4. Wu T, McCarthy S. Coronary Arterial Drug-Eluting Stent: From Structure to Clinical. In: Coronary Artery Diseases. Croatia, 2012; pp. 197–224.
5. Camici G.G. What is an optimal stent? Biological requirements of drug eluting stents. Cardiovasc Med. 2008;11:2-25.
6. Chieffo A, Aranzulla TC, Colombo A. Drug eluting stents: Focus on Cypher™ sirolimus-eluting coronary stents in the treatment of patients with bifurcation lesions. Vasc Health Risk Manag. 2007;3(4):441-51.
7. Lewis AL, Tolhurst LA, Stratford PW. Analysis of a phosphorylcholine-based polymer coating on a coronary stent pre- and post-implantation. Biomaterials. 2002;23(7):1697-706.
8. Beshchasna N, Saqib M, Kraskiewicz H, et al. Recent Advances in Manufacturing Innovative Stents. Pharmaceutics. 2020;12(4):349. DOI:10.3390/pharmaceutics12040349
9. Stone GW, Ellis SG, Cox DA, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med. 2004;350:221-31.
10. Kim Y, Park JK, Seo JH, et al. A rapamycin derivative, biolimus, preferentially activates autophagy in vascular smooth muscle cells. Sci Rep. 2018;8(1):16551.
DOI:10.1038/s41598-018-34877-8
11. Mani G, Feldman MD, Patel D, Agrawal CM. Coronary stents: A materials perspective. Biomaterials. 2007;28:1689-710.
12. Khlusov IA, Dekhtyar Y, Sharkeev YP, et al. Nanoscale electrical potential and roughness of a calcium phosphate surface promotes the osteogenic phenotype of stromal cells. Materials (Basel). 2018;11(6):978. DOI:10.3390/ma11060978
13. Consigny PM. Endothelial cell seeding on prosthetic surfaces. J Long-Term Eff Med. 2000;10(1-2):79-95. DOI:10.1615/jlongtermeffmedimplants.v10.i12.80
14. Serruys P, Rensing B. Handbook of coronary stents. 2002.
15. Ioseliani DG, Asadov DA, Babunashvili AM. Koronarnoe stentirovanie i stenty. Moscow: GEOTAR-Media, 2019 (in Russian).
16. Hausleiter J, Kastrati A, Wessely R, et al. FASTTRACK-Prevention of restenosis by a novel drug-eluting stent system with a dose-adjustable, polymerfree, on-site stent coating. Eur Heart J. 2005;26:1475-81.
17. Palmaz JC, Bailey S, Marton D, Sprague E. Influence of stent design and material composition on procedure outcome. J Vasc Surg. 2002;36(5):1031-9. DOI:10.1067/mva.2002.129113
18. Sprague EA, Luo J, Palmaz JC. Human aortic endothelial cell migration onto stent surfaces under static and flow conditions. J Vasc Interv Radiol. 1997;8(1 Pt. 1):83-92.
19. Mikhalovska L, Chorna N, Lazarenko O, et al. Inorganic coatings for cardiovascular stents: In vitro and in vivo studies. J Biomed Mater Res B Appl Biomater. 2011;96(2):333-41. DOI:10.1002/jbm.b.31772
20. Stevenson CL, Santini JT, Langer R. Reservoir-based drug delivery systems utilizing microtechnology. Adv Drug Deliv Rev. 2012;64:1590-602.
21. Wu S, Harish S, Sanders-Millare D, Guruwaiya J, et al. Surface features of an implantable medical device. U.S. Patent 10/911,968, 10 February 2005.
22. De Scheerder I, Verbeken E, Van Humbeeck J. Metallic surface modification. Semin Interv Cardiol. 1998;3:139-44.
23. Tzafriri AR, Groothuis A, Price GS, Edelman ER. Stent elution rate determines drug deposition and receptor-mediated effects. J Controlled Release. 2012;161(3):918-26. DOI:10.1016/j.jconrel.2012.05.039
24. Vo TTN, Morgan S, McCormick C, et al. Modelling drug release from polymer-free coronary stents with microporous surfaces. Int J Pharm. 2018;544(2):392-401. DOI:10.1016/j.ijpharm.2017.12.007
25. Dibra A, Kastrati A, Mehilli J, et al. Influence of stent surface topography on the outcomes of patients undergoing coronary stenting: a randomized double-blind controlled trial. Catheter Cardiovasc Interv. 2005;65(3):374-80. DOI:10.1002/ccd.20400
26. Yang YB, Yang YX, Su B, et al. Probucol mediates vascular remodeling after percutaneous transluminal angioplasty via down-regulation of the ERK1/2 signaling pathway. Eur J Pharmacol. 2007;570:125-34.
27. Tardif JC, Gregoire J, Schwartz L, et al. Effects of AGI-1067 and probucol after percutaneous coronary interventions. Circulation. 2003;107:552-8.
28. Steigerwald K, Merl S, Kastrati A, et al. The pre-clinical assessment of rapamycin-eluting, durable polymer-free stent coating concepts. Biomaterials. 2009;30:632-7.
29. Hausleiter J, Kastrati A, Wessely R, et al. FASTTRACK-Prevention of restenosis by a novel drug-eluting stent system with a dose-adjustable, polymerfree, on-site stent coating. Eur Heart J. 2005;26:1475-81.
30. Byrne RA, Kufner S, Tiroch K, et al. Randomised trial of three rapamycin-eluting stents with different coating strategies for the reduction of coronary restenosis: 2-year follow-up results. Heart. 2009;95:1489-94. DOI:10.1136/hrt.2009.172379
31. Kufner S, Byrne RA, Valeskini M, et al. Five-year outcomes from a trial of three limus-eluting stents with different polymer coatings in patients with coronary artery disease final results from the ISAR-TEST 4 randomised trial. Eurointervention. 2016;11(12):1372-9.
32. Stefanini G, Byrne RA, Serruys PW, Waha A. Meta-Analysis ISAR-TEST 3 + 4, LEADERS, 4 years follow-up (Comparison of Yukon Choice PC + Biomatrix versus Cypher). Eur Heart J. 2012;33:1214-22.
33. Kufner S, Joner M, Thannheimer A, et al. Ten-Year Clinical Outcomes From a Trial of Three Limus-Eluting Stents With Different Polymer Coatings in Patients With Coronary Artery Disease. Circulation. 2019;139(3):325-33. DOI:10.1161/CIRCULATIONAHA.118.038065
34. Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40(2):87-165. DOI:10.1093/eurheartj/ehy394
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
*kamolovimomali@yandex.ru
________________________________________________
Imomali H. Kamolov*, Dzhamil A. Asadov, Tamara S. Sandodze, Irina E. Chernysheva
Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
*kamolovimomali@yandex.ru