Alieva AM, Butenko AV, Teplova NV, Reznik EV, Valiev RK, Skripnichenko EА, Sozykin AV, Nikitin IG. The role of interleukin-6 in the development of cardiovascular diseases: A review. Consilium Medicum. 2022;24(12):882–887 . DOI: 10.26442/20751753.2022.12.201948
Роль интерлейкина-6 в развитии сердечно-сосудистых заболеваний
Алиева А.М., Бутенко А.В., Теплова Н.В., Резник Е.В., Валиев Р.К., Скрипниченко Э.А., Созыкин А.В., Никитин И.Г. Роль интерлейкина-6 в развитии сердечно-сосудистых заболеваний. Consilium Medicum. 2022;24(12):882–887. DOI: 10.26442/20751753.2022.12.201948
Alieva AM, Butenko AV, Teplova NV, Reznik EV, Valiev RK, Skripnichenko EА, Sozykin AV, Nikitin IG. The role of interleukin-6 in the development of cardiovascular diseases: A review. Consilium Medicum. 2022;24(12):882–887 . DOI: 10.26442/20751753.2022.12.201948
В настоящее время продолжаются поиск и изучение новых биологических маркеров, способных обеспечить раннюю диагностику сердечно-сосудистых заболеваний, служить лабораторным инструментом оценки эффективности проводимого лечения или использоваться в качестве прогностических маркеров и критериев стратификации риска. Представленный нами литературный обзор указывает на потенциально важную диагностическую и прогностическую значимость оценки членов семейства интерлейкина-6. Ожидается, что дальнейшие научно-клинические исследования продемонстрируют возможности использования членов семейства интерлейкина-6 в качестве дополнительного лабораторного инструмента для диагностики, стратификации риска и прогнозирования сердечно-сосудистых катастроф у пациентов кардиологического профиля. Предстоит детально оценить возможности блокады данных молекул группы интерлейкина-6 у пациентов с сердечно-сосудистыми заболеваниями in vitro и in vivo.
Currently, the search and study of new biological markers that can provide early diagnosis of cardiovascular diseases, serve as a laboratory tool for assessing the effectiveness of treatment, or be used as prognostic markers and risk stratification criteria is ongoing. Our literature review indicates the potentially important diagnostic and prognostic value of assessing members of the interleukin-6 family. It is expected that further scientific and clinical studies will demonstrate the possibility of using members of the interleukin-6 family as an additional laboratory tool for the diagnosis, risk stratification and prediction of cardiovascular events in cardiac patients. It is necessary to evaluate in detail the possibilities of blockade of these interleukin-6 molecules in patients with cardiovascular diseases in vitro and in vivo.
1. Feng Y, Ye D, Wang Z, et al. The role of interleukin-6 family members in cardiovascular diseases. Front Cardiovasc Med. 2022;9:818890. DOI:10.3389/fcvm.2022.818890
2. Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1-25. DOI:10.1016/j.jacc.2017.04.052
3. Алиева А.М., Резник Е.В., Гасанова Э.Т., и др. Клиническое значение определения биомаркеров крови у больных с хронической сердечной недостаточностью. Архивъ внутренней медицины. 2018;8(5):333-45 [Aliyeva AM, Reznik EV, Hasanova ET, et al. Clinical value of blood biomarkers in patients with chronic heart failure. The Russian Archives of Internal Medicine. 2018;8(5):333-45 (in Russian)]. DOI:10.20514/2226-6704-2018-8-5-333-345
4. Алиева А.М., Байкова И.Е., Кисляков В.А., и др. Галектин-3: диагностическая и прогностическая ценность определения у пациентов с хронической сердечной недостаточностью. Терапевтический архив. 2019;91(9):145-9 [Alieva AM, Baikova IE, Kislyakov VA, et al. Galactin-3: diagnostic and prognostic value in patients with chronic heart failure. Terapevticheskii Arkhiv (Ter. Arkh.). 2019;91(9):145-9 (in Russian)]. DOI:10.26442/00403660.2019.09.000226
5. Hirano T, Taga T, Nakano N, et al. Purification to homogeneity and characterization of human B-cell differentiation factor (BCDF or BSFp-2). Proc Nat Acad Sci USA. 1985;82:5490-4.
6. Somers W, Stahl M, Seehra JS. A crystal structure of Interleukin 6: implications for a novel mode of receptor dimerization and signaling. EMBO J. 1997;16:989-97.
7. Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nature reviews. Immunology. 2018;18:773-89.
DOI:10.1038/s41577-018-0066-7
8. Modares NF, Polz R, Haghighi F, et al. IL-6 trans-signaling controls liver regeneration after partial hepatectomy. Hepatology (Baltimore, Md.). 2019;70:2075-91. DOI:10.1002/hep.30774
9. Zegeye MM, Lindkvist M, Fälker K, et al. Activation of the JAK/STAT3 and PI3K/AKT pathways are crucial for IL-6 trans-signaling-mediated pro-inflammatory response in human vascular endothelial cells. Cell Commun Signal. 2018;16:55. DOI:10.1186/s12964-018-0268-4
10. Quintana FJ. Old dog, new tricks: IL-6 cluster signaling promotes pathogenic T17 cell differentiation. Nature Immunology. 2016;18(1):8-10. DOI:10.1038/ni.3637
11. Xu DH, Zhu Z, Wakefield MR, et al. The role of IL-11 in immunity and cancer. Cancer letters. 2016;373:156-63. DOI:10.1016/j.canlet.2016.01.004
12. Metcalfe RD, Putoczki TL, Griffin MDW. Structural understanding of interleukin 6 family cytokine signaling and targeted therapies: focus on interleukin 11. Front Immunol. 2020;11:1424. DOI:10.3389/fimmu.2020.01424
13. Kourko O, Seaver K, Odoardi N, et al. IL-27, IL-30 and IL-35: a cytokine triumvirate in cancer. Front Oncology. 2019;9:969. DOI:10.3389/fonc.2019.00969
14. Murdaca G, Greco M, Tonacci A, et al. IL-33/IL-31 axis in immune-mediated and allergic diseases. Int J Mol Sci. 2019;20(23). DOI:10.3390/ijms20235856
15. Nakashima C, Otsuka A, Kabashima K. Interleukin-31 and interleukin-31 receptor: New therapeutic targets for atopic dermatitis. Exp Dermatol. 2018;27:327-31. DOI:10.1111/exd.13533
16. Richards CD. The enigmatic cytokine oncostatin m and roles in disease. ISRN Inflammation. 2013;2013:512103. DOI:10.1155/2013/512103
17. Jung ID, Noh KT, Lee CM, et al. Oncostatin M induces dendritic cell maturation and Th1 polarization. Biochem Biophys Res Commun. 2010;394:272-8. DOI:10.1016/j.bbrc.2010.02.153
18. Fantone S, Tossetta G, Montironi R, et al. Ciliary neurotrophic factor (CNTF) and its receptor (CNTFRα) signal through MAPK/ERK pathway in human prostate tissues: a morphological and biomolecular study. Eur J Histochemi: EJH. 2020;64(4):3147. DOI:10.4081/ejh.2020.3147
19. Larsen JV, Kristensen AM, Pallesen LT, et al. Cytokine-like factor 1, an essential facilitator of cardiotrophin-like cytokine:ciliary neurotrophic factor receptor α signaling and sorLA-Mediated turnover. Mol Cellular Biol. 2016;36:1272-86. DOI:10.1128/MCB.00917-15
20. Москаленко С.А., Шувалова Ю.А., Каминный А.И. Роль системы интерлейкина-6 в развитии атеросклероза. Атеросклероз и дислипидемии. 2020;2(39):5-11 [Moskalenko SA, Shuvalova YA, Kaminnyi AI. The role of the Interleukin-6 system in the development of atherosclerosis. Ateroskleroz i Dislipidemii. 2020;2(39):5-11 (in Russian)].
DOI:10.34687/2219–8202.JAD.2020.02.0001
21. Тополянская С.В. Роль интерлейкина 6 при старении и возраст-ассоциированных заболеваниях. Клиницист. 2020;14(3-4):К633 [Topolyanskaya SV. Interleukin 6 in aging and age-related diseases. Klinitsist. 2020;14(3-4):К633 (in Russian)]. DOI:10.17650/1818-8338-2020-14-3-4-К633
22. Ertuglu LA, Elijovich F, Laffer CL, Kirabo A. Salt-Sensitivity of Blood Pressure and Insulin Resistance. Front Physiol. 2021:12:793924. DOI:10.3389/fphys.2021.793924
23. Hashmat S, Rudemiller N, Lund H, et al. Interleukin-6 inhibition attenuates hypertension and associated renal damage in Dahl salt-sensitive rats. Am J Physiol Renal Physiol. 2016:311:F555-61. DOI:10.1152/ajprenal.00594.2015
24. Brands MW, Banes-Berceli AKL, Inscho EW, et al. Interleukin 6 knockout prevents angiotensin II hypertension: role of renal vasoconstriction and janus kinase 2/signal transducer and activator of transcription 3 activation. Hypertension. 2010:56(5):879-84. DOI:10.1161/HYPERTENSIONAHA.110.158071
25. Nzelu D, Nicolaides KH, Kametas NA. First trimester angiogenic and inflammatory factors in women with chronic hypertension and impact of blood pressure control: a case-control study. BJOG. 2021;128(13):2171-9. DOI:10.1111/1471-0528.16835
26. Mao SQ, Sun JH, Gu JL, et al. Hypomethylation of interleukin-6 (IL-6) gene increases the risk of essential hypertension: a matched case-control study. J Human Hypertension. 2017;31:530-6. DOI:10.1038/jhh.2017.7
27. Gkaliagkousi E, Gavriilaki E, Nikolaidou B, et al. Association between cardiotrophin 1 levels and central blood pressure in untreated patients with essential hypertension. Am J Hypertension. 2014;27:651-5. DOI:10.1093/ajh/hpt238
28. López B, Castellano JM, González A, et al. Association of increased plasma cardiotrophin-1 with inappropriate left ventricular mass in essential hypertension. Hypertension. 2007;50:977-83. DOI:10.1161/HYPERTENSIONAHA.107.098111
29. Tuttolomondo A, Pecoraro R, Buttà C, et al. Arterial stiffness indexes and serum cytokine levels in seronegative spondyloarthritis: relationships between stiffness markers and metabolic and immunoinflammatory variables. Scand J Rheumatol. 2015;44:474-9. DOI:10.3109/03009742.2015.1030449
30. Du B, Ouyang A, Eng JS, Fleenor BS. Aortic perivascular adipose-derived interleukin-6 contributes to arterial stiffness in low-density lipoprotein receptor deficient mice. Am J Physiol Heart Circ Physiol. 2015;308:H1382-90. DOI:10.1152/ajpheart.00712.2014
31. Okazaki S, Sakaguchi M, Miwa K, et al. Association of interleukin-6 with the progression of carotid atherosclerosis: a 9-year follow-up study. Stroke. 2014;45:2924-9. DOI:10.1161/STROKEAHA.114.005991
32. Kamtchum-Tatuene J, Saba L, Heldner MR, et al; Carotid Atherosclerosis and Stroke Collaboration (CASCO). Interleukin-6 predicts carotid plaque severity, vulnerability, and progression. Circ Res. 2022;131(2):e22-e33. DOI:10.1161/CIRCRESAHA.122.320877
33. Groot HE, Al Ali L, van der Horst ICC, et al. Plasma interleukin 6 levels are associated with cardiac function after ST-elevation myocardial infarction. Clin Res Cardiol. 2019;108:612-21. DOI:10.1007/s00392-018-1387-z
34. Lindmark E, Diderholm E, Wallentin L, Siegbahn A. Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. JAMA. 2001;286(17):2107-13. DOI:10.1001/jama.286.17.2107
35. Fisman EZ, Benderly M, Esper RJ, et al. Interleukin-6 and the risk of future cardiovascular events in patients with angina pectoris and/or healed myocardial infarction. Am J Cardiology. 2006;98:14-8. DOI:10.1016/j.amjcard.2006.01.045
36. Tøllefsen IM, Shetelig C, Seljeflot I, et al. High levels of interleukin-6 are associated with final infarct size and adverse clinical events in patients with STEMI. Open Heart. 2021;8(2):e001869. DOI:10.1136/openhrt-2021-001869
37. Kleveland O, Kunszt G, Bratlie M, et al. Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: a double-blind, randomized, placebo-controlled phase 2 trial. Eur Heart J. 2016;37(30):2406-13. DOI:10.1093/eurheartj/ehw171
38. Gurzău D, Sitar-Tăut A, Caloian B, et al. The role of IL-6 and ET-1 in the diagnosis of coronary microvascular disease in women. J Pers Med. 2021;11(10):965. DOI:10.3390/jpm11100965
39. Fernández-Ruiz I. Promising anti-IL-6 therapy for atherosclerosis. Nat Rev Cardiol. 2021;18(8):544. DOI:10.1038/s41569-021-00575-8
40. Madan M, Bishayi B, Hoge M, Amar S. Atheroprotective role of interleukin-6 in diet- and/or pathogen-associated atherosclerosis using an ApoE heterozygote murine model. Atherosclerosis. 2008;197:504-14. DOI:10.1016/j.atherosclerosis.2007.02.023
41. Liu C, Wu J, Jia H, et al. Oncostatin M promotes the ox-LDL-induced activation of NLRP3 inflammasomes via the NF-κB pathway in THP-1 macrophages and promotes the progression of atherosclerosis. Ann Transl Med. 2022;10(8):456. DOI:10.21037/atm-22-560
42. Li X, Zhang X, Wei L, Xia Y, Guo X. Relationship between serum oncostatin M levels and degree of coronary stenosis in patients with coronary artery disease. Clinical Lab. 2014;60:113-8. DOI:10.7754/Clin.Lab.2013.121245
43. van Keulen D, Pouwer MG, Emilsson V, et al. Oncostatin M reduces atherosclerosis development in APOE*3Leiden.CETP mice and is associated with increased survival probability in humans. PloS ONE. 2019;14: e0221477. DOI:10.1371/journal.pone.0221477
44. Rolfe B, Stamatiou S, World CJ, et al. Leukaemia inhibitory factor retards the progression of atherosclerosis. Cardiovascular Res. 2003;58:222-30.
DOI:10.1016/S0008-6363(02)00832-5
45. Konii H, Sato K, Kikuchi S, et al. Stimulatory effects of cardiotrophin 1 on atherosclerosis. Hypertension. 2013;62:942–50. DOI:10.1161/HYPERTENSIONAHA.113.01653
46. Miteva K, Baptista D, Montecucco F, et al. Cardiotrophin-1 deficiency abrogates atherosclerosis progression. Sci Rep. 2020;10:5791. DOI:10.1038/s41598-020-62596-6
47. Pasquin S, Laplante V, Kouadri S, et al. Cardiotrophin-like cytokine increases macrophage-foam cell transition. J Immunology. 2018;201:2462-71. DOI:10.4049/jimmunol.1800733
48. Wang JH, Zhao L, Pan X, et al. Hypoxia-stimulated cardiac fibroblast production of IL-6 promotes myocardial fibrosis via the TGF-β1 signaling pathway. Lab Invest. 2016;96:839-52. DOI:10.1038/labinvest.2016.65
49. Jing R, Long TY, Pan W, et al. IL-6 knockout ameliorates myocardial remodeling after myocardial infarction by regulating activation of M2 macrophages and fibroblast cells. Eur Rev Med Pharmacol Sci. 2019;23:6283-91. DOI:10.26355/eurrev_201907_18450
50. Schafer S, Viswanathan S, Widjaja AA, et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature. 2017;552:110-5. DOI:10.1038/nature24676
51. Obana M, Maeda M, Takeda K, et al. Therapeutic activation of signal transducer and activator of transcription 3 by interleukin-11 ameliorates cardiac fibrosis after myocardial infarction. Circulation. 2010;121:684-91. DOI:10.1161/CIRCULATIONAHA.109.893677
52. Li Q, Ye WX, Huang ZJ, et al. Effect of IL-6-mediated STAT3 signaling pathway on myocardial apoptosis in mice with dilated cardiomyopathy. Eur Rev Med Pharmacol Sci. 2019;23:3042-50. DOI:10.26355/eurrev_201904_17586
53. Liu X, Zhang W, Han Z. Decreased circulating follicular regulatory T cells in patients with dilated cardiomyopathy. Braz J Med Biol Res. 2021;54(12):e11232.
DOI:10.1590/1414-431X2021e11232
54. Kažukauskienė I, Baltrūnienė V, Rinkūnaitė I, et al. Inflammation-related biomarkers are associated with heart failure severity and poor clinical outcomes in patients with non-ischemic dilated cardiomyopathy. Life (Basel). 2021;11(10):1006. DOI:10.3390/life11101006
55. Scally C, Abbas H, Ahearn T, et al. Myocardial and systemic inflammation in acute stress-induced (takotsubo) cardiomyopathy. Circulation. 2019;139(13):1581-92. DOI:10.1161/CIRCULATIONAHA.118.037975
56. Monserrat L, López B, González A, et al. Cardiotrophin-1 plasma levels are associated with the severity of hypertrophy in hypertrophic cardiomyopathy. Eur Heart J. 2011;32(2):177-83. DOI:10.1093/eurheartj/ehq400
57. Tsutamoto T, Wada A, Maeda K, et al. Relationship between plasma level of cardiotrophin-1 and left ventricular mass index in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2001;38(5):1485-90. DOI:10.1016/s0735-1097(01)01576-5
58. Zhang E, Ma S, Zhang R, et al. Oncostatin M-induced cardiomyocyte dedifferentiation regulates the progression of diabetic cardiomyopathy through B-Raf/Mek/Erk signaling pathway. Acta Biochim Biophys Sin (Shanghai). 2016;48:257-65. DOI:10.1093/abbs/gmv137
59. Abe H, Takeda N, Isagawa T, et al. Macrophage hypoxia signaling regulates cardiac fibrosis via Oncostatin M. Nature Communications. 2019;10:2824.
DOI:10.1038/s41467-019-10859-w
60. Zou Y, Takano H, Mizukami M, et al. Leukemia inhibitory factor enhances survival of cardiomyocytes and induces regeneration of myocardium after myocardial infarction. Circulation. 2003;108:748-53. DOI:10.1161/01.CIR.0000081773.76337.44
61. Zgheib C, Zouein FA, Kurdi M, Booz GW. Chronic treatment of mice with leukemia inhibitory factor does not cause adverse cardiac remodeling but improves heart function. European Cytokine Network. 2012;23:191-7. DOI:10.1684/ecn.2012.0319
62. Hamzic-Mehmedbasic A. Inflammatory cytokines as risk factors for mortality after acute cardiac events. Med Arch. 2016;70(4):252-5. DOI:10.5455/medarh.2016.70.252-255
63. Markousis-Mavrogenis G, Tromp J, Ouwerkerk W, et al. The clinical significance of interleukin-6 in heart failure: results from the BIOSTAT-CHF study. Eur J Heart Failure. 2019;21:965-73. DOI:10.1002/ejhf.1482
64. Ye J, Wang Z, Ye D, et al. Increased interleukin-11 levels are correlated with cardiac events in patients with chronic heart failure. Mediators Inflamm. 2019;2019:1575410. DOI:10.1155/2019/1575410
65. Gruson D, Ferracin B, Ahn SA, Rousseau MF. Elevation of plasma oncostatin M in heart failure. Future Cardiol. 2017;13(3):219-27. DOI:10.2217/fca-2016-0063
66. Kubin T, Pöling J, Kostin S, et al. Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell. 2011;9:420-32. DOI:10.1016/j.stem.2011.08.013
67. Martínez-Martínez E, Brugnolaro C, Ibarrola J, et al. CT-1 (Cardiotrophin-1)-Gal-3 (Galectin-3) Axis in cardiac fibrosis and inflammation. Hypertension. 2019;73:602-11. DOI:10.1161/HYPERTENSIONAHA.118.11874
68. Song K, Wang S, Huang B, et al. Plasma cardiotrophin-1 levels are associated with hypertensive heart disease: a meta-analysis. J Clinical Hypertension. 2014;16:686-92. DOI:10.1111/jch.12376
________________________________________________
1. Feng Y, Ye D, Wang Z, et al. The role of interleukin-6 family members in cardiovascular diseases. Front Cardiovasc Med. 2022;9:818890. DOI:10.3389/fcvm.2022.818890
2. Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1-25. DOI:10.1016/j.jacc.2017.04.052
3. Aliyeva AM, Reznik EV, Hasanova ET, et al. Clinical value of blood biomarkers in patients with chronic heart failure. The Russian Archives of Internal Medicine. 2018;8(5):333-45 (in Russian). DOI:10.20514/2226-6704-2018-8-5-333-345
4. Alieva AM, Baikova IE, Kislyakov VA, et al. Galactin-3: diagnostic and prognostic value in patients with chronic heart failure. Terapevticheskii Arkhiv (Ter. Arkh.). 2019;91(9):145-9 (in Russian). DOI:10.26442/00403660.2019.09.000226
5. Hirano T, Taga T, Nakano N, et al. Purification to homogeneity and characterization of human B-cell differentiation factor (BCDF or BSFp-2). Proc Nat Acad Sci USA. 1985;82:5490-4.
6. Somers W, Stahl M, Seehra JS. A crystal structure of Interleukin 6: implications for a novel mode of receptor dimerization and signaling. EMBO J. 1997;16:989-97.
7. Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nature reviews. Immunology. 2018;18:773-89.
DOI:10.1038/s41577-018-0066-7
8. Modares NF, Polz R, Haghighi F, et al. IL-6 trans-signaling controls liver regeneration after partial hepatectomy. Hepatology (Baltimore, Md.). 2019;70:2075-91. DOI:10.1002/hep.30774
9. Zegeye MM, Lindkvist M, Fälker K, et al. Activation of the JAK/STAT3 and PI3K/AKT pathways are crucial for IL-6 trans-signaling-mediated pro-inflammatory response in human vascular endothelial cells. Cell Commun Signal. 2018;16:55. DOI:10.1186/s12964-018-0268-4
10. Quintana FJ. Old dog, new tricks: IL-6 cluster signaling promotes pathogenic T17 cell differentiation. Nature Immunology. 2016;18(1):8-10. DOI:10.1038/ni.3637
11. Xu DH, Zhu Z, Wakefield MR, et al. The role of IL-11 in immunity and cancer. Cancer letters. 2016;373:156-63. DOI:10.1016/j.canlet.2016.01.004
12. Metcalfe RD, Putoczki TL, Griffin MDW. Structural understanding of interleukin 6 family cytokine signaling and targeted therapies: focus on interleukin 11. Front Immunol. 2020;11:1424. DOI:10.3389/fimmu.2020.01424
13. Kourko O, Seaver K, Odoardi N, et al. IL-27, IL-30 and IL-35: a cytokine triumvirate in cancer. Front Oncology. 2019;9:969. DOI:10.3389/fonc.2019.00969
14. Murdaca G, Greco M, Tonacci A, et al. IL-33/IL-31 axis in immune-mediated and allergic diseases. Int J Mol Sci. 2019;20(23). DOI:10.3390/ijms20235856
15. Nakashima C, Otsuka A, Kabashima K. Interleukin-31 and interleukin-31 receptor: New therapeutic targets for atopic dermatitis. Exp Dermatol. 2018;27:327-31. DOI:10.1111/exd.13533
16. Richards CD. The enigmatic cytokine oncostatin m and roles in disease. ISRN Inflammation. 2013;2013:512103. DOI:10.1155/2013/512103
17. Jung ID, Noh KT, Lee CM, et al. Oncostatin M induces dendritic cell maturation and Th1 polarization. Biochem Biophys Res Commun. 2010;394:272-8. DOI:10.1016/j.bbrc.2010.02.153
18. Fantone S, Tossetta G, Montironi R, et al. Ciliary neurotrophic factor (CNTF) and its receptor (CNTFRα) signal through MAPK/ERK pathway in human prostate tissues: a morphological and biomolecular study. Eur J Histochemi: EJH. 2020;64(4):3147. DOI:10.4081/ejh.2020.3147
19. Larsen JV, Kristensen AM, Pallesen LT, et al. Cytokine-like factor 1, an essential facilitator of cardiotrophin-like cytokine:ciliary neurotrophic factor receptor α signaling and sorLA-Mediated turnover. Mol Cellular Biol. 2016;36:1272-86. DOI:10.1128/MCB.00917-15
20. Moskalenko SA, Shuvalova YA, Kaminnyi AI. The role of the Interleukin-6 system in the development of atherosclerosis. Ateroskleroz i Dislipidemii. 2020;2(39):5-11 (in Russian). DOI:10.34687/2219–8202.JAD.2020.02.0001
21. Topolyanskaya SV. Interleukin 6 in aging and age-related diseases. Klinitsist. 2020;14(3-4):К633 (in Russian). DOI:10.17650/1818-8338-2020-14-3-4-К633
22. Ertuglu LA, Elijovich F, Laffer CL, Kirabo A. Salt-Sensitivity of Blood Pressure and Insulin Resistance. Front Physiol. 2021:12:793924. DOI:10.3389/fphys.2021.793924
23. Hashmat S, Rudemiller N, Lund H, et al. Interleukin-6 inhibition attenuates hypertension and associated renal damage in Dahl salt-sensitive rats. Am J Physiol Renal Physiol. 2016:311:F555-61. DOI:10.1152/ajprenal.00594.2015
24. Brands MW, Banes-Berceli AKL, Inscho EW, et al. Interleukin 6 knockout prevents angiotensin II hypertension: role of renal vasoconstriction and janus kinase 2/signal transducer and activator of transcription 3 activation. Hypertension. 2010:56(5):879-84. DOI:10.1161/HYPERTENSIONAHA.110.158071
25. Nzelu D, Nicolaides KH, Kametas NA. First trimester angiogenic and inflammatory factors in women with chronic hypertension and impact of blood pressure control: a case-control study. BJOG. 2021;128(13):2171-9. DOI:10.1111/1471-0528.16835
26. Mao SQ, Sun JH, Gu JL, et al. Hypomethylation of interleukin-6 (IL-6) gene increases the risk of essential hypertension: a matched case-control study. J Human Hypertension. 2017;31:530-6. DOI:10.1038/jhh.2017.7
27. Gkaliagkousi E, Gavriilaki E, Nikolaidou B, et al. Association between cardiotrophin 1 levels and central blood pressure in untreated patients with essential hypertension. Am J Hypertension. 2014;27:651-5. DOI:10.1093/ajh/hpt238
28. López B, Castellano JM, González A, et al. Association of increased plasma cardiotrophin-1 with inappropriate left ventricular mass in essential hypertension. Hypertension. 2007;50:977-83. DOI:10.1161/HYPERTENSIONAHA.107.098111
29. Tuttolomondo A, Pecoraro R, Buttà C, et al. Arterial stiffness indexes and serum cytokine levels in seronegative spondyloarthritis: relationships between stiffness markers and metabolic and immunoinflammatory variables. Scand J Rheumatol. 2015;44:474-9. DOI:10.3109/03009742.2015.1030449
30. Du B, Ouyang A, Eng JS, Fleenor BS. Aortic perivascular adipose-derived interleukin-6 contributes to arterial stiffness in low-density lipoprotein receptor deficient mice. Am J Physiol Heart Circ Physiol. 2015;308:H1382-90. DOI:10.1152/ajpheart.00712.2014
31. Okazaki S, Sakaguchi M, Miwa K, et al. Association of interleukin-6 with the progression of carotid atherosclerosis: a 9-year follow-up study. Stroke. 2014;45:2924-9. DOI:10.1161/STROKEAHA.114.005991
32. Kamtchum-Tatuene J, Saba L, Heldner MR, et al; Carotid Atherosclerosis and Stroke Collaboration (CASCO). Interleukin-6 predicts carotid plaque severity, vulnerability, and progression. Circ Res. 2022;131(2):e22-e33. DOI:10.1161/CIRCRESAHA.122.320877
33. Groot HE, Al Ali L, van der Horst ICC, et al. Plasma interleukin 6 levels are associated with cardiac function after ST-elevation myocardial infarction. Clin Res Cardiol. 2019;108:612-21. DOI:10.1007/s00392-018-1387-z
34. Lindmark E, Diderholm E, Wallentin L, Siegbahn A. Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. JAMA. 2001;286(17):2107-13. DOI:10.1001/jama.286.17.2107
35. Fisman EZ, Benderly M, Esper RJ, et al. Interleukin-6 and the risk of future cardiovascular events in patients with angina pectoris and/or healed myocardial infarction. Am J Cardiology. 2006;98:14-8. DOI:10.1016/j.amjcard.2006.01.045
36. Tøllefsen IM, Shetelig C, Seljeflot I, et al. High levels of interleukin-6 are associated with final infarct size and adverse clinical events in patients with STEMI. Open Heart. 2021;8(2):e001869. DOI:10.1136/openhrt-2021-001869
37. Kleveland O, Kunszt G, Bratlie M, et al. Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: a double-blind, randomized, placebo-controlled phase 2 trial. Eur Heart J. 2016;37(30):2406-13. DOI:10.1093/eurheartj/ehw171
38. Gurzău D, Sitar-Tăut A, Caloian B, et al. The role of IL-6 and ET-1 in the diagnosis of coronary microvascular disease in women. J Pers Med. 2021;11(10):965. DOI:10.3390/jpm11100965
39. Fernández-Ruiz I. Promising anti-IL-6 therapy for atherosclerosis. Nat Rev Cardiol. 2021;18(8):544. DOI:10.1038/s41569-021-00575-8
40. Madan M, Bishayi B, Hoge M, Amar S. Atheroprotective role of interleukin-6 in diet- and/or pathogen-associated atherosclerosis using an ApoE heterozygote murine model. Atherosclerosis. 2008;197:504-14. DOI:10.1016/j.atherosclerosis.2007.02.023
41. Liu C, Wu J, Jia H, et al. Oncostatin M promotes the ox-LDL-induced activation of NLRP3 inflammasomes via the NF-κB pathway in THP-1 macrophages and promotes the progression of atherosclerosis. Ann Transl Med. 2022;10(8):456. DOI:10.21037/atm-22-560
42. Li X, Zhang X, Wei L, Xia Y, Guo X. Relationship between serum oncostatin M levels and degree of coronary stenosis in patients with coronary artery disease. Clinical Lab. 2014;60:113-8. DOI:10.7754/Clin.Lab.2013.121245
43. van Keulen D, Pouwer MG, Emilsson V, et al. Oncostatin M reduces atherosclerosis development in APOE*3Leiden.CETP mice and is associated with increased survival probability in humans. PloS ONE. 2019;14: e0221477. DOI:10.1371/journal.pone.0221477
44. Rolfe B, Stamatiou S, World CJ, et al. Leukaemia inhibitory factor retards the progression of atherosclerosis. Cardiovascular Res. 2003;58:222-30.
DOI:10.1016/S0008-6363(02)00832-5
45. Konii H, Sato K, Kikuchi S, et al. Stimulatory effects of cardiotrophin 1 on atherosclerosis. Hypertension. 2013;62:942–50. DOI:10.1161/HYPERTENSIONAHA.113.01653
46. Miteva K, Baptista D, Montecucco F, et al. Cardiotrophin-1 deficiency abrogates atherosclerosis progression. Sci Rep. 2020;10:5791. DOI:10.1038/s41598-020-62596-6
47. Pasquin S, Laplante V, Kouadri S, et al. Cardiotrophin-like cytokine increases macrophage-foam cell transition. J Immunology. 2018;201:2462-71. DOI:10.4049/jimmunol.1800733
48. Wang JH, Zhao L, Pan X, et al. Hypoxia-stimulated cardiac fibroblast production of IL-6 promotes myocardial fibrosis via the TGF-β1 signaling pathway. Lab Invest. 2016;96:839-52. DOI:10.1038/labinvest.2016.65
49. Jing R, Long TY, Pan W, et al. IL-6 knockout ameliorates myocardial remodeling after myocardial infarction by regulating activation of M2 macrophages and fibroblast cells. Eur Rev Med Pharmacol Sci. 2019;23:6283-91. DOI:10.26355/eurrev_201907_18450
50. Schafer S, Viswanathan S, Widjaja AA, et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature. 2017;552:110-5. DOI:10.1038/nature24676
51. Obana M, Maeda M, Takeda K, et al. Therapeutic activation of signal transducer and activator of transcription 3 by interleukin-11 ameliorates cardiac fibrosis after myocardial infarction. Circulation. 2010;121:684-91. DOI:10.1161/CIRCULATIONAHA.109.893677
52. Li Q, Ye WX, Huang ZJ, et al. Effect of IL-6-mediated STAT3 signaling pathway on myocardial apoptosis in mice with dilated cardiomyopathy. Eur Rev Med Pharmacol Sci. 2019;23:3042-50. DOI:10.26355/eurrev_201904_17586
53. Liu X, Zhang W, Han Z. Decreased circulating follicular regulatory T cells in patients with dilated cardiomyopathy. Braz J Med Biol Res. 2021;54(12):e11232.
DOI:10.1590/1414-431X2021e11232
54. Kažukauskienė I, Baltrūnienė V, Rinkūnaitė I, et al. Inflammation-related biomarkers are associated with heart failure severity and poor clinical outcomes in patients with non-ischemic dilated cardiomyopathy. Life (Basel). 2021;11(10):1006. DOI:10.3390/life11101006
55. Scally C, Abbas H, Ahearn T, et al. Myocardial and systemic inflammation in acute stress-induced (takotsubo) cardiomyopathy. Circulation. 2019;139(13):1581-92. DOI:10.1161/CIRCULATIONAHA.118.037975
56. Monserrat L, López B, González A, et al. Cardiotrophin-1 plasma levels are associated with the severity of hypertrophy in hypertrophic cardiomyopathy. Eur Heart J. 2011;32(2):177-83. DOI:10.1093/eurheartj/ehq400
57. Tsutamoto T, Wada A, Maeda K, et al. Relationship between plasma level of cardiotrophin-1 and left ventricular mass index in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2001;38(5):1485-90. DOI:10.1016/s0735-1097(01)01576-5
58. Zhang E, Ma S, Zhang R, et al. Oncostatin M-induced cardiomyocyte dedifferentiation regulates the progression of diabetic cardiomyopathy through B-Raf/Mek/Erk signaling pathway. Acta Biochim Biophys Sin (Shanghai). 2016;48:257-65. DOI:10.1093/abbs/gmv137
59. Abe H, Takeda N, Isagawa T, et al. Macrophage hypoxia signaling regulates cardiac fibrosis via Oncostatin M. Nature Communications. 2019;10:2824.
DOI:10.1038/s41467-019-10859-w
60. Zou Y, Takano H, Mizukami M, et al. Leukemia inhibitory factor enhances survival of cardiomyocytes and induces regeneration of myocardium after myocardial infarction. Circulation. 2003;108:748-53. DOI:10.1161/01.CIR.0000081773.76337.44
61. Zgheib C, Zouein FA, Kurdi M, Booz GW. Chronic treatment of mice with leukemia inhibitory factor does not cause adverse cardiac remodeling but improves heart function. European Cytokine Network. 2012;23:191-7. DOI:10.1684/ecn.2012.0319
62. Hamzic-Mehmedbasic A. Inflammatory cytokines as risk factors for mortality after acute cardiac events. Med Arch. 2016;70(4):252-5. DOI:10.5455/medarh.2016.70.252-255
63. Markousis-Mavrogenis G, Tromp J, Ouwerkerk W, et al. The clinical significance of interleukin-6 in heart failure: results from the BIOSTAT-CHF study. Eur J Heart Failure. 2019;21:965-73. DOI:10.1002/ejhf.1482
64. Ye J, Wang Z, Ye D, et al. Increased interleukin-11 levels are correlated with cardiac events in patients with chronic heart failure. Mediators Inflamm. 2019;2019:1575410. DOI:10.1155/2019/1575410
65. Gruson D, Ferracin B, Ahn SA, Rousseau MF. Elevation of plasma oncostatin M in heart failure. Future Cardiol. 2017;13(3):219-27. DOI:10.2217/fca-2016-0063
66. Kubin T, Pöling J, Kostin S, et al. Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell. 2011;9:420-32. DOI:10.1016/j.stem.2011.08.013
67. Martínez-Martínez E, Brugnolaro C, Ibarrola J, et al. CT-1 (Cardiotrophin-1)-Gal-3 (Galectin-3) Axis in cardiac fibrosis and inflammation. Hypertension. 2019;73:602-11. DOI:10.1161/HYPERTENSIONAHA.118.11874
68. Song K, Wang S, Huang B, et al. Plasma cardiotrophin-1 levels are associated with hypertensive heart disease: a meta-analysis. J Clinical Hypertension. 2014;16:686-92. DOI:10.1111/jch.12376
1 ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия;
2 ФГБНУ «Российский научный центр хирургии им. акад. Б.В. Петровского», Москва, Россия;
3 ГБУЗ «Московский клинический научно-практический центр им. А.С. Логинова» Департамента здравоохранения г. Москвы, Москва, Россия
*amisha_alieva@mail.ru
________________________________________________
Amina M. Alieva*1, Aleksei V. Butenko2, Natalia V. Teplova1, Elena V. Reznik1, Ramiz K. Valiev3, Elina А. Skripnichenko1, Aleksei V. Sozykin1,2, Igor G. Nikitin1
1 Pirogov Russian National Research Medical University, Moscow, Russia;
2 Petrovsky Russian Scientific Center of Surgery, Moscow, Russia;
3 Loginov Moscow Clinical Scientific Center, Moscow, Russia
*amisha_alieva@mail.ru