Актуальность проблемы хронической сердечной недостаточности (ХСН) остается на высоком уровне. Несмотря на существенные успехи в базисной терапии пациентов с ХСН, прогноз пациентов остается неблагоприятным. Назначение ингибиторов натрий-глюкозного котранспортера 2-го типа дапаглифлозина позволило изменить парадигму лечения пациентов с ХСН с низкой фракцией выброса левого желудочка.
Ключевые слова: хроническая сердечная недостаточность, дапаглифлозин, ингибиторы натрий-глюкозного котранспортера 2-го типа
________________________________________________
The relevance of chronic heart failure (CHF) remains high. Despite significant advances in basic therapy for CHF patients, the prognosis remains poor. The prescription of inhibitors of sodium-glucose cotransporter type 2 dapagliflozin made it possible to change the paradigm of treatment of patients with CHF with low left ventricular ejection fraction.
Keywords: chronic heart failure, dapagliflozin, inhibitors of sodium-glucose cotransporter type 2
1. Lam CSP, Chandramouli C, Ahooja V, Verma S. SGLT-2 Inhibitors in Heart Failure: Current Management, Unmet Needs, and Therapeutic Prospects. J Am Heart Assoc. 2019;8(20):e013389. DOI:10.1161/JAHA.119.013389
2. Фомин И.В. Хроническая сердечная недостаточность в Российской Федерации: что сегодня мы знаем и что должны делать. Российский кардиологический журнал. 2016;8(136):7-13 [Fomin IV. Chronic heart failure in Russian Federation: what do we know and what to do. Russian Journal of Cardiology. 2016;8(136):7-13 (in Russian)]. DOI:10.15829/1560-4071-2016-8-7-13
3. Терещенко С.Н., Галявич А.С., Ускач Т.М., и др. Хроническая сердечная недостаточность. Клинические рекомендации 2020. Российский кардиологический журнал. 2020;25(11):4083 [Tereshchenko SN, Galiavich AS, Uskach TM, et al. 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11):4083 (in Russian)]. DOI:10.15829/1560-4071-2020-4083
4. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599-726.
DOI:10.1093/eurheartj/ehab368; PMID: 34447992
5. Поляков Д.С., Фомин И.В., Беленков Ю.Н., и др. Хроническая сердечная недостаточность в Российской Федерации: что изменилось за 20 лет наблюдения? Результаты исследования ЭПОХА-ХСН. Кардиология. 2021;61(4):4-14 [Polyakov DS, Fomin IV, Belenkov YuN, et al. Chronic heart failure in the Russian Federation: what has changed over 20 years of follow-up? Results of the EPOCH-CHF study. Kardiologiia. 2021;61(4):4-14 (in Russian)]. DOI:10.18087/cardio.2021.4.n1628
6. Scheen AJ, Paquot N. Metabolic effects of SGLT-2 inhibitors beyond increased glucosuria: A review of the clinical evidence. Diabetes Metab. 2014;40(6 Suppl. 1):S4-11. DOI:10.1016/S1262-3636(14)72689-8
7. DeFronzo RA, Norton L, Abdul-Ghani M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol. 2017;13(1):11-26. DOI:10.1038/nrneph.2016.170
8. Vasilakou D, Karagiannis T, Athanasiadou E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262-74. DOI:10.7326/0003-4819-159-4-201308200-00007
9. Lambers Heerspink HJ, de Zeeuw D, Wie L, et al. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15(9):853-62. DOI:10.1111/dom.12127
10. Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med. 2017;104:298-310. DOI:10.1016/j.freeradbiomed.2017.01.035
11. Terasaki M, Hiromura M, Mori Y, et al. Amelioration of Hyperglycemia with a Sodium-Glucose Cotransporter 2 Inhibitor Prevents Macrophage-Driven Atherosclerosis through Macrophage Foam Cell Formation Suppression in Type 1 and Type 2 Diabetic Mice. PLoS One. 2015;10(11):e0143396. DOI:10.1371/journal.pone.0143396
12. Gilbert RE. Sodium-glucose linked transporter-2 inhibitors: potential for renoprotection beyond blood glucose lowering? Kidney Int. 2014;86(4):693-700. DOI:10.1038/ki.2013.451
13. Packer M, Anker SD, Butler J, et al. Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol. 2017;2(9):1025-9. DOI:10.1001/jamacardio.2017.2275
14. Mosenzon O, Wiviott SD, Cahn A, et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 2019;7(8):606-17. DOI:10.1016/S2213-8587(19)30180-9
15. McMurray JJV, DeMets DL, Inzucchi SE, et al. The Dapagliflozin And Prevention of Adverse-outcomes in Heart Failure (DAPA-HF) trial: baseline characteristics. Eur J Heart Fail. 2019;21(11):1402-11. DOI:10.1002/ejhf.1548
16. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019;381(21):1995-2008. DOI:10.1056/NEJMoa1911303
17. Jhund PS, Solomon SD, Docherty KF, et al. Efficacy of Dapagliflozin on Renal Function and Outcomes in Patients With Heart Failure With Reduced Ejection Fraction: Results of DAPA-HF. Circulation. 2021;143(4):298-309. DOI:10.1161/CIRCULATIONAHA.120.050391
18. Dewan P, Solomon SD, Jhund PS, et al. Efficacy and safety of sodium-glucose co-transporter 2 inhibition according to left ventricular ejection fraction in DAPA-HF. Eur J Heart Fail. 2020;22(7):1247-58. DOI:10.1002/ejhf.1867
19. Jackson AM, Dewan P, Anand IS, et al. Dapagliflozin and diuretic use in patients with heart failure and reduced ejection fraction in DAPA-HF. Circulation. 2020;142:1040-54.
DOI:10.1161/CIRCULATIONAHA.120.047077
20. Serenelli M, Böhm M, Inzucchi SE, et al. Effect of dapagliflozin according to baseline systolic blood pressure in the Dapagliflozin and Prevention of Adverse Outcomes in Heart Failure trial (DAPA-HF). Eur Heart J. 2020;41(36):3402-18. DOI:10.1093/eurheartj/ehaa496
21. McMurray JJV, Packer M. How Should We Sequence the Treatments for Heart Failure and a Reduced Ejection Fraction?: A Redefinition of Evidence-Based Medicine. Circulation. 2021;143(9):875-77. DOI:10.1161/CIRCULATIONAHA.120.052926
22. Berg DD, Jhund PS, Docherty KF, et al. Time to Clinical Benefit of Dapagliflozin and Significance of Prior Heart Failure Hospitalization in Patients With Heart Failure With Reduced Ejection Fraction. JAMA Cardiol. 2021;6(5):499-507. DOI:10.1001/jamacardio.2020.7585
23. Sarraf M, Masoumi A, Schrier RW. Cardiorenal syndrome in acute decompensated heart failure. Clin J Am Soc Nephrol. 2009;4:2013-26. DOI:10.2215/CJN.03150509
24. Ather S, Chan W, Bozkurt B, et al. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol. 2012;59:998-1005. DOI:10.1016/j.jacc.2011.11.040
25. Wheeler DC, Stefansson BV, Batiushin M, et al. The dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial: baseline characteristics. Nephrol Dial Transplant. 2020;35(10):1700-11. DOI:10.1093/ndt/gfaa234
26. Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2020;383(15):1436-46. DOI:10.1056/NEJMoa2024816
27. Wheeler DC, Stefánsson BV, Jongs N, et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 2021;9(1):22-31. DOI:10.1016/S2213-8587(20)30369-7
28. Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2020;383(15):1436-46. DOI:10.1056/NEJMoa2024816
29. McMurray JJV, Wheeler DC, Stefánsson BV, et al. Effect of Dapagliflozin on Clinical Outcomes in Patients With Chronic Kidney Disease, With and Without Cardiovascular Disease. Circulation. 2021;143(5):438-48. DOI:10.1161/CIRCULATIONAHA.120.051675
30. McMurray JJV, Wheeler DC, Stefánsson BV, et al. Effects of Dapagliflozin in Patients With Kidney Disease, With and Without Heart Failure. JACC Heart Fail. 2021;9(11):807-20. DOI:10.1016/j.jchf.2021.06.017
________________________________________________
1. Lam CSP, Chandramouli C, Ahooja V, Verma S. SGLT-2 Inhibitors in Heart Failure: Current Management, Unmet Needs, and Therapeutic Prospects. J Am Heart Assoc. 2019;8(20):e013389. DOI:10.1161/JAHA.119.013389
2. Fomin IV. Chronic heart failure in Russian Federation: what do we know and what to do. Russian Journal of Cardiology. 2016;8(136):7-13 (in Russian).
DOI:10.15829/1560-4071-2016-8-7-13
3. Tereshchenko SN, Galiavich AS, Uskach TM, et al. 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11):4083 (in Russian). DOI:10.15829/1560-4071-2020-4083
4. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599-726.
DOI:10.1093/eurheartj/ehab368; PMID: 34447992
5. Polyakov DS, Fomin IV, Belenkov YuN, et al. Chronic heart failure in the Russian Federation: what has changed over 20 years of follow-up? Results of the EPOCH-CHF study. Kardiologiia. 2021;61(4):4-14 (in Russian). DOI:10.18087/cardio.2021.4.n1628
6. Scheen AJ, Paquot N. Metabolic effects of SGLT-2 inhibitors beyond increased glucosuria: A review of the clinical evidence. Diabetes Metab. 2014;40(6 Suppl. 1):S4-11. DOI:10.1016/S1262-3636(14)72689-8
7. DeFronzo RA, Norton L, Abdul-Ghani M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol. 2017;13(1):11-26. DOI:10.1038/nrneph.2016.170
8. Vasilakou D, Karagiannis T, Athanasiadou E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262-74. DOI:10.7326/0003-4819-159-4-201308200-00007
9. Lambers Heerspink HJ, de Zeeuw D, Wie L, et al. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15(9):853-62. DOI:10.1111/dom.12127
10. Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med. 2017;104:298-310. DOI:10.1016/j.freeradbiomed.2017.01.035
11. Terasaki M, Hiromura M, Mori Y, et al. Amelioration of Hyperglycemia with a Sodium-Glucose Cotransporter 2 Inhibitor Prevents Macrophage-Driven Atherosclerosis through Macrophage Foam Cell Formation Suppression in Type 1 and Type 2 Diabetic Mice. PLoS One. 2015;10(11):e0143396. DOI:10.1371/journal.pone.0143396
12. Gilbert RE. Sodium-glucose linked transporter-2 inhibitors: potential for renoprotection beyond blood glucose lowering? Kidney Int. 2014;86(4):693-700. DOI:10.1038/ki.2013.451
13. Packer M, Anker SD, Butler J, et al. Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol. 2017;2(9):1025-9. DOI:10.1001/jamacardio.2017.2275
14. Mosenzon O, Wiviott SD, Cahn A, et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 2019;7(8):606-17. DOI:10.1016/S2213-8587(19)30180-9
15. McMurray JJV, DeMets DL, Inzucchi SE, et al. The Dapagliflozin And Prevention of Adverse-outcomes in Heart Failure (DAPA-HF) trial: baseline characteristics. Eur J Heart Fail. 2019;21(11):1402-11. DOI:10.1002/ejhf.1548
16. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019;381(21):1995-2008. DOI:10.1056/NEJMoa1911303
17. Jhund PS, Solomon SD, Docherty KF, et al. Efficacy of Dapagliflozin on Renal Function and Outcomes in Patients With Heart Failure With Reduced Ejection Fraction: Results of DAPA-HF. Circulation. 2021;143(4):298-309. DOI:10.1161/CIRCULATIONAHA.120.050391
18. Dewan P, Solomon SD, Jhund PS, et al. Efficacy and safety of sodium-glucose co-transporter 2 inhibition according to left ventricular ejection fraction in DAPA-HF. Eur J Heart Fail. 2020;22(7):1247-58. DOI:10.1002/ejhf.1867
19. Jackson AM, Dewan P, Anand IS, et al. Dapagliflozin and diuretic use in patients with heart failure and reduced ejection fraction in DAPA-HF. Circulation. 2020;142:1040-54.
DOI:10.1161/CIRCULATIONAHA.120.047077
20. Serenelli M, Böhm M, Inzucchi SE, et al. Effect of dapagliflozin according to baseline systolic blood pressure in the Dapagliflozin and Prevention of Adverse Outcomes in Heart Failure trial (DAPA-HF). Eur Heart J. 2020;41(36):3402-18. DOI:10.1093/eurheartj/ehaa496
21. McMurray JJV, Packer M. How Should We Sequence the Treatments for Heart Failure and a Reduced Ejection Fraction?: A Redefinition of Evidence-Based Medicine. Circulation. 2021;143(9):875-77. DOI:10.1161/CIRCULATIONAHA.120.052926
22. Berg DD, Jhund PS, Docherty KF, et al. Time to Clinical Benefit of Dapagliflozin and Significance of Prior Heart Failure Hospitalization in Patients With Heart Failure With Reduced Ejection Fraction. JAMA Cardiol. 2021;6(5):499-507. DOI:10.1001/jamacardio.2020.7585
23. Sarraf M, Masoumi A, Schrier RW. Cardiorenal syndrome in acute decompensated heart failure. Clin J Am Soc Nephrol. 2009;4:2013-26. DOI:10.2215/CJN.03150509
24. Ather S, Chan W, Bozkurt B, et al. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol. 2012;59:998-1005. DOI:10.1016/j.jacc.2011.11.040
25. Wheeler DC, Stefansson BV, Batiushin M, et al. The dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial: baseline characteristics. Nephrol Dial Transplant. 2020;35(10):1700-11. DOI:10.1093/ndt/gfaa234
26. Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2020;383(15):1436-46. DOI:10.1056/NEJMoa2024816
27. Wheeler DC, Stefánsson BV, Jongs N, et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 2021;9(1):22-31. DOI:10.1016/S2213-8587(20)30369-7
28. Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2020;383(15):1436-46. DOI:10.1056/NEJMoa2024816
29. McMurray JJV, Wheeler DC, Stefánsson BV, et al. Effect of Dapagliflozin on Clinical Outcomes in Patients With Chronic Kidney Disease, With and Without Cardiovascular Disease. Circulation. 2021;143(5):438-48. DOI:10.1161/CIRCULATIONAHA.120.051675
30. McMurray JJV, Wheeler DC, Stefánsson BV, et al. Effects of Dapagliflozin in Patients With Kidney Disease, With and Without Heart Failure. JACC Heart Fail. 2021;9(11):807-20. DOI:10.1016/j.jchf.2021.06.017
Авторы
С.Н. Насонова1, И.В. Жиров*1,2, С.Н. Терещенко1,2
1 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия;
2 ФГБУ «Национальный медицинский исследовательский центр кардиологии им. акад. Е.И. Чазова» Минздрава России, Москва, Россия
*izhirov@mail.ru
________________________________________________
Svetlana N. Nasonova1, Igor V. Zhirov*1,2, Sergey N. Tereshchenko1,2
1 Chazov National Medical Research Center of Cardiology, Moscow, Russia;
2 Russian Medical Academy of Continuous Professional Education, Moscow, Russia
*izhirov@mail.ru