Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Перепрофилированные противомикробные и противовирусные препараты для лечения COVID-19: безопасность и побочные эффекты в реальной клинической практике (научный обзор)
Перепрофилированные противомикробные и противовирусные препараты для лечения COVID-19: безопасность и побочные эффекты в реальной клинической практике (научный обзор)
Леонова М.В. Перепрофилированные противомикробные и противовирусные препараты для лечения COVID-19: безопасность и побочные эффекты в реальной клинической практике (научный обзор). Consilium Medicum. 2022;24(9): DOI: 10.26442/20751753.2022.9.201763
© ООО «КОНСИЛИУМ МЕДИКУМ», 2022 г.
DOI: 10.26442/20751753.2022.9.201763
© ООО «КОНСИЛИУМ МЕДИКУМ», 2022 г.
________________________________________________
DOI: 10.26442/20751753.2022.9.201763
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Пандемия COVID-19 бросила вызов новым этиотропным средствам, что привело к экстренному перепрофилированию противомикробных и противовирусных препаратов для лечения новой инфекции по результатам экспериментальных исследований in silico, in vitro, in vivo и клинических исследований. Однако вопросам безопасности перепрофилированных препаратов уделялось меньше внимания. Воздействие перепрофилированных препаратов с ограниченными доказательствами соотношения риск-польза при COVID-19 требовало адаптации мониторинга безопасности, что повлияло на полноту и качество отчетов, а проведение оценки причинно-следственных связей стало самой сложной задачей. Представлен обзор накопленных за период пандемии COVID-19 данных о характере нежелательных реакций, связанных с применением перепрофилированных препаратов (гидроксихлорохина, хлорохина, ремдесивира, фавипиравира, лопинавира/ритонавира, рибавирина), используемых в реальной практике. Использовались результаты рандомизированных контролируемых исследований и наблюдательных исследований, систематических обзоров и метаанализов. Согласно систематизированным данным по безопасности применения гидроксихлорохина и хлорохина у пациентов с COVID-19 при краткосрочном лечении (≤14 дней), включая серию метаанализов, риск развития нежелательных эффектов повышен в 1,5–2 раза; основные проявления – удлинение интервала QT и аритмии (до 25%), расстройства со стороны желудочно-кишечного тракта – ЖКТ (до 50%), повышение уровня билирубина (3%) и трансаминаз (до 10%), дерматологические (до 10%) и нейропсихические побочные эффекты (до 21,7%). Большинство побочных эффектов перепрофилированных противовирусных препаратов группы аналогов нуклеозидов связано с их прямым цитотоксическим действием, что проявляется токсическим поражением ЖКТ, гепатотоксичностью, нефротоксичностью, кардиотоксичностью, гематотоксичностью. Наибольшее количество побочных эффектов со стороны ЖКТ и печени наблюдалось для лопинавира/ритонавира в сравнении с другим препаратами. Выявлены новые побочные эффекты для ремдесивира при использовании в условиях пандемии COVID-19 – кардиотоксичность (брадикардия и тяжелая гипотензия) и нефротоксичность, что расценено регуляторными органами как «сигнал безопасности». Для решения задач по оценке причинно-следственной связи потребуются дальнейшие более тщательные исследования и анализы. Накопленная информация в условиях продолжающейся пандемии COVID-19 должна подвергаться постоянному динамическому анализу и публиковаться в медицинских изданиях для оповещения клиницистов.
Ключевые слова: противовирусные препараты, перепрофилированные препараты, COVID-19, безопасность, побочные эффекты
Keywords: antiviral drugs, repurposed drugs, COVID-19, safety, side effects
Ключевые слова: противовирусные препараты, перепрофилированные препараты, COVID-19, безопасность, побочные эффекты
________________________________________________
Keywords: antiviral drugs, repurposed drugs, COVID-19, safety, side effects
Полный текст
Список литературы
1. Статистика распространения коронавируса в мире на 15 июня 2022. Режим доступа: https://coronavirus-monitor.info/. Ссылка активна на 28.06.2022 [Statistics of the spread of coronavirus in the world as of June 15, 2022. Available at: https://coronavirus-monitor.info/. Accessed: 28.06.2022 (in Russian)].
2. World Health Organization. 14.9 million excess deaths associated with the COVID-19 pandemic in 2020 and 2021. Published 5 May 2022. Available at: https://www.who.int/news/item/05-05-2022-14.9-million-excess-deaths-were-associated-with-the-covid-1.... Accessed: 28.06.2022
3. Singh TU, Parida S, Lingaraju MC, et al. Drug repurposing approach to fight COVID-19. Pharmacol Rep. 2020;72:1479-508. DOI:10.1007/s43440-020-00155-6
4. Desai MK. Pharmacovigilance and assessment of drug safety reports during COVID 19. Perspect Clin Res. 2020;11(3):128. DOI:10.4103/picr.PICR_171_20
5. U.S. Food and Drug Administration Coronavirus (COVID-19) Update: Daily Roundup March 30, 2020. Available at: https://www.fda.gov/news-events/pressannouncements/coronavirus-covid-19-update-dailyroundup-march-30.... Accessed: 28.06.2022
6. Li X, Wang Y, Agostinis P, et al. Is hydroxychloroquine beneficial for COVID-19 patients?. Cell Death Dis. 2020;11:512. DOI:10.1038/s41419-020-2721-8
7. Zengin R, Sarikaya ZT, Karadağ N, et al. Adverse cardiac events related to hydroxychloroquine prophylaxis and treatment of COVID-19. Infect Dis Clin Microbiol. 2020;2(1):24-6. DOI:10.36519/idcm.2020.0012
8. Jankelson L, Karam G, Becker ML, et al. QT prolongation, torsades de pointes, and sudden death with short courses of chloroquine or hydroxychloroquine as used in COVID-19: a systematic review. Heart Rhythm. 2020;17(9):1472-9. DOI:10.1016/j.hrthm.2020.05.008
9. Deng J, Zhou F, Heybati K, et al. Efficacy of chloroquine and hydroxychloroquine for the treatment of hospitalized COVID-19 patients: a meta-analysis. Future Virol. 2022;17(4):95-118. DOI:10.2217/fvl-2021-0119
10. Eze P, Mezue KN, Nduka CU, et al. Efficacy and safety of chloroquine and hydroxychloroquine for treatment of COVID-19 patients-a systematic review and meta-analysis of randomized controlled trials. Am J Cardiovasc Dis. 2021;11(1):93-107. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012280/. Accessed: 28.06.2022
11. Marin S, Val AM, Peligero MB, et al. Safety of short-term treatments with oral chloroquine and hydroxychloroquine in patients with and without COVID-19: a systematic review. Pharmaceuticals (Basel). 2022;15(5):634. DOI:10.3390/ph15050634
12. Gordon CJ, Tchesnokov EP, Woolner E, et al. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem. 2020;295(20):6785-97. DOI:10.1074/jbc.RA120.013679
13. FDA approves first treatment for COVID-19 administration (2020) U.S.F.a.D. Available at: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19. Accessed: 28.06.2022
14. Gupta AK, Parker BM, Priyadarshi V, Parker J. Cardiac adverse events with remdesivir in COVID-19 infection. Cureus. 2020;12(10):e11132. DOI:10.7759/cureus.11132
15. Gubitosa JC, Kakar P, Gerula C, et al. Marked sinus bradycardia associated with remdesivir in COVID-19: a case and literature review. JACC Case Rep. 2020;2(14):2260-4. DOI:10.1016/j.jaccas.2020.08.025
16. Day LB, Abdel-Qadir H, Fralick M. Bradycardia associated with remdesivir therapy for COVID-19 in a 59-year-old man. CMAJ. 2021;193(17):E612-5. DOI:10.1503/cmaj.210300
17. Barkas F, Styla CP, Bechlioulis A, et al. Sinus bradycardia associated with remdesivir treatment in COVID-19: a case report and literature review. J Cardiovasc Dev Dis. 2021;8(2):18.
DOI:10.3390/jcdd8020018
18. Attena E, Albani S, Maraolo AE, et al. Remdesivir-induced bradycardia in COVID-19: a single center prospective study. Circ Arrhythm Electrophysiol. 2021;14(7):e009811. DOI:10.1161/CIRCEP.121.009811
19. Gupte V, Hegde R, Sawant S, et al. Safety and clinical outcomes of remdesivir in hospitalised COVID-19 patients: a retrospective analysis of active surveillance database. BMC Infect Dis. 2022;22:1. DOI:10.1186/s12879-021-07004-8
20. Rafaniello C, Ferrajolo C, Sullo MG, et al. Cardiac events potentially associated to remdesivir: an analysis from the European Spontaneous Adverse Event Reporting System. Pharmaceuticals (Basel). 2021;14(7):611. DOI:10.3390/ph14070611
21. Pimentel J, Laurie C, Cockcroft A, Andersson N. Clinical studies assessing the efficacy, effectiveness and safety of remdesivir in management of COVID-19: a scoping review. Br J Clin Pharmacol. 2021;87(7):2663-84. DOI:10.1111/bcp.14677
22. Jung SY, Kim MS, Li H, et al. Cardiovascular events and safety outcomes associated with remdesivir using a World Health Organization international pharmacovigilance database. Clin Transl Sci. 2022;15(2):501-13. DOI:10.1111/cts.13168
23. Choi SW, Shin JS, Park SJ, et al. Antiviral activity and safety of remdesivir against SARS‐CoV‐2 infection in human pluripotent stem cell‐derived cardiomyocytes. Antiviral Res. 2020;184:104955. DOI:10.1016/j.antiviral.2020.104955
24. Nabati M, Parsaee H. Potential cardiotoxic effects of remdesivir on cardiovascular system:a literature review. Cardiovasc Toxicol. 2022;22(3):268-72.
DOI:10.1007/s12012-021-09703-9
25. Silva NAO, Zara ALSA, Figueras A, Melo DO. Potential kidney damage associated with the use of remdesivir for COVID-19: analysis of a pharmacovigilance database. Cad Saude Publica. 2021;37(10):e00077721. DOI:10.1590/0102-311X00077721
26. European Medicines Agency. Meeting highlights from the Pharmacovigilance Risk Assessment Committee (PRAC) 28 September – 1 October 2020. Available at: https://www.ema.europa.eu/en/news/meeting-highlights-pharmacovigilance-risk-assessment-committee-pra.... Accessed: 28.06.2022
27. Gérard AO, Laurain A, Fresse A, et al. Remdesivir and acute renal failure: a potential safety signal fromdDisproportionality analysis of the WHO safety database. Clin Pharmacol Ther. 2021;109(4):1021-4. DOI:10.1002/cpt.2145
28. Lee S, Yang JW, Jung SY, et al. Neuropsychological adverse drug reactions of Remdesivir: analysis using VigiBase, the WHO global database of individual case safety reports. Eur Rev Med Pharmacol Sci. 2021;25(23):7390-7. DOI:10.26355/eurrev_202112_27435
29. Agrawal U, Raju R, Udwadia ZF. Favipiravir:aA new and emerging antiviral option in COVID-19. Med J Armed Forces India. 2020;76(4):370-6. DOI:10.1016/j.mjafi.2020.08.004
30. Hase R, Kurata R, Ishida K, et al. Acute gouty arthritis during favipiravir treatment for coronavirus disease 2019. Intern Med. 2020;59(18):2327-9.
DOI:10.2169/internalmedicine.5377-20
31. Udwadia ZF, Singh P, Barkate H, et al. Efficacy and safety of favipiravir, an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19: a randomized, comparative, open-label, multicenter, phase 3 clinical trial. Int J Infect Dis. 2021;103:62-71. DOI:10.1016/j.ijid.2020.11.142
32. Pilkington V, Pepperrell T, Hill A. A review of the safety of favipiravir – a potential treatment in the COVID-19 pandemic? J Virus Erad. 2020;6(2):45-51.
DOI:10.1016/S2055-6640(20)30016-9
33. Zhao H, Zhang C, Zhu Q, et al. Favipiravir in the treatment of patients with SARS-CoV-2 RNA recurrent positive after discharge: A multicenter, open-label, randomized trial. Int Immunopharmacol. 2021;97:107702. DOI:10.1016/j.intimp.2021.107702
34. Yamazaki S, Suzuki T, Sayama M, et al. Suspected cholestatic liver injury induced by favipiravir in a patient with COVID-19. J Infect Chemother. 2021;27(2):390-2. DOI:10.1016/j.jiac.2020.12.021
35. Nasa P, Shrivastava PK, Kulkarni A, et al. Favipiravir induced nephrotoxicity in two patients of COVID-19. J Assoc Physicians India. 2021;69(6):11-2.
36. Shrestha DB, Budhathoki P, Khadka S, et al. Favipiravir versus other antiviral or standard of care for COVID-19 treatment: a rapid systematic review and meta-analysis. Virol J. 2020;17(1):141. DOI:10.1186/s12985-020-01412-z
37. Hassanipour S, Arab-Zozani M, Amani B, et al. The efficacy and safety of favipiravir in treatment of COVID-19: a systematic review and meta-analysis of clinical trials. Sci Rep. 2021;11:11022. DOI:10.1038/s41598-021-90551-6
38. Hung DT, Ghula S, Aziz JMA, et al. The efficacy and adverse effects of favipiravir on patients with COVID-19: a systematic review and meta-analysis of published clinical trials and observational studies. Int J Infect Dis. 2022;120:217-27. DOI:10.1016/j.ijid.2022.04.035
39. Kaur RJ, Charan J, Dutta S, et al. Favipiravir use in COVID-19: analysis of suspected adverse drug events reported in the WHO database. Infect Drug Resist. 2020;13:4427-38.
DOI:10.2147/IDR.S287934
40. Qu J, Li GH, Wang JJ, et al. Comparative effectiveness of lopinavir/ritonavir-based regimens in COVID-19. Clin Exp Pharmacol Physiol. 2021;48(2):203-10.
DOI:10.1111/1440-1681.13425
41. Magro P, Zanella I, Pescarolo M, et al. Lopinavir/ritonavir: repurposing an old drug for HIV infection in COVID-19 treatment. Biomed. J. 2021;44(1):43-53. DOI:10.1016/j.bj.2020.11.005
42. Cao B, Wang Y, Wen D, et al. Trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382(19):1787-99. DOI:10.1056/NEJMoa2001282
43. Li Y, Xie Z, Lin W, et al. Efficacy and safety of lopinavir/ritonavir or arbidol in adult patients with mild/moderate COVID-19: an exploratory randomized controlled trial. Med (N Y). 2020;1(1):105-13.e4. DOI:10.1016/j.medj.2020.04.001
44. Liu F, Xu A, Zhang Y, et al. Patients of COVID-19 may benefit from sustained lopinavir-combined regimen and the increase of eosinophil may predict the outcome of COVID-19 progression. Int J Infect Dis. 2020;95:183-91. DOI:10.1016/j.ijid.2020.03.013
45. Diaz-Arocutipa C, Brañez-Condorena A, Hernandez AV. QTc prolongation in COVID-19 patients treated with hydroxychloroquine, chloroquine, azithromycin, or lopinavir/ritonavir: a systematic review and meta-analysis. Pharmacoepidemiol Drug Saf. 2021;30(6):694-706. DOI:10.1002/pds.5234
46. Liu W, Zhou P, Chen K, et al. Efficacy and safety of antiviral treatment for COVID-19 from evidence in studies of SARS-CoV-2 and other acute viral infections: a systematic review and meta-analysis. CMAJ. 2020;192(27):E734-44. DOI:10.1503/cmaj.200647
47. Bhattacharyya A, Kumar S, Sarma P, et al. Safety and efficacy of lopinavir/ritonavir combination in COVID-19: a systematic review, meta-analysis, and meta-regression analysis. Indian J Pharmacol. 2020;52(4):313-23. DOI:10.4103/ijp.IJP_627_20
48. Deng J, Zhou F, Hou W, et al. Efficacy of lopinavir–ritonavir combination therapy for the treatment of hospitalized COVID-19 patients: a meta-analysis. Future Virol. 2022;17(3):169-89. DOI:10.2217/fvl-2021-0066
49. Khalili JS, Zhu H, Mak NSA, et al. Novel coronavirus treatment with ribavirin: groundwork for an evaluation concerning COVID‐19. J Med Virol. 2020;92:740-6. DOI:10.1002/jmv.25798
50. Muller MP, Dresser L, Raboud J, et al. Canadian SARS Research Network. Adverse events associated with high-dose ribavirin: evidence from the Toronto outbreak of severe acute respiratory syndrome. Pharmacotherapy. 2007;27(4):494-503. DOI:10.1592/phco.27.4.494
51. Zhong H, Wang Y, Zhang ZL, et al. Efficacy and safety of current therapeutic options for COVID-19 – lessons to be learnt from SARS and MERS epidemic: a systematic review and meta-analysis. Pharmacol Res. 2020;157:104872. DOI:10.1016/j.phrs.2020.104872
2. World Health Organization. 14.9 million excess deaths associated with the COVID-19 pandemic in 2020 and 2021. Published 5 May 2022. Available at: https://www.who.int/news/item/05-05-2022-14.9-million-excess-deaths-were-associated-with-the-covid-1.... Accessed: 28.06.2022
3. Singh TU, Parida S, Lingaraju MC, et al. Drug repurposing approach to fight COVID-19. Pharmacol Rep. 2020;72:1479-508. DOI:10.1007/s43440-020-00155-6
4. Desai MK. Pharmacovigilance and assessment of drug safety reports during COVID 19. Perspect Clin Res. 2020;11(3):128. DOI:10.4103/picr.PICR_171_20
5. U.S. Food and Drug Administration Coronavirus (COVID-19) Update: Daily Roundup March 30, 2020. Available at: https://www.fda.gov/news-events/pressannouncements/coronavirus-covid-19-update-dailyroundup-march-30.... Accessed: 28.06.2022
6. Li X, Wang Y, Agostinis P, et al. Is hydroxychloroquine beneficial for COVID-19 patients?. Cell Death Dis. 2020;11:512. DOI:10.1038/s41419-020-2721-8
7. Zengin R, Sarikaya ZT, Karadağ N, et al. Adverse cardiac events related to hydroxychloroquine prophylaxis and treatment of COVID-19. Infect Dis Clin Microbiol. 2020;2(1):24-6. DOI:10.36519/idcm.2020.0012
8. Jankelson L, Karam G, Becker ML, et al. QT prolongation, torsades de pointes, and sudden death with short courses of chloroquine or hydroxychloroquine as used in COVID-19: a systematic review. Heart Rhythm. 2020;17(9):1472-9. DOI:10.1016/j.hrthm.2020.05.008
9. Deng J, Zhou F, Heybati K, et al. Efficacy of chloroquine and hydroxychloroquine for the treatment of hospitalized COVID-19 patients: a meta-analysis. Future Virol. 2022;17(4):95-118. DOI:10.2217/fvl-2021-0119
10. Eze P, Mezue KN, Nduka CU, et al. Efficacy and safety of chloroquine and hydroxychloroquine for treatment of COVID-19 patients-a systematic review and meta-analysis of randomized controlled trials. Am J Cardiovasc Dis. 2021;11(1):93-107. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012280/. Accessed: 28.06.2022
11. Marin S, Val AM, Peligero MB, et al. Safety of short-term treatments with oral chloroquine and hydroxychloroquine in patients with and without COVID-19: a systematic review. Pharmaceuticals (Basel). 2022;15(5):634. DOI:10.3390/ph15050634
12. Gordon CJ, Tchesnokov EP, Woolner E, et al. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem. 2020;295(20):6785-97. DOI:10.1074/jbc.RA120.013679
13. FDA approves first treatment for COVID-19 administration (2020) U.S.F.a.D. Available at: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19. Accessed: 28.06.2022
14. Gupta AK, Parker BM, Priyadarshi V, Parker J. Cardiac adverse events with remdesivir in COVID-19 infection. Cureus. 2020;12(10):e11132. DOI:10.7759/cureus.11132
15. Gubitosa JC, Kakar P, Gerula C, et al. Marked sinus bradycardia associated with remdesivir in COVID-19: a case and literature review. JACC Case Rep. 2020;2(14):2260-4. DOI:10.1016/j.jaccas.2020.08.025
16. Day LB, Abdel-Qadir H, Fralick M. Bradycardia associated with remdesivir therapy for COVID-19 in a 59-year-old man. CMAJ. 2021;193(17):E612-5. DOI:10.1503/cmaj.210300
17. Barkas F, Styla CP, Bechlioulis A, et al. Sinus bradycardia associated with remdesivir treatment in COVID-19: a case report and literature review. J Cardiovasc Dev Dis. 2021;8(2):18.
DOI:10.3390/jcdd8020018
18. Attena E, Albani S, Maraolo AE, et al. Remdesivir-induced bradycardia in COVID-19: a single center prospective study. Circ Arrhythm Electrophysiol. 2021;14(7):e009811. DOI:10.1161/CIRCEP.121.009811
19. Gupte V, Hegde R, Sawant S, et al. Safety and clinical outcomes of remdesivir in hospitalised COVID-19 patients: a retrospective analysis of active surveillance database. BMC Infect Dis. 2022;22:1. DOI:10.1186/s12879-021-07004-8
20. Rafaniello C, Ferrajolo C, Sullo MG, et al. Cardiac events potentially associated to remdesivir: an analysis from the European Spontaneous Adverse Event Reporting System. Pharmaceuticals (Basel). 2021;14(7):611. DOI:10.3390/ph14070611
21. Pimentel J, Laurie C, Cockcroft A, Andersson N. Clinical studies assessing the efficacy, effectiveness and safety of remdesivir in management of COVID-19: a scoping review. Br J Clin Pharmacol. 2021;87(7):2663-84. DOI:10.1111/bcp.14677
22. Jung SY, Kim MS, Li H, et al. Cardiovascular events and safety outcomes associated with remdesivir using a World Health Organization international pharmacovigilance database. Clin Transl Sci. 2022;15(2):501-13. DOI:10.1111/cts.13168
23. Choi SW, Shin JS, Park SJ, et al. Antiviral activity and safety of remdesivir against SARS‐CoV‐2 infection in human pluripotent stem cell‐derived cardiomyocytes. Antiviral Res. 2020;184:104955. DOI:10.1016/j.antiviral.2020.104955
24. Nabati M, Parsaee H. Potential cardiotoxic effects of remdesivir on cardiovascular system:a literature review. Cardiovasc Toxicol. 2022;22(3):268-72.
DOI:10.1007/s12012-021-09703-9
25. Silva NAO, Zara ALSA, Figueras A, Melo DO. Potential kidney damage associated with the use of remdesivir for COVID-19: analysis of a pharmacovigilance database. Cad Saude Publica. 2021;37(10):e00077721. DOI:10.1590/0102-311X00077721
26. European Medicines Agency. Meeting highlights from the Pharmacovigilance Risk Assessment Committee (PRAC) 28 September – 1 October 2020. Available at: https://www.ema.europa.eu/en/news/meeting-highlights-pharmacovigilance-risk-assessment-committee-pra.... Accessed: 28.06.2022
27. Gérard AO, Laurain A, Fresse A, et al. Remdesivir and acute renal failure: a potential safety signal fromdDisproportionality analysis of the WHO safety database. Clin Pharmacol Ther. 2021;109(4):1021-4. DOI:10.1002/cpt.2145
28. Lee S, Yang JW, Jung SY, et al. Neuropsychological adverse drug reactions of Remdesivir: analysis using VigiBase, the WHO global database of individual case safety reports. Eur Rev Med Pharmacol Sci. 2021;25(23):7390-7. DOI:10.26355/eurrev_202112_27435
29. Agrawal U, Raju R, Udwadia ZF. Favipiravir:aA new and emerging antiviral option in COVID-19. Med J Armed Forces India. 2020;76(4):370-6. DOI:10.1016/j.mjafi.2020.08.004
30. Hase R, Kurata R, Ishida K, et al. Acute gouty arthritis during favipiravir treatment for coronavirus disease 2019. Intern Med. 2020;59(18):2327-9.
DOI:10.2169/internalmedicine.5377-20
31. Udwadia ZF, Singh P, Barkate H, et al. Efficacy and safety of favipiravir, an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19: a randomized, comparative, open-label, multicenter, phase 3 clinical trial. Int J Infect Dis. 2021;103:62-71. DOI:10.1016/j.ijid.2020.11.142
32. Pilkington V, Pepperrell T, Hill A. A review of the safety of favipiravir – a potential treatment in the COVID-19 pandemic? J Virus Erad. 2020;6(2):45-51.
DOI:10.1016/S2055-6640(20)30016-9
33. Zhao H, Zhang C, Zhu Q, et al. Favipiravir in the treatment of patients with SARS-CoV-2 RNA recurrent positive after discharge: A multicenter, open-label, randomized trial. Int Immunopharmacol. 2021;97:107702. DOI:10.1016/j.intimp.2021.107702
34. Yamazaki S, Suzuki T, Sayama M, et al. Suspected cholestatic liver injury induced by favipiravir in a patient with COVID-19. J Infect Chemother. 2021;27(2):390-2. DOI:10.1016/j.jiac.2020.12.021
35. Nasa P, Shrivastava PK, Kulkarni A, et al. Favipiravir induced nephrotoxicity in two patients of COVID-19. J Assoc Physicians India. 2021;69(6):11-2.
36. Shrestha DB, Budhathoki P, Khadka S, et al. Favipiravir versus other antiviral or standard of care for COVID-19 treatment: a rapid systematic review and meta-analysis. Virol J. 2020;17(1):141. DOI:10.1186/s12985-020-01412-z
37. Hassanipour S, Arab-Zozani M, Amani B, et al. The efficacy and safety of favipiravir in treatment of COVID-19: a systematic review and meta-analysis of clinical trials. Sci Rep. 2021;11:11022. DOI:10.1038/s41598-021-90551-6
38. Hung DT, Ghula S, Aziz JMA, et al. The efficacy and adverse effects of favipiravir on patients with COVID-19: a systematic review and meta-analysis of published clinical trials and observational studies. Int J Infect Dis. 2022;120:217-27. DOI:10.1016/j.ijid.2022.04.035
39. Kaur RJ, Charan J, Dutta S, et al. Favipiravir use in COVID-19: analysis of suspected adverse drug events reported in the WHO database. Infect Drug Resist. 2020;13:4427-38. DOI:10.2147/IDR.S287934
40. Qu J, Li GH, Wang JJ, et al. Comparative effectiveness of lopinavir/ritonavir-based regimens in COVID-19. Clin Exp Pharmacol Physiol. 2021;48(2):203-10.
DOI:10.1111/1440-1681.13425
41. Magro P, Zanella I, Pescarolo M, et al. Lopinavir/ritonavir: repurposing an old drug for HIV infection in COVID-19 treatment. Biomed. J. 2021;44(1):43-53. DOI:10.1016/j.bj.2020.11.005
42. Cao B, Wang Y, Wen D, et al. Trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382(19):1787-99. DOI:10.1056/NEJMoa2001282
43. Li Y, Xie Z, Lin W, et al. Efficacy and safety of lopinavir/ritonavir or arbidol in adult patients with mild/moderate COVID-19: an exploratory randomized controlled trial. Med (N Y). 2020;1(1):105-13.e4. DOI:10.1016/j.medj.2020.04.001
44. Liu F, Xu A, Zhang Y, et al. Patients of COVID-19 may benefit from sustained lopinavir-combined regimen and the increase of eosinophil may predict the outcome of COVID-19 progression. Int J Infect Dis. 2020;95:183-91. DOI:10.1016/j.ijid.2020.03.013
45. Diaz-Arocutipa C, Brañez-Condorena A, Hernandez AV. QTc prolongation in COVID-19 patients treated with hydroxychloroquine, chloroquine, azithromycin, or lopinavir/ritonavir: a systematic review and meta-analysis. Pharmacoepidemiol Drug Saf. 2021;30(6):694-706. DOI:10.1002/pds.5234
46. Liu W, Zhou P, Chen K, et al. Efficacy and safety of antiviral treatment for COVID-19 from evidence in studies of SARS-CoV-2 and other acute viral infections: a systematic review and meta-analysis. CMAJ. 2020;192(27):E734-44. DOI:10.1503/cmaj.200647
47. Bhattacharyya A, Kumar S, Sarma P, et al. Safety and efficacy of lopinavir/ritonavir combination in COVID-19: a systematic review, meta-analysis, and meta-regression analysis. Indian J Pharmacol. 2020;52(4):313-23. DOI:10.4103/ijp.IJP_627_20
48. Deng J, Zhou F, Hou W, et al. Efficacy of lopinavir–ritonavir combination therapy for the treatment of hospitalized COVID-19 patients: a meta-analysis. Future Virol. 2022;17(3):169-89. DOI:10.2217/fvl-2021-0066
49. Khalili JS, Zhu H, Mak NSA, et al. Novel coronavirus treatment with ribavirin: groundwork for an evaluation concerning COVID‐19. J Med Virol. 2020;92:740-6. DOI:10.1002/jmv.25798
50. Muller MP, Dresser L, Raboud J, et al. Canadian SARS Research Network. Adverse events associated with high-dose ribavirin: evidence from the Toronto outbreak of severe acute respiratory syndrome. Pharmacotherapy. 2007;27(4):494-503. DOI:10.1592/phco.27.4.494
51. Zhong H, Wang Y, Zhang ZL, et al. Efficacy and safety of current therapeutic options for COVID-19 – lessons to be learnt from SARS and MERS epidemic: a systematic review and meta-analysis. Pharmacol Res. 2020;157:104872. DOI:10.1016/j.phrs.2020.104872
2. World Health Organization. 14.9 million excess deaths associated with the COVID-19 pandemic in 2020 and 2021. Published 5 May 2022. Available at: https://www.who.int/news/item/05-05-2022-14.9-million-excess-deaths-were-associated-with-the-covid-1.... Accessed: 28.06.2022
3. Singh TU, Parida S, Lingaraju MC, et al. Drug repurposing approach to fight COVID-19. Pharmacol Rep. 2020;72:1479-508. DOI:10.1007/s43440-020-00155-6
4. Desai MK. Pharmacovigilance and assessment of drug safety reports during COVID 19. Perspect Clin Res. 2020;11(3):128. DOI:10.4103/picr.PICR_171_20
5. U.S. Food and Drug Administration Coronavirus (COVID-19) Update: Daily Roundup March 30, 2020. Available at: https://www.fda.gov/news-events/pressannouncements/coronavirus-covid-19-update-dailyroundup-march-30.... Accessed: 28.06.2022
6. Li X, Wang Y, Agostinis P, et al. Is hydroxychloroquine beneficial for COVID-19 patients?. Cell Death Dis. 2020;11:512. DOI:10.1038/s41419-020-2721-8
7. Zengin R, Sarikaya ZT, Karadağ N, et al. Adverse cardiac events related to hydroxychloroquine prophylaxis and treatment of COVID-19. Infect Dis Clin Microbiol. 2020;2(1):24-6. DOI:10.36519/idcm.2020.0012
8. Jankelson L, Karam G, Becker ML, et al. QT prolongation, torsades de pointes, and sudden death with short courses of chloroquine or hydroxychloroquine as used in COVID-19: a systematic review. Heart Rhythm. 2020;17(9):1472-9. DOI:10.1016/j.hrthm.2020.05.008
9. Deng J, Zhou F, Heybati K, et al. Efficacy of chloroquine and hydroxychloroquine for the treatment of hospitalized COVID-19 patients: a meta-analysis. Future Virol. 2022;17(4):95-118. DOI:10.2217/fvl-2021-0119
10. Eze P, Mezue KN, Nduka CU, et al. Efficacy and safety of chloroquine and hydroxychloroquine for treatment of COVID-19 patients-a systematic review and meta-analysis of randomized controlled trials. Am J Cardiovasc Dis. 2021;11(1):93-107. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012280/. Accessed: 28.06.2022
11. Marin S, Val AM, Peligero MB, et al. Safety of short-term treatments with oral chloroquine and hydroxychloroquine in patients with and without COVID-19: a systematic review. Pharmaceuticals (Basel). 2022;15(5):634. DOI:10.3390/ph15050634
12. Gordon CJ, Tchesnokov EP, Woolner E, et al. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem. 2020;295(20):6785-97. DOI:10.1074/jbc.RA120.013679
13. FDA approves first treatment for COVID-19 administration (2020) U.S.F.a.D. Available at: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19. Accessed: 28.06.2022
14. Gupta AK, Parker BM, Priyadarshi V, Parker J. Cardiac adverse events with remdesivir in COVID-19 infection. Cureus. 2020;12(10):e11132. DOI:10.7759/cureus.11132
15. Gubitosa JC, Kakar P, Gerula C, et al. Marked sinus bradycardia associated with remdesivir in COVID-19: a case and literature review. JACC Case Rep. 2020;2(14):2260-4. DOI:10.1016/j.jaccas.2020.08.025
16. Day LB, Abdel-Qadir H, Fralick M. Bradycardia associated with remdesivir therapy for COVID-19 in a 59-year-old man. CMAJ. 2021;193(17):E612-5. DOI:10.1503/cmaj.210300
17. Barkas F, Styla CP, Bechlioulis A, et al. Sinus bradycardia associated with remdesivir treatment in COVID-19: a case report and literature review. J Cardiovasc Dev Dis. 2021;8(2):18.
DOI:10.3390/jcdd8020018
18. Attena E, Albani S, Maraolo AE, et al. Remdesivir-induced bradycardia in COVID-19: a single center prospective study. Circ Arrhythm Electrophysiol. 2021;14(7):e009811. DOI:10.1161/CIRCEP.121.009811
19. Gupte V, Hegde R, Sawant S, et al. Safety and clinical outcomes of remdesivir in hospitalised COVID-19 patients: a retrospective analysis of active surveillance database. BMC Infect Dis. 2022;22:1. DOI:10.1186/s12879-021-07004-8
20. Rafaniello C, Ferrajolo C, Sullo MG, et al. Cardiac events potentially associated to remdesivir: an analysis from the European Spontaneous Adverse Event Reporting System. Pharmaceuticals (Basel). 2021;14(7):611. DOI:10.3390/ph14070611
21. Pimentel J, Laurie C, Cockcroft A, Andersson N. Clinical studies assessing the efficacy, effectiveness and safety of remdesivir in management of COVID-19: a scoping review. Br J Clin Pharmacol. 2021;87(7):2663-84. DOI:10.1111/bcp.14677
22. Jung SY, Kim MS, Li H, et al. Cardiovascular events and safety outcomes associated with remdesivir using a World Health Organization international pharmacovigilance database. Clin Transl Sci. 2022;15(2):501-13. DOI:10.1111/cts.13168
23. Choi SW, Shin JS, Park SJ, et al. Antiviral activity and safety of remdesivir against SARS‐CoV‐2 infection in human pluripotent stem cell‐derived cardiomyocytes. Antiviral Res. 2020;184:104955. DOI:10.1016/j.antiviral.2020.104955
24. Nabati M, Parsaee H. Potential cardiotoxic effects of remdesivir on cardiovascular system:a literature review. Cardiovasc Toxicol. 2022;22(3):268-72.
DOI:10.1007/s12012-021-09703-9
25. Silva NAO, Zara ALSA, Figueras A, Melo DO. Potential kidney damage associated with the use of remdesivir for COVID-19: analysis of a pharmacovigilance database. Cad Saude Publica. 2021;37(10):e00077721. DOI:10.1590/0102-311X00077721
26. European Medicines Agency. Meeting highlights from the Pharmacovigilance Risk Assessment Committee (PRAC) 28 September – 1 October 2020. Available at: https://www.ema.europa.eu/en/news/meeting-highlights-pharmacovigilance-risk-assessment-committee-pra.... Accessed: 28.06.2022
27. Gérard AO, Laurain A, Fresse A, et al. Remdesivir and acute renal failure: a potential safety signal fromdDisproportionality analysis of the WHO safety database. Clin Pharmacol Ther. 2021;109(4):1021-4. DOI:10.1002/cpt.2145
28. Lee S, Yang JW, Jung SY, et al. Neuropsychological adverse drug reactions of Remdesivir: analysis using VigiBase, the WHO global database of individual case safety reports. Eur Rev Med Pharmacol Sci. 2021;25(23):7390-7. DOI:10.26355/eurrev_202112_27435
29. Agrawal U, Raju R, Udwadia ZF. Favipiravir:aA new and emerging antiviral option in COVID-19. Med J Armed Forces India. 2020;76(4):370-6. DOI:10.1016/j.mjafi.2020.08.004
30. Hase R, Kurata R, Ishida K, et al. Acute gouty arthritis during favipiravir treatment for coronavirus disease 2019. Intern Med. 2020;59(18):2327-9.
DOI:10.2169/internalmedicine.5377-20
31. Udwadia ZF, Singh P, Barkate H, et al. Efficacy and safety of favipiravir, an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19: a randomized, comparative, open-label, multicenter, phase 3 clinical trial. Int J Infect Dis. 2021;103:62-71. DOI:10.1016/j.ijid.2020.11.142
32. Pilkington V, Pepperrell T, Hill A. A review of the safety of favipiravir – a potential treatment in the COVID-19 pandemic? J Virus Erad. 2020;6(2):45-51.
DOI:10.1016/S2055-6640(20)30016-9
33. Zhao H, Zhang C, Zhu Q, et al. Favipiravir in the treatment of patients with SARS-CoV-2 RNA recurrent positive after discharge: A multicenter, open-label, randomized trial. Int Immunopharmacol. 2021;97:107702. DOI:10.1016/j.intimp.2021.107702
34. Yamazaki S, Suzuki T, Sayama M, et al. Suspected cholestatic liver injury induced by favipiravir in a patient with COVID-19. J Infect Chemother. 2021;27(2):390-2. DOI:10.1016/j.jiac.2020.12.021
35. Nasa P, Shrivastava PK, Kulkarni A, et al. Favipiravir induced nephrotoxicity in two patients of COVID-19. J Assoc Physicians India. 2021;69(6):11-2.
36. Shrestha DB, Budhathoki P, Khadka S, et al. Favipiravir versus other antiviral or standard of care for COVID-19 treatment: a rapid systematic review and meta-analysis. Virol J. 2020;17(1):141. DOI:10.1186/s12985-020-01412-z
37. Hassanipour S, Arab-Zozani M, Amani B, et al. The efficacy and safety of favipiravir in treatment of COVID-19: a systematic review and meta-analysis of clinical trials. Sci Rep. 2021;11:11022. DOI:10.1038/s41598-021-90551-6
38. Hung DT, Ghula S, Aziz JMA, et al. The efficacy and adverse effects of favipiravir on patients with COVID-19: a systematic review and meta-analysis of published clinical trials and observational studies. Int J Infect Dis. 2022;120:217-27. DOI:10.1016/j.ijid.2022.04.035
39. Kaur RJ, Charan J, Dutta S, et al. Favipiravir use in COVID-19: analysis of suspected adverse drug events reported in the WHO database. Infect Drug Resist. 2020;13:4427-38.
DOI:10.2147/IDR.S287934
40. Qu J, Li GH, Wang JJ, et al. Comparative effectiveness of lopinavir/ritonavir-based regimens in COVID-19. Clin Exp Pharmacol Physiol. 2021;48(2):203-10.
DOI:10.1111/1440-1681.13425
41. Magro P, Zanella I, Pescarolo M, et al. Lopinavir/ritonavir: repurposing an old drug for HIV infection in COVID-19 treatment. Biomed. J. 2021;44(1):43-53. DOI:10.1016/j.bj.2020.11.005
42. Cao B, Wang Y, Wen D, et al. Trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382(19):1787-99. DOI:10.1056/NEJMoa2001282
43. Li Y, Xie Z, Lin W, et al. Efficacy and safety of lopinavir/ritonavir or arbidol in adult patients with mild/moderate COVID-19: an exploratory randomized controlled trial. Med (N Y). 2020;1(1):105-13.e4. DOI:10.1016/j.medj.2020.04.001
44. Liu F, Xu A, Zhang Y, et al. Patients of COVID-19 may benefit from sustained lopinavir-combined regimen and the increase of eosinophil may predict the outcome of COVID-19 progression. Int J Infect Dis. 2020;95:183-91. DOI:10.1016/j.ijid.2020.03.013
45. Diaz-Arocutipa C, Brañez-Condorena A, Hernandez AV. QTc prolongation in COVID-19 patients treated with hydroxychloroquine, chloroquine, azithromycin, or lopinavir/ritonavir: a systematic review and meta-analysis. Pharmacoepidemiol Drug Saf. 2021;30(6):694-706. DOI:10.1002/pds.5234
46. Liu W, Zhou P, Chen K, et al. Efficacy and safety of antiviral treatment for COVID-19 from evidence in studies of SARS-CoV-2 and other acute viral infections: a systematic review and meta-analysis. CMAJ. 2020;192(27):E734-44. DOI:10.1503/cmaj.200647
47. Bhattacharyya A, Kumar S, Sarma P, et al. Safety and efficacy of lopinavir/ritonavir combination in COVID-19: a systematic review, meta-analysis, and meta-regression analysis. Indian J Pharmacol. 2020;52(4):313-23. DOI:10.4103/ijp.IJP_627_20
48. Deng J, Zhou F, Hou W, et al. Efficacy of lopinavir–ritonavir combination therapy for the treatment of hospitalized COVID-19 patients: a meta-analysis. Future Virol. 2022;17(3):169-89. DOI:10.2217/fvl-2021-0066
49. Khalili JS, Zhu H, Mak NSA, et al. Novel coronavirus treatment with ribavirin: groundwork for an evaluation concerning COVID‐19. J Med Virol. 2020;92:740-6. DOI:10.1002/jmv.25798
50. Muller MP, Dresser L, Raboud J, et al. Canadian SARS Research Network. Adverse events associated with high-dose ribavirin: evidence from the Toronto outbreak of severe acute respiratory syndrome. Pharmacotherapy. 2007;27(4):494-503. DOI:10.1592/phco.27.4.494
51. Zhong H, Wang Y, Zhang ZL, et al. Efficacy and safety of current therapeutic options for COVID-19 – lessons to be learnt from SARS and MERS epidemic: a systematic review and meta-analysis. Pharmacol Res. 2020;157:104872. DOI:10.1016/j.phrs.2020.104872
________________________________________________
2. World Health Organization. 14.9 million excess deaths associated with the COVID-19 pandemic in 2020 and 2021. Published 5 May 2022. Available at: https://www.who.int/news/item/05-05-2022-14.9-million-excess-deaths-were-associated-with-the-covid-1.... Accessed: 28.06.2022
3. Singh TU, Parida S, Lingaraju MC, et al. Drug repurposing approach to fight COVID-19. Pharmacol Rep. 2020;72:1479-508. DOI:10.1007/s43440-020-00155-6
4. Desai MK. Pharmacovigilance and assessment of drug safety reports during COVID 19. Perspect Clin Res. 2020;11(3):128. DOI:10.4103/picr.PICR_171_20
5. U.S. Food and Drug Administration Coronavirus (COVID-19) Update: Daily Roundup March 30, 2020. Available at: https://www.fda.gov/news-events/pressannouncements/coronavirus-covid-19-update-dailyroundup-march-30.... Accessed: 28.06.2022
6. Li X, Wang Y, Agostinis P, et al. Is hydroxychloroquine beneficial for COVID-19 patients?. Cell Death Dis. 2020;11:512. DOI:10.1038/s41419-020-2721-8
7. Zengin R, Sarikaya ZT, Karadağ N, et al. Adverse cardiac events related to hydroxychloroquine prophylaxis and treatment of COVID-19. Infect Dis Clin Microbiol. 2020;2(1):24-6. DOI:10.36519/idcm.2020.0012
8. Jankelson L, Karam G, Becker ML, et al. QT prolongation, torsades de pointes, and sudden death with short courses of chloroquine or hydroxychloroquine as used in COVID-19: a systematic review. Heart Rhythm. 2020;17(9):1472-9. DOI:10.1016/j.hrthm.2020.05.008
9. Deng J, Zhou F, Heybati K, et al. Efficacy of chloroquine and hydroxychloroquine for the treatment of hospitalized COVID-19 patients: a meta-analysis. Future Virol. 2022;17(4):95-118. DOI:10.2217/fvl-2021-0119
10. Eze P, Mezue KN, Nduka CU, et al. Efficacy and safety of chloroquine and hydroxychloroquine for treatment of COVID-19 patients-a systematic review and meta-analysis of randomized controlled trials. Am J Cardiovasc Dis. 2021;11(1):93-107. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012280/. Accessed: 28.06.2022
11. Marin S, Val AM, Peligero MB, et al. Safety of short-term treatments with oral chloroquine and hydroxychloroquine in patients with and without COVID-19: a systematic review. Pharmaceuticals (Basel). 2022;15(5):634. DOI:10.3390/ph15050634
12. Gordon CJ, Tchesnokov EP, Woolner E, et al. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem. 2020;295(20):6785-97. DOI:10.1074/jbc.RA120.013679
13. FDA approves first treatment for COVID-19 administration (2020) U.S.F.a.D. Available at: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19. Accessed: 28.06.2022
14. Gupta AK, Parker BM, Priyadarshi V, Parker J. Cardiac adverse events with remdesivir in COVID-19 infection. Cureus. 2020;12(10):e11132. DOI:10.7759/cureus.11132
15. Gubitosa JC, Kakar P, Gerula C, et al. Marked sinus bradycardia associated with remdesivir in COVID-19: a case and literature review. JACC Case Rep. 2020;2(14):2260-4. DOI:10.1016/j.jaccas.2020.08.025
16. Day LB, Abdel-Qadir H, Fralick M. Bradycardia associated with remdesivir therapy for COVID-19 in a 59-year-old man. CMAJ. 2021;193(17):E612-5. DOI:10.1503/cmaj.210300
17. Barkas F, Styla CP, Bechlioulis A, et al. Sinus bradycardia associated with remdesivir treatment in COVID-19: a case report and literature review. J Cardiovasc Dev Dis. 2021;8(2):18.
DOI:10.3390/jcdd8020018
18. Attena E, Albani S, Maraolo AE, et al. Remdesivir-induced bradycardia in COVID-19: a single center prospective study. Circ Arrhythm Electrophysiol. 2021;14(7):e009811. DOI:10.1161/CIRCEP.121.009811
19. Gupte V, Hegde R, Sawant S, et al. Safety and clinical outcomes of remdesivir in hospitalised COVID-19 patients: a retrospective analysis of active surveillance database. BMC Infect Dis. 2022;22:1. DOI:10.1186/s12879-021-07004-8
20. Rafaniello C, Ferrajolo C, Sullo MG, et al. Cardiac events potentially associated to remdesivir: an analysis from the European Spontaneous Adverse Event Reporting System. Pharmaceuticals (Basel). 2021;14(7):611. DOI:10.3390/ph14070611
21. Pimentel J, Laurie C, Cockcroft A, Andersson N. Clinical studies assessing the efficacy, effectiveness and safety of remdesivir in management of COVID-19: a scoping review. Br J Clin Pharmacol. 2021;87(7):2663-84. DOI:10.1111/bcp.14677
22. Jung SY, Kim MS, Li H, et al. Cardiovascular events and safety outcomes associated with remdesivir using a World Health Organization international pharmacovigilance database. Clin Transl Sci. 2022;15(2):501-13. DOI:10.1111/cts.13168
23. Choi SW, Shin JS, Park SJ, et al. Antiviral activity and safety of remdesivir against SARS‐CoV‐2 infection in human pluripotent stem cell‐derived cardiomyocytes. Antiviral Res. 2020;184:104955. DOI:10.1016/j.antiviral.2020.104955
24. Nabati M, Parsaee H. Potential cardiotoxic effects of remdesivir on cardiovascular system:a literature review. Cardiovasc Toxicol. 2022;22(3):268-72.
DOI:10.1007/s12012-021-09703-9
25. Silva NAO, Zara ALSA, Figueras A, Melo DO. Potential kidney damage associated with the use of remdesivir for COVID-19: analysis of a pharmacovigilance database. Cad Saude Publica. 2021;37(10):e00077721. DOI:10.1590/0102-311X00077721
26. European Medicines Agency. Meeting highlights from the Pharmacovigilance Risk Assessment Committee (PRAC) 28 September – 1 October 2020. Available at: https://www.ema.europa.eu/en/news/meeting-highlights-pharmacovigilance-risk-assessment-committee-pra.... Accessed: 28.06.2022
27. Gérard AO, Laurain A, Fresse A, et al. Remdesivir and acute renal failure: a potential safety signal fromdDisproportionality analysis of the WHO safety database. Clin Pharmacol Ther. 2021;109(4):1021-4. DOI:10.1002/cpt.2145
28. Lee S, Yang JW, Jung SY, et al. Neuropsychological adverse drug reactions of Remdesivir: analysis using VigiBase, the WHO global database of individual case safety reports. Eur Rev Med Pharmacol Sci. 2021;25(23):7390-7. DOI:10.26355/eurrev_202112_27435
29. Agrawal U, Raju R, Udwadia ZF. Favipiravir:aA new and emerging antiviral option in COVID-19. Med J Armed Forces India. 2020;76(4):370-6. DOI:10.1016/j.mjafi.2020.08.004
30. Hase R, Kurata R, Ishida K, et al. Acute gouty arthritis during favipiravir treatment for coronavirus disease 2019. Intern Med. 2020;59(18):2327-9.
DOI:10.2169/internalmedicine.5377-20
31. Udwadia ZF, Singh P, Barkate H, et al. Efficacy and safety of favipiravir, an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19: a randomized, comparative, open-label, multicenter, phase 3 clinical trial. Int J Infect Dis. 2021;103:62-71. DOI:10.1016/j.ijid.2020.11.142
32. Pilkington V, Pepperrell T, Hill A. A review of the safety of favipiravir – a potential treatment in the COVID-19 pandemic? J Virus Erad. 2020;6(2):45-51.
DOI:10.1016/S2055-6640(20)30016-9
33. Zhao H, Zhang C, Zhu Q, et al. Favipiravir in the treatment of patients with SARS-CoV-2 RNA recurrent positive after discharge: A multicenter, open-label, randomized trial. Int Immunopharmacol. 2021;97:107702. DOI:10.1016/j.intimp.2021.107702
34. Yamazaki S, Suzuki T, Sayama M, et al. Suspected cholestatic liver injury induced by favipiravir in a patient with COVID-19. J Infect Chemother. 2021;27(2):390-2. DOI:10.1016/j.jiac.2020.12.021
35. Nasa P, Shrivastava PK, Kulkarni A, et al. Favipiravir induced nephrotoxicity in two patients of COVID-19. J Assoc Physicians India. 2021;69(6):11-2.
36. Shrestha DB, Budhathoki P, Khadka S, et al. Favipiravir versus other antiviral or standard of care for COVID-19 treatment: a rapid systematic review and meta-analysis. Virol J. 2020;17(1):141. DOI:10.1186/s12985-020-01412-z
37. Hassanipour S, Arab-Zozani M, Amani B, et al. The efficacy and safety of favipiravir in treatment of COVID-19: a systematic review and meta-analysis of clinical trials. Sci Rep. 2021;11:11022. DOI:10.1038/s41598-021-90551-6
38. Hung DT, Ghula S, Aziz JMA, et al. The efficacy and adverse effects of favipiravir on patients with COVID-19: a systematic review and meta-analysis of published clinical trials and observational studies. Int J Infect Dis. 2022;120:217-27. DOI:10.1016/j.ijid.2022.04.035
39. Kaur RJ, Charan J, Dutta S, et al. Favipiravir use in COVID-19: analysis of suspected adverse drug events reported in the WHO database. Infect Drug Resist. 2020;13:4427-38. DOI:10.2147/IDR.S287934
40. Qu J, Li GH, Wang JJ, et al. Comparative effectiveness of lopinavir/ritonavir-based regimens in COVID-19. Clin Exp Pharmacol Physiol. 2021;48(2):203-10.
DOI:10.1111/1440-1681.13425
41. Magro P, Zanella I, Pescarolo M, et al. Lopinavir/ritonavir: repurposing an old drug for HIV infection in COVID-19 treatment. Biomed. J. 2021;44(1):43-53. DOI:10.1016/j.bj.2020.11.005
42. Cao B, Wang Y, Wen D, et al. Trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382(19):1787-99. DOI:10.1056/NEJMoa2001282
43. Li Y, Xie Z, Lin W, et al. Efficacy and safety of lopinavir/ritonavir or arbidol in adult patients with mild/moderate COVID-19: an exploratory randomized controlled trial. Med (N Y). 2020;1(1):105-13.e4. DOI:10.1016/j.medj.2020.04.001
44. Liu F, Xu A, Zhang Y, et al. Patients of COVID-19 may benefit from sustained lopinavir-combined regimen and the increase of eosinophil may predict the outcome of COVID-19 progression. Int J Infect Dis. 2020;95:183-91. DOI:10.1016/j.ijid.2020.03.013
45. Diaz-Arocutipa C, Brañez-Condorena A, Hernandez AV. QTc prolongation in COVID-19 patients treated with hydroxychloroquine, chloroquine, azithromycin, or lopinavir/ritonavir: a systematic review and meta-analysis. Pharmacoepidemiol Drug Saf. 2021;30(6):694-706. DOI:10.1002/pds.5234
46. Liu W, Zhou P, Chen K, et al. Efficacy and safety of antiviral treatment for COVID-19 from evidence in studies of SARS-CoV-2 and other acute viral infections: a systematic review and meta-analysis. CMAJ. 2020;192(27):E734-44. DOI:10.1503/cmaj.200647
47. Bhattacharyya A, Kumar S, Sarma P, et al. Safety and efficacy of lopinavir/ritonavir combination in COVID-19: a systematic review, meta-analysis, and meta-regression analysis. Indian J Pharmacol. 2020;52(4):313-23. DOI:10.4103/ijp.IJP_627_20
48. Deng J, Zhou F, Hou W, et al. Efficacy of lopinavir–ritonavir combination therapy for the treatment of hospitalized COVID-19 patients: a meta-analysis. Future Virol. 2022;17(3):169-89. DOI:10.2217/fvl-2021-0066
49. Khalili JS, Zhu H, Mak NSA, et al. Novel coronavirus treatment with ribavirin: groundwork for an evaluation concerning COVID‐19. J Med Virol. 2020;92:740-6. DOI:10.1002/jmv.25798
50. Muller MP, Dresser L, Raboud J, et al. Canadian SARS Research Network. Adverse events associated with high-dose ribavirin: evidence from the Toronto outbreak of severe acute respiratory syndrome. Pharmacotherapy. 2007;27(4):494-503. DOI:10.1592/phco.27.4.494
51. Zhong H, Wang Y, Zhang ZL, et al. Efficacy and safety of current therapeutic options for COVID-19 – lessons to be learnt from SARS and MERS epidemic: a systematic review and meta-analysis. Pharmacol Res. 2020;157:104872. DOI:10.1016/j.phrs.2020.104872
Авторы
М.В. Леонова*
МОО «Ассоциация клинических фармакологов», Волгоград, Россия
*anti23@mail.ru
Association of Clinical Pharmacologists, Volgograd, Russia
*anti23@mail.ru
МОО «Ассоциация клинических фармакологов», Волгоград, Россия
*anti23@mail.ru
________________________________________________
Association of Clinical Pharmacologists, Volgograd, Russia
*anti23@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
