Пути проникновения глюкокортикостероидов из барабанной полости к структурам внутреннего уха
Пути проникновения глюкокортикостероидов из барабанной полости к структурам внутреннего уха
Блинова М.Л., Голованов А.Е., Исаченко В.С. Пути проникновения глюкокортикостероидов из барабанной полости к структурам внутреннего уха. Consilium Medicum. 2022;24(9):626–631.
DOI: 10.26442/20751753.2022.9.201907
Blinova ML, Golovanov AE, Isachenko VS. Ways of penetration of glucocorticosteroids from the tympanic cavity to the structures of the inner ear: A review. Consilium Medicum. 2022;24(9):626–631.
DOI: 10.26442/20751753.2022.9.201907
Пути проникновения глюкокортикостероидов из барабанной полости к структурам внутреннего уха
Блинова М.Л., Голованов А.Е., Исаченко В.С. Пути проникновения глюкокортикостероидов из барабанной полости к структурам внутреннего уха. Consilium Medicum. 2022;24(9):626–631.
DOI: 10.26442/20751753.2022.9.201907
Blinova ML, Golovanov AE, Isachenko VS. Ways of penetration of glucocorticosteroids from the tympanic cavity to the structures of the inner ear: A review. Consilium Medicum. 2022;24(9):626–631.
DOI: 10.26442/20751753.2022.9.201907
На сегодняшний день в отечественной и зарубежной литературе появляется все больше сообщений об успешном применении глюкокортикостероидов для лечения патологии внутреннего уха путем местного – интратимпанального введения. Разрабатывается множество способов доставки лекарственных средств к структурам внутреннего уха. Как известно, системное введение глюкокортикостероидов имеет ряд противопоказаний и большое количество побочных эффектов за счет широкого спектра действия. Экзогенные глюкокортикоиды нарушают естественный баланс гипоталамо-гипофизарно-надпочечниковой системы, вмешиваясь в систему регуляции отрицательной обратной связи, для полного восстановления которого впоследствии требуется длительное время. Интратимпанальный способ введения глюкокортикостероидов позволяет обойти указанные нежелательные эффекты и в то же время оказать желаемое терапевтическое действие на вестибулярные и кохлеарные структуры внутреннего уха. В отношении действия, оказываемого на структуры внутреннего уха, интратимпанальное применение глюкокортикостероидов оказалось более эффективным по сравнению с системным, что связано с наличием гематоперилимфатического барьера, сравниваемого по своей проницаемости с гематоэнцефалическим. Более того, при системном введении для достижения достаточной концентрации препарата в жидкостях внутреннего уха требуются большие дозы стероидов. На сегодняшний день остается достаточно много вопросов в отношении путей, по которым лекарственный препарат проникает к структурам внутреннего уха, принципов распространения препарата внутри кохлеарных жидкостей, а также анатомических препятствий, с которыми можно столкнуться на пути к достижению желаемого терапевтического эффекта. Целью статьи является освещение актуальных на сегодняшний день достижений в области исследований, посвященных путям проникновения лекарственных препаратов, в частности глюкокортикостероидов, к структурам внутреннего уха из барабанной полости.
To date, in domestic and foreign literature, there are more and more reports of the successful use of glucocorticosteroids for the treatment of pathology of the inner ear by local – intratympanic administration. Many methods are being developed to deliver drugs to the structures of the inner ear. As you know, the systemic administration of glucocorticosteroids has a number of contraindications and a large number of side effects, due to a wide spectrum of action. Exogenous glucocorticoids disrupt the natural balance of the hypothalamic-pituitary-adrenal system, interfering with the negative feedback regulation system, which requires a long time to fully restore. The intratympanic method of administering glucocorticosteroids makes it possible to bypass the above undesirable effects and at the same time provide the desired therapeutic effect on the vestibular and cochlear structures of the inner ear. With regard to the effect on the structures of the inner ear, intratympanic use of glucocorticosteroids turned out to be more effective than the systemic one, which is associated with the presence of a hematoperilymphatic barrier, comparable in its permeability to the blood-brain barrier. Moreover, when administered systemically, large doses of steroids are required to achieve a sufficient concentration of the drug in the fluids of the inner ear. To date, many questions remain regarding the routes by which the drug penetrates to the structures of the inner ear, the principles of distribution of the drug within the cochlear fluids, as well as the anatomical obstacles that may be encountered on the way to achieving the desired therapeutic effect. The purpose of this article is to highlight the current achievements in the field of research on the routes of penetration of drugs, in particular glucocorticosteroids, to the structures of the inner ear from the tympanic cavity.
1. Trune DR, Canlon B. Corticosteroid therapy for hearing and balance disorders. Anat Rec (Hoboken). 2012;295(11):1928-43. DOI:10.1002/ar.22576
2. Schuknecht HF. Ablation therapy for the relief of Meniere’s disease. Laryngoscope. 1956;66:859-70.
3. Hoskison E, Daniel M, Al-Zahid S, et al. Drug delivery to the ear. Ther Deliv. 2013;4:115-24.
4. Parnes LS, Sun AH, Freeman DJ. Corticosteroid pharmacokinetics in the inner ear fluids: An animal study followed by clinical application. Laryngoscope. 1999;109:1-17.
5. Kopke RD, Hoffer ME, Wester D, et al. Targeted topical steroid therapy in sudden sensorineural hearing loss. Otol Neurotol. 2001;22:475-9.
6. Chandrasekhar SS. Intratympanic dexamethasone for sudden sensorineural hearing loss: clinical and laboratory evaluation. Otol Neurotol. 2001;22:18-23.
7. Gianoli GJ, Li JC. Transtympanic steroids for treatment of sudden hearing loss. Otolaryngol Head Neck Surg. 2001;125:142-6.
8. Lefebvre PP, Staecker H. Steroid perfusion of the inner ear for sudden sensorineural hearing loss after failure of conventional therapy: a pilot study. Acta Otolaryngol. 2002;122:698-702.
9. Gouveris H, Selivanova O, Mann W. Intratympanic dexamethasone with hyaluronic acid in the treatment of idiopathic sudden sensorineural hearing loss after failure of intravenous steroid and vasoactive therapy. Eur Arch Otorhinolaryngol. 2005;262:131-4.
10. Ho HG, Lin HC, Shu MT, et al. Effectiveness of intratympanic dexamethasone injection in sudden-deafness patients as salvage treatment. Laryngoscope. 2004;114:1184-9.
11. Plontke S, Löwenheim H, Preyer S, et al. Outcomes research analysis of continuous intratympanic glucocorticoid delivery in patients with acute severe to profound hearing loss: basis for planning of randomized controlled trials. Acta Otolaryngol. 2005;125(8):830-9.
12. Itoh A, Sakata E. Treatment of vestibular disorders. Acta Otolaryngol Suppl. 1991;481:617-23.
13. Shea JJ, Ge X. Dexamethasone perfusion of the labyrinth plus intravenous dexamethasone for Meniere’s disease. Otolaryngo Clin North Am. 1996;29:353-8.
14. Silverstein H, Isaacson JE, Olds MJ, et al. Dexamethasone inner ear perfusion for the treatment of Meniere’s disease: a prospective, randomized, double-blind, crossover trial. Am J Otol. 1998;19:196-201.
15. Sennaroglu L, Dini FM, Sennaroğlu G, et al. Transtympanic dexamethasone application in Meniere’s disease: an alternative treatment for intractable vertigo. J Laryngol Otol. 1999;113:217-21.
16. Coles RR, Thompson AC, O'Donoghue GM. Intra-tympanic injections in the treatment of tinnitus. Clin Otolaryngol. 1992;17:240-2.
17. Silverstein H, Choo D, Rosenberg SI, et al. Intratympanic steroid treatment of inner ear disease and tinnitus (preliminary report). Ear Nose Throat J. 1996;75:468-71.
18. Sakata E, Ito Y, Itoh A. Clinical Experiences of Steroid Targeting Therapy to Inner Ear for Control of Tinnitus. Int Tinnitus J. 1997;3:117-21.
19. Shulman A, Goldstein B. Intratympanic drug therapy with steroids for tinnitus control: a preliminary report. Int Tinnitus J. 2000;6:10-20.
20. Cesarani A, Capobianco S, Soi D, et al. Intratympanic dexamethasone treatment for control of subjective idiopathic tinnitus: our clinical experience. Int Tinnitus J. 2002;8:111-4.
21. Ding S, Xie S, Chen W, et al. Is oval window transport a royal gate for nanoparticle delivery to vestibule in the inner ear? Eur J Pharm Sci. 2019;126:11-22. DOI:10.1016/j.ejps.2018.02.031
22. Shirwany NA, Seidman MD, Tang W. Effect of transtympanic injection of steroids on cochlear blood flow, auditory sensitivity, and histology in the guinea pig. Am J Otol. 1998;19:230-5.
23. Yao X, Buhi WC, Alvarez IM, et al. De novo synthesis of glucocorticoid hormone regulated inner ear proteins in rats. Hear Res. 1995;86(1-2):183-8.
DOI:10.1016/0378-5955(95)00069-g
24. Lin DW, Trune DR. Breakdown of stria vascularisbluud-labyrinth barrier in C3H/Ipr autoimmune diseasemice. Otolaryngology. 1997;117(5):530-4.
25. Lamm K, Arnold W. The effect of prednisolone and non-steroidal anti-inflammatory agents on the normal and noise-damaged guinea pig inner ear. Hear Res. 1998;115(1-2):149-61. DOI:10.1016/s0378-5955(97)00186-x
26. Nagura M, Iwasaki S, Wu R, et al. Effects of corticosteroid, contrast medium and ATPon focal microcirculatory disorders of the cochlea. Eur J Pharmacol. 1999;366(1):47-53.
27. Gloddek B, Lamm K, Arnold W. Pharmacologicalinfluence on inner ear endothelial cells in relation to the pathogenesisof sensorineural hearing loss. Adv Otorhinolaringol. 2002;59:75-83.
28. Tabuchi K, Oikawa K, Uemaetomari I, et al. Glucocorticoids and dehydroepiandrosterone sulfate ameliorate ischemia-induced injury of the cochlea. Hear Res. 2003;180(1-2):51-6. DOI:10.1016/s0378-5955(03)00078-9
29. Ohashi M, Ide S, Sawaguchi A, et al. Histochemical localization of the extracellular matrix components in the annular ligament of rat stapediovestibular joint with special reference to fbrillin, 36-kDa microfbril-associated glycoprotein (MAGP-36), and hyaluronic acid. Med Mol Morphol. 2008;4:28-33.
30. Tanaka K, Motomura S. Permeability of the labyrinthine windows in guinea pigs. Arch Otorhinolaryngol. 1981;233:67-73.
31. Salt AN, King EB, Hartsock JJ, et al. Marker entry into vestibular perilymph via the stapes following applications to the round window niche of Guinea pigs. Hear Res. 2012;283:14-23.
32. Goycoolea MV, Lundman L. Round window membrane. Structure function and permeability: a review. Microsc Res Tech. 1997;36:201-11.
33. King EB, Salt AN, Kel GE, et al. Gentamicin administration on the stapes footplate causes greater hearing loss and vestibulotoxicity than round window administration in guinea pigs. Hear Res. 2013;304:159-66.
34. King EB, Salt AN, Eastwood HT, et al. Direct entry of gadolinium into the vestibule following intratympanic applications in Guinea pigs and the influence of cochlear implantation. J Assoc Res Otolaryngol. 2011;12:741-51.
35. Zou J, Poe D, Ramadan UA, Pyykkö I. Oval window transport of Gd-DOTA from rat middle ear to vestibulum and scala vestibuli visualized by in vivo magnetic resonance imaging. Ann Otol Rhinol Laryngol. 2012;121:119-28.
36. Zou J, Pyykko I, Bjelke B, et al. Communication between the perilymphatic scalae and spiral ligament visualized by in vivo MRI. Audiol Neurotol. 2005;10:145-52.
37. Salt AN, Plontke SK. Principles of local drug delivery to the inner ear. Audiol Neurotol. 2009;14(6):350-60. DOI:10.1159/000241892
38. Saijo S, Kimura RS. Distribution of HRP in the inner ear after in- jection into the middle ear cavity. Acta Otolaryngological. 1984;97(5-6):593-610.
39. Carpenter AM, Muchow D, Goycoolea MV. Ultrastructural studies of the human round window membrane. Arch Otolaryngol Head Neck Surg. 1989;115:585-90.
40. Duan Ml, Zhi-Qiang C. Permeability of round window membrane and its role for drug delivery: Our own findings and literature review. J Otol. 2009;4:34-43.
41. Franke K. Freeze fracture aspects of the junctional complexes in the round window membrane. Arch Otolaryngol Head Neck Surg. 1977;217:331e337.
42. Goycoolea MV. Clinical aspects of round window membrane permeability under normal and pathological conditions. Acta Otolaryngol. 2001;121:437-47.
43. Goycoolea MV, Muchow D, Schachern P. Experimental studies on round window structure: Function and permeability. Laryngoscope. 1988;98(6 Pt. 2 Suppl. 44):1-20.
44. Nomura Y. Otological significance of the round window. Adv Oto Rhino Laryngol. 1984;33:1-162.
45. Mikulec AA, Hartsock JJ, Salt AN. Permeability of the round window membrane is influenced by the composition of applied drug solutions and by common surgical procedures. Otol Neurotol. 2008;29:1020e1026.
46. Kelso CM, Watanabe H, Wazen JM, et al. Microperforations significantly enhance diffusion across round window membrane. Otol Neurotol. 2015;36:694e700.
47. Plontke SK, Hartsock JJ, Gill RM, Salt AN. Intracochlear drug injections through the round window membrane: measures to improve drug retention. Audiol Neuro Otol. 2016;21:72e79.
48. MacArthur CJ, Hausman F, Kempton JB, et al. Inner ear tissue remodeling and ion homeostasis gene alteration in murine chronic otitis media. Otol Neurotol. 2013;34:338e346.
49. Jeong SH, Kim Y, Lyu AR, et al. Junctional Modulation of Round Window Membrane Enhances Dexamethasone Uptake into the Inner Ear and Recovery after NIHL. Int J Mol Sci. 2021;22:10061. DOI:10.3390/ijms221810061
50. Silverstein H, Rowan PT, Olds MJ, et al. Inner ear perfusion and the role of round window patency. Am J Otol. 1997;18:586-9.
51. Alzamil KS, Linthicum FH. Extraneous round window membranes and plugs: possible effect on intratympanic therapy. Ann Otol Rhinol Laryngol. 2000;109:30-2.
52. Crane BT, Minor LB, Della Santina CC, et al. Middle ear exploration in patients with Meniere’s disease who have failed outpatient intratympanic gentamicin therapy. Otol Neurotol. 2009;30:619-24.
53. Giepmans BN, van Ijzendoorn SC. Epithelial cell-cell junctions and plasma membrane domains. Biochim Biophys Acta. 2009;1788:820e831.
54. Wangemann P, Marcus DC. Ion and fluid homeostasis in the cochlea. In: Understanding the Cochlea. Springer Handbook of Auditory Research. Eds GA Manly, AW Gummer, AN Popper, RR Fay. 2017;62:253e286.
55. Schnieder EA. A contribution to the physiology of the perilymph. 1. The origins of perilymph. Ann Otol Rhinol Laryngol. 1974;83:76e83.
56. Thalmann I, Comegys TH, Liu SZ, et al. Protein profiles of perilymph and endolymph of the Guinea pig. Hear Res. 1992;63:37-42.
57. Jahnke K, The fine structure of freeze-fractured intercellular junctions in the Guinea pig inner ear. Acta Otolaryngol Suppi Stockh. 1975;336:1e40.
58. Sziklai I, Ferrary E, Horner KC, et al. Time-related alteration of endolymph composition in an experimental model of endolymphatic hydrops. Laryngoscope. 1992;102:431e438.
59. Salt AN, Inamura N, Thalmann R, Vora A. Calcium gradients in inner ear endolymph. Am J Otolaryngol. 1989;10:371e375.
60. Guild SR. The circulation of the endolymph. Am J Anat. 1977;39:57-81.
61. Portmann G. Vertigo. Surgical treatment by opening of the sacculus endolymphaticus. Arch Otolaryngol. 1927;6:309-19.
62. Lawrence M, Wolsk D, Litton WB. Circulation of the inner ear fluids. Ann Otol Rhinol Laryngol. 1961;70:753-76.
63. Naftalin L, Harrison MS. Circulation of labyrinthine fluids. J Larvngol Otol. 1958;72:118-36.
64. Lundquist PG. Aspects on endolymphatic sac morphology and function. Arch Otol Rhinol Laryngol. 1976;212:231-40.
65. Mrdina JE, Drescher DG. The amino-acid content of peril- vniph and cerebrospinal fluid from guinea pig and the cffect of noise on the amino-acid composition of perilymph. Neuroscience. 1981;6:505-59.
66. Manzo RP, Gomez DG, Potts G. Cerebrospinal fluid absorp- tion in the rabbit: inner ear pathway. Acta Otolaryngol. 1990;109:389-96.
67. Salt AN, Ma Y. Quantification of solute entry into cochlear perilymph through the round window membrane. Hear Res. 2001;154:88-97.
68. Salt AN. Simulation of methods for drug delivery to the cochlear fluids. Adv Otorhinolaryngol. 2002;59:140-8.
69. Hobbie RK. Intermediate Physics for Medicine and Biology. Springer; New York: 1997, p. 85-90.
70. Ohyama K, Salt AN, Thalmann R. Volume flow rate of perilymph in the guinea-pig cochlea. Hear Res. 1988;35:119-29.
71. Salt AN, Ohyama K, Thalmann R. Radial communication between the perilymphatic scalae of the cochlea. II: Estimation by bolus injection of tracer into the sealed cochlea. Hear Res. 1991;56:37-43.
72. Plontke S, Wood AW, Salt AN. Analysis of gentamicin kinetics in fluids of the inner ear with round window administration. Otol Neurotol. 2002;23:967-74.
73. Salt AN, Thalmann R, Marcus DC, Bohne BA. Direct measurement of longitudinal endolymph flow rate in the guinea pig cochlea. Hear Res. 1986;23:141-51.
74. Plontke SK, Salt AN. Quantitative interpretation of corticosteroid pharmacokinetics in inner ear fluids using computer simulations. Hear Res. 2003;182:34-42.
75. Stöver T, Yagi M, Raphael Y. Cochlear gene transfer: round window versus cochleostomy inoculation. Hear Res. 1999;136:124-30.
76. Laurell G, Teixeira M, Sterkers O, et al. Local administration of antioxidants to the inner ear. Kinetics and distribution(1). Hear Res. 2002;173:198-209.
77. Balough BJ, Hoffer ME, Wester D, et al. Kinetics of gentamicin uptake in the inner ear of Chinchilla langier after middle-ear administration in a sustained-release vehicle. Otolaryngol Head Neck Surg. 1998;119:427-31.
78. Hoffer ME, Balough BJ, Kopke RD, et al. Morphologic changes in the inner ear of chinchilla laniger after middle ear administration of gentamicin in a sustained-release vehicle. Otolaryngo Head Neck Surg. 1999;120:643-8.
79. Chandrasekhar SS, Tsai Do BS, Schwartz SR, et al. Clinical practice guideline: Sudden hearing loss (update). Otolaryngol Head Neck Surg. 2019;161(Suppl. S1):S1-45.
________________________________________________
1. Trune DR, Canlon B. Corticosteroid therapy for hearing and balance disorders. Anat Rec (Hoboken). 2012;295(11):1928-43. DOI:10.1002/ar.22576
2. Schuknecht HF. Ablation therapy for the relief of Meniere’s disease. Laryngoscope. 1956;66:859-70.
3. Hoskison E, Daniel M, Al-Zahid S, et al. Drug delivery to the ear. Ther Deliv. 2013;4:115-24.
4. Parnes LS, Sun AH, Freeman DJ. Corticosteroid pharmacokinetics in the inner ear fluids: An animal study followed by clinical application. Laryngoscope. 1999;109:1-17.
5. Kopke RD, Hoffer ME, Wester D, et al. Targeted topical steroid therapy in sudden sensorineural hearing loss. Otol Neurotol. 2001;22:475-9.
6. Chandrasekhar SS. Intratympanic dexamethasone for sudden sensorineural hearing loss: clinical and laboratory evaluation. Otol Neurotol. 2001;22:18-23.
7. Gianoli GJ, Li JC. Transtympanic steroids for treatment of sudden hearing loss. Otolaryngol Head Neck Surg. 2001;125:142-6.
8. Lefebvre PP, Staecker H. Steroid perfusion of the inner ear for sudden sensorineural hearing loss after failure of conventional therapy: a pilot study. Acta Otolaryngol. 2002;122:698-702.
9. Gouveris H, Selivanova O, Mann W. Intratympanic dexamethasone with hyaluronic acid in the treatment of idiopathic sudden sensorineural hearing loss after failure of intravenous steroid and vasoactive therapy. Eur Arch Otorhinolaryngol. 2005;262:131-4.
10. Ho HG, Lin HC, Shu MT, et al. Effectiveness of intratympanic dexamethasone injection in sudden-deafness patients as salvage treatment. Laryngoscope. 2004;114:1184-9.
11. Plontke S, Löwenheim H, Preyer S, et al. Outcomes research analysis of continuous intratympanic glucocorticoid delivery in patients with acute severe to profound hearing loss: basis for planning of randomized controlled trials. Acta Otolaryngol. 2005;125(8):830-9.
12. Itoh A, Sakata E. Treatment of vestibular disorders. Acta Otolaryngol Suppl. 1991;481:617-23.
13. Shea JJ, Ge X. Dexamethasone perfusion of the labyrinth plus intravenous dexamethasone for Meniere’s disease. Otolaryngo Clin North Am. 1996;29:353-8.
14. Silverstein H, Isaacson JE, Olds MJ, et al. Dexamethasone inner ear perfusion for the treatment of Meniere’s disease: a prospective, randomized, double-blind, crossover trial. Am J Otol. 1998;19:196-201.
15. Sennaroglu L, Dini FM, Sennaroğlu G, et al. Transtympanic dexamethasone application in Meniere’s disease: an alternative treatment for intractable vertigo. J Laryngol Otol. 1999;113:217-21.
16. Coles RR, Thompson AC, O'Donoghue GM. Intra-tympanic injections in the treatment of tinnitus. Clin Otolaryngol. 1992;17:240-2.
17. Silverstein H, Choo D, Rosenberg SI, et al. Intratympanic steroid treatment of inner ear disease and tinnitus (preliminary report). Ear Nose Throat J. 1996;75:468-71.
18. Sakata E, Ito Y, Itoh A. Clinical Experiences of Steroid Targeting Therapy to Inner Ear for Control of Tinnitus. Int Tinnitus J. 1997;3:117-21.
19. Shulman A, Goldstein B. Intratympanic drug therapy with steroids for tinnitus control: a preliminary report. Int Tinnitus J. 2000;6:10-20.
20. Cesarani A, Capobianco S, Soi D, et al. Intratympanic dexamethasone treatment for control of subjective idiopathic tinnitus: our clinical experience. Int Tinnitus J. 2002;8:111-4.
21. Ding S, Xie S, Chen W, et al. Is oval window transport a royal gate for nanoparticle delivery to vestibule in the inner ear? Eur J Pharm Sci. 2019;126:11-22. DOI:10.1016/j.ejps.2018.02.031
22. Shirwany NA, Seidman MD, Tang W. Effect of transtympanic injection of steroids on cochlear blood flow, auditory sensitivity, and histology in the guinea pig. Am J Otol. 1998;19:230-5.
23. Yao X, Buhi WC, Alvarez IM, et al. De novo synthesis of glucocorticoid hormone regulated inner ear proteins in rats. Hear Res. 1995;86(1-2):183-8.
DOI:10.1016/0378-5955(95)00069-g
24. Lin DW, Trune DR. Breakdown of stria vascularisbluud-labyrinth barrier in C3H/Ipr autoimmune diseasemice. Otolaryngology. 1997;117(5):530-4.
25. Lamm K, Arnold W. The effect of prednisolone and non-steroidal anti-inflammatory agents on the normal and noise-damaged guinea pig inner ear. Hear Res. 1998;115(1-2):149-61. DOI:10.1016/s0378-5955(97)00186-x
26. Nagura M, Iwasaki S, Wu R, et al. Effects of corticosteroid, contrast medium and ATPon focal microcirculatory disorders of the cochlea. Eur J Pharmacol. 1999;366(1):47-53.
27. Gloddek B, Lamm K, Arnold W. Pharmacologicalinfluence on inner ear endothelial cells in relation to the pathogenesisof sensorineural hearing loss. Adv Otorhinolaringol. 2002;59:75-83.
28. Tabuchi K, Oikawa K, Uemaetomari I, et al. Glucocorticoids and dehydroepiandrosterone sulfate ameliorate ischemia-induced injury of the cochlea. Hear Res. 2003;180(1-2):51-6. DOI:10.1016/s0378-5955(03)00078-9
29. Ohashi M, Ide S, Sawaguchi A, et al. Histochemical localization of the extracellular matrix components in the annular ligament of rat stapediovestibular joint with special reference to fbrillin, 36-kDa microfbril-associated glycoprotein (MAGP-36), and hyaluronic acid. Med Mol Morphol. 2008;4:28-33.
30. Tanaka K, Motomura S. Permeability of the labyrinthine windows in guinea pigs. Arch Otorhinolaryngol. 1981;233:67-73.
31. Salt AN, King EB, Hartsock JJ, et al. Marker entry into vestibular perilymph via the stapes following applications to the round window niche of Guinea pigs. Hear Res. 2012;283:14-23.
32. Goycoolea MV, Lundman L. Round window membrane. Structure function and permeability: a review. Microsc Res Tech. 1997;36:201-11.
33. King EB, Salt AN, Kel GE, et al. Gentamicin administration on the stapes footplate causes greater hearing loss and vestibulotoxicity than round window administration in guinea pigs. Hear Res. 2013;304:159-66.
34. King EB, Salt AN, Eastwood HT, et al. Direct entry of gadolinium into the vestibule following intratympanic applications in Guinea pigs and the influence of cochlear implantation. J Assoc Res Otolaryngol. 2011;12:741-51.
35. Zou J, Poe D, Ramadan UA, Pyykkö I. Oval window transport of Gd-DOTA from rat middle ear to vestibulum and scala vestibuli visualized by in vivo magnetic resonance imaging. Ann Otol Rhinol Laryngol. 2012;121:119-28.
36. Zou J, Pyykko I, Bjelke B, et al. Communication between the perilymphatic scalae and spiral ligament visualized by in vivo MRI. Audiol Neurotol. 2005;10:145-52.
37. Salt AN, Plontke SK. Principles of local drug delivery to the inner ear. Audiol Neurotol. 2009;14(6):350-60. DOI:10.1159/000241892
38. Saijo S, Kimura RS. Distribution of HRP in the inner ear after in- jection into the middle ear cavity. Acta Otolaryngological. 1984;97(5-6):593-610.
39. Carpenter AM, Muchow D, Goycoolea MV. Ultrastructural studies of the human round window membrane. Arch Otolaryngol Head Neck Surg. 1989;115:585-90.
40. Duan Ml, Zhi-Qiang C. Permeability of round window membrane and its role for drug delivery: Our own findings and literature review. J Otol. 2009;4:34-43.
41. Franke K. Freeze fracture aspects of the junctional complexes in the round window membrane. Arch Otolaryngol Head Neck Surg. 1977;217:331e337.
42. Goycoolea MV. Clinical aspects of round window membrane permeability under normal and pathological conditions. Acta Otolaryngol. 2001;121:437-47.
43. Goycoolea MV, Muchow D, Schachern P. Experimental studies on round window structure: Function and permeability. Laryngoscope. 1988;98(6 Pt. 2 Suppl. 44):1-20.
44. Nomura Y. Otological significance of the round window. Adv Oto Rhino Laryngol. 1984;33:1-162.
45. Mikulec AA, Hartsock JJ, Salt AN. Permeability of the round window membrane is influenced by the composition of applied drug solutions and by common surgical procedures. Otol Neurotol. 2008;29:1020e1026.
46. Kelso CM, Watanabe H, Wazen JM, et al. Microperforations significantly enhance diffusion across round window membrane. Otol Neurotol. 2015;36:694e700.
47. Plontke SK, Hartsock JJ, Gill RM, Salt AN. Intracochlear drug injections through the round window membrane: measures to improve drug retention. Audiol Neuro Otol. 2016;21:72e79.
48. MacArthur CJ, Hausman F, Kempton JB, et al. Inner ear tissue remodeling and ion homeostasis gene alteration in murine chronic otitis media. Otol Neurotol. 2013;34:338e346.
49. Jeong SH, Kim Y, Lyu AR, et al. Junctional Modulation of Round Window Membrane Enhances Dexamethasone Uptake into the Inner Ear and Recovery after NIHL. Int J Mol Sci. 2021;22:10061. DOI:10.3390/ijms221810061
50. Silverstein H, Rowan PT, Olds MJ, et al. Inner ear perfusion and the role of round window patency. Am J Otol. 1997;18:586-9.
51. Alzamil KS, Linthicum FH. Extraneous round window membranes and plugs: possible effect on intratympanic therapy. Ann Otol Rhinol Laryngol. 2000;109:30-2.
52. Crane BT, Minor LB, Della Santina CC, et al. Middle ear exploration in patients with Meniere’s disease who have failed outpatient intratympanic gentamicin therapy. Otol Neurotol. 2009;30:619-24.
53. Giepmans BN, van Ijzendoorn SC. Epithelial cell-cell junctions and plasma membrane domains. Biochim Biophys Acta. 2009;1788:820e831.
54. Wangemann P, Marcus DC. Ion and fluid homeostasis in the cochlea. In: Understanding the Cochlea. Springer Handbook of Auditory Research. Eds GA Manly, AW Gummer, AN Popper, RR Fay. 2017;62:253e286.
55. Schnieder EA. A contribution to the physiology of the perilymph. 1. The origins of perilymph. Ann Otol Rhinol Laryngol. 1974;83:76e83.
56. Thalmann I, Comegys TH, Liu SZ, et al. Protein profiles of perilymph and endolymph of the Guinea pig. Hear Res. 1992;63:37-42.
57. Jahnke K, The fine structure of freeze-fractured intercellular junctions in the Guinea pig inner ear. Acta Otolaryngol Suppi Stockh. 1975;336:1e40.
58. Sziklai I, Ferrary E, Horner KC, et al. Time-related alteration of endolymph composition in an experimental model of endolymphatic hydrops. Laryngoscope. 1992;102:431e438.
59. Salt AN, Inamura N, Thalmann R, Vora A. Calcium gradients in inner ear endolymph. Am J Otolaryngol. 1989;10:371e375.
60. Guild SR. The circulation of the endolymph. Am J Anat. 1977;39:57-81.
61. Portmann G. Vertigo. Surgical treatment by opening of the sacculus endolymphaticus. Arch Otolaryngol. 1927;6:309-19.
62. Lawrence M, Wolsk D, Litton WB. Circulation of the inner ear fluids. Ann Otol Rhinol Laryngol. 1961;70:753-76.
63. Naftalin L, Harrison MS. Circulation of labyrinthine fluids. J Larvngol Otol. 1958;72:118-36.
64. Lundquist PG. Aspects on endolymphatic sac morphology and function. Arch Otol Rhinol Laryngol. 1976;212:231-40.
65. Mrdina JE, Drescher DG. The amino-acid content of peril- vniph and cerebrospinal fluid from guinea pig and the cffect of noise on the amino-acid composition of perilymph. Neuroscience. 1981;6:505-59.
66. Manzo RP, Gomez DG, Potts G. Cerebrospinal fluid absorp- tion in the rabbit: inner ear pathway. Acta Otolaryngol. 1990;109:389-96.
67. Salt AN, Ma Y. Quantification of solute entry into cochlear perilymph through the round window membrane. Hear Res. 2001;154:88-97.
68. Salt AN. Simulation of methods for drug delivery to the cochlear fluids. Adv Otorhinolaryngol. 2002;59:140-8.
69. Hobbie RK. Intermediate Physics for Medicine and Biology. Springer; New York: 1997, p. 85-90.
70. Ohyama K, Salt AN, Thalmann R. Volume flow rate of perilymph in the guinea-pig cochlea. Hear Res. 1988;35:119-29.
71. Salt AN, Ohyama K, Thalmann R. Radial communication between the perilymphatic scalae of the cochlea. II: Estimation by bolus injection of tracer into the sealed cochlea. Hear Res. 1991;56:37-43.
72. Plontke S, Wood AW, Salt AN. Analysis of gentamicin kinetics in fluids of the inner ear with round window administration. Otol Neurotol. 2002;23:967-74.
73. Salt AN, Thalmann R, Marcus DC, Bohne BA. Direct measurement of longitudinal endolymph flow rate in the guinea pig cochlea. Hear Res. 1986;23:141-51.
74. Plontke SK, Salt AN. Quantitative interpretation of corticosteroid pharmacokinetics in inner ear fluids using computer simulations. Hear Res. 2003;182:34-42.
75. Stöver T, Yagi M, Raphael Y. Cochlear gene transfer: round window versus cochleostomy inoculation. Hear Res. 1999;136:124-30.
76. Laurell G, Teixeira M, Sterkers O, et al. Local administration of antioxidants to the inner ear. Kinetics and distribution(1). Hear Res. 2002;173:198-209.
77. Balough BJ, Hoffer ME, Wester D, et al. Kinetics of gentamicin uptake in the inner ear of Chinchilla langier after middle-ear administration in a sustained-release vehicle. Otolaryngol Head Neck Surg. 1998;119:427-31.
78. Hoffer ME, Balough BJ, Kopke RD, et al. Morphologic changes in the inner ear of chinchilla laniger after middle ear administration of gentamicin in a sustained-release vehicle. Otolaryngo Head Neck Surg. 1999;120:643-8.
79. Chandrasekhar SS, Tsai Do BS, Schwartz SR, et al. Clinical practice guideline: Sudden hearing loss (update). Otolaryngol Head Neck Surg. 2019;161(Suppl. S1):S1-45.
Авторы
М.Л. Блинова*1, А.Е. Голованов2, В.С. Исаченко1
1 ФГБУ «Санкт-Петербургский научно-исследовательский институт уха, горла, носа и речи» Минздрава России, Санкт-Петербург, Россия;
2 ФГБВОУ ВО «Военно-медицинская академия им. С.М. Кирова» Минобороны России, Санкт-Петербург, Россия
*m.blinova@niilor.ru
________________________________________________
Marina L. Blinova*1, Andrei E. Golovanov2, Vadim S. Isachenko1
1 Saint-Petersburg Research Institute of Ear, Throat, Nose and Speech, Saint Petersburg, Russia;
2 Kirov Military Medical Academy, Saint Petersburg, Russia
*m.blinova@niilor.ru