Alieva AM, Teplova NV, Reznik EV, Sarakaeva LR, Rahaev AM, Elmurzaeva DA, Akkiev MI, Shavaeva MYa, Akkieva MA, Nikitin IG. The role of interleukin-27 in atherosclerotic cardiovascular diseases: A review. Consilium Medicum. 2023;25(10):668–673. DOI: 10.26442/20751753.2023.10.202398
Роль интерлейкина-27 при атеросклеротических сердечно-сосудистых заболеваниях
Alieva AM, Teplova NV, Reznik EV, Sarakaeva LR, Rahaev AM, Elmurzaeva DA, Akkiev MI, Shavaeva MYa, Akkieva MA, Nikitin IG. The role of interleukin-27 in atherosclerotic cardiovascular diseases: A review. Consilium Medicum. 2023;25(10):668–673. DOI: 10.26442/20751753.2023.10.202398
Основной причиной развития многих сердечно-сосудистых заболеваний выступает атеросклероз. Атеросклеротический процесс, проявляющийся острыми сосудистыми катастрофами, такими как инфаркт миокарда и/или головного мозга, или хроническими ишемическими состояниями, такими как ишемическая болезнь сердца и цереброваскулярная болезнь, является, по сути, системным воспалительным процессом. Доказана весомая роль Т-клеток, макрофагов, нейтрофилов и цитокинов в данном патологическом процессе. Представленный литературный обзор указывает на потенциально важную диагностическую и прогностическую значимость оценки уровня интерлейкина-27. Ожидается, что дальнейшие научно-клинические исследования продемонстрируют возможности использования этого цитокина в качестве дополнительного лабораторного инструмента для диагностики, стратификации риска и прогнозирования сердечно-сосудистых катастроф у пациентов кардиологического профиля.
The main cause of many cardiovascular diseases is atherosclerosis. The atherosclerotic process, manifested by acute vascular accidents, such as myocardial and/or cerebral infarction, or chronic ischemic conditions, such as coronary heart disease and cerebrovascular disease, is essentially a systemic inflammatory process. The significant role of T-cells, macrophages, neutrophils and cytokines in this pathological process has been proven. The presented literature review indicates the potentially important diagnostic and prognostic value of the interleukin-27 assessment. It is expected that further scientific and clinical studies will demonstrate the possibility of using this cytokine as an additional laboratory tool for the diagnosis, risk stratification and prediction of cardiovascular events in patients with a cardiac profile.
1. Шляхто E.В., Звартау Н.Э., Виллевальде C.В. и др. Система управления сердечно-сосудистыми рисками: предпосылки к созданию, принципы организации, таргетные группы. Российский кардиологический журнал. 2019;24(11):69-82 [Shlyakhto EV, Zvartau NE, Villevalde SV, et al. Cardiovascular risk management system: prerequisites for developing, organization principles, target groups. Russian Journal of Cardiology. 2019;24(11):69-82 (in Russian)]. DOI:10.15829/1560-4071-2019-11-69-82
2. GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1659-724. DOI:10.1016/S0140-6736(16)31679-8
3. Li H, Zou J, Yu XH, et al. Zinc finger E-box binding homeobox 1 and atherosclerosis: New insights and therapeutic potential. J Cell Physiol. 2021;236(6):4216-30. DOI:10.1002/jcp.30177
4. Фадеев Г.А, Фатыхов Р.Г., Цибулькин Н.А., и др. Воспалительные механизмы в генезе атеросклероза. Вестник современной клинической медицины. 2020;13(6):62-7 [Fadeev GA, Fatykhov RG, Tsibulkin NA, et al. Inflammatory mechanisms in genesis of atherosclerosis. The Bulletin of Contemporary Clinical Medicine. 2020;13(6):62-7 (in Russian)]. DOI:10.20969/VSKM.2020.13(6).62-67
5. Jafarizade M, Kahe F, Sharfaei S, et al. The role of interleukin-27 in atherosclerosis: A contemporary review. Cardiology. 2021;146(4):517-30. DOI:10.1159/000515359
6. Witztum JL, Lichtman AH. The influence of innate and adaptive immune responses on atherosclerosis. Annu Rev Pathol. 2014;9:73-102. DOI:10.1146/annurev-pathol-020712-163936
7. Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 2011;17(11):1410-22. DOI:10.1038/nm.2538
8. Posadas-Sanchez R, Perez-Hernandez N, Rodriguez-Perez JM, et al. Interleukin-27 polymorphisms are associated with premature coronary artery disease and metabolic parameters in the Mexican population: the genetics of atherosclerotic disease (GEA) Mexican study. Oncotarget. 2017;8(38):64459-70. DOI:10.18632/oncotarget.16223
9. Pflanz S, Timans JC, Cheung J, et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity. 2002;16(6):779-90. DOI:10.1016/s1074-7613(02)00324-2
10. Meka RR, Venkatesha SH, Dudics S, et al. IL-27-induced modulation of autoimmunity and its therapeutic potential. Autoimmun Rev. 2015;14(12):1131-41. DOI:10.1016/j.autrev.2015.08.001
11. Vargas-Alarcon G, Perez-Hernández N, Rodríguez-Perez JM, et al. Interleukin 27 polymorphisms, their association with insulin resistance and their contribution to subclinical atherosclerosis. The GEA Mexican study. Cytokine. 2019;114:32-7. DOI: 10.1016/j.cyto.2018.11.028
12. Caveney NA, Glassman CR, Jude KM, et al. Structure of the IL-27 quaternary receptor signaling complex. Elife. 2022;11:e78463. DOI:10.7554/eLife.78463
13. Han L, Chen Z, Yu K, et al. Interleukin 27 signaling in rheumatoid arthritis patients: Good or evil? Front Immunol. 2022;12:787252. DOI:10.3389/fimmu.2021.787252
14. Miteva K, Baptista D, Montecucco F, et al. Cardiotrophin-1 deficiency abrogates atherosclerosis progression. Sci Rep. 2020;10(1):5791. DOI:10.1038/s41598-020-62596-6
15. Chen Y, Zeng J, Zhang R, et al. Effect of interleukin-27 genetic variants on atrial fibrillation susceptibility. Genet Test Mol Biomarkers. 2017;21(2):97-101. DOI:10.1089/gtmb.2016.0219
16. Ye J, Wang Y, Wang Z, et al. Roles and mechanisms of interleukin-12 family members in cardiovascular diseases: Opportunities and challenges. Front Pharmacol. 2020;11:129. DOI:10.3389/fphar.2020.00129
17. Hibbert L, Pflanz S, De Waal Malefyt R, et al. IL-27 and IFN-alpha signal via Stat1 and Stat3 and induce T-bet and IL-12Rbeta2 in naive T cells. J Interferon Cytokine Res. 2003;23(9):513-22. DOI:10.1089/10799900360708632
18. Hunter CA, Kastelein R. Interleukin-27: Balancing protective and pathological immunity. Immunity. 2012;37(6):960-9. DOI:10.1016/j.immuni.2012.11.003
19. Moon SJ, Park JS, Heo YJ, et al. In vivo action of IL-27: Reciprocal regulation of Th17 and Treg cells in collagen-induced arthritis. Exp Mol Med. 2013;45(10):e46. DOI:10.1038/emm.2013.89
20. Kurdi M, Zgheib C, Booz GW. Recent developments on the crosstalk between STAT3 and inflammation in heart function and disease. Front Immunol. 2018;9:3029. DOI:10.3389/fimmu.2018.03029
21. Lucas S, Ghilardi N, Li J, de Sauvage FJ. IL-27 regulates IL-12 responsiveness of naive CD4+ T cells through Stat1-dependent and -independent mechanisms. Proc Natl Acad Sci U S A. 2003;100(25):15047-52. DOI:10.1073/pnas.2536517100
22. Yoshimoto T, Yoshimoto T, Yasuda K, et al. IL-27 suppresses Th2 cell development and Th2 cytokines production from polarized Th2 cells: a novel therapeutic way for Th2-mediated allergic inflammation. J Immunol. 2007;179(7):4415-23. DOI:10.4049/jimmunol.179.7.4415
23. Bosmann M, Ward PA. Modulation of inflammation by interleukin-27. J Leukoc Biol. 2013;94(6):1159–65. DOI:10.1189/jlb.0213107
24. Jones GW, Hill DG, Cardus A, Jones SA. IL-27: A double agent in the IL-6 family. Clin Exp Immunol. 2018;193(1):37-46. DOI:10.1111/cei.13116
25. Ma N, Fang Y, Xu R, et al. Ebi3 promotes T- and B-cell division and differentiation via STAT3. Mol Immunol. 2019;107:61-70. DOI:10.1016/j.molimm.2019.01.009
26. Dai L, Li Z, Tao Y, et al. Emerging roles of suppressor of cytokine signaling 3 in human cancers. Biomed Pharmacother. 2021;144:112262. DOI:10.1016/j.biopha.2021.112262
27. Owaki T, Asakawa M, Morishima N, et al. STAT3 is indispensable to IL-27-mediated cell proliferation but not to IL-27-induced Th1 differentiation and suppression of proinflammatory cytokine production. J Immunol. 2008;180(5):2903-11. DOI:10.4049/jimmunol.180.5.2903
28. Hirano T, Ishihara K, Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene. 2000;19(21):2548-56. DOI:10.1038/sj.onc.1203551
29. Qiu HN, Liu B, Liu W, Liu S. Interleukin-27 enhances TNF-α-mediated activation of human coronary artery endothelial cells. Mol Cell Biochem. 2016;411(1-2):1-10. DOI:10.1007/s11010-015-2563-3
30. Jafarzadeh A, Nemati M, Rezayati MT. Serum levels of interleukin (IL)-27 in patients with ischemic heart disease. Cytokine. 2011;56(2):153-6. DOI:10.1016/j.cyto.2011.06.014
31. Zhu L, Lin X, Chen M. LncRNA NEAT1 correlates with Th17 cells and proinflammatory cytokines, also reflects stenosis degree and cholesterol level in coronary heart disease patients. J Clin Lab Anal. 2022;36(6):e23975. DOI:10.1002/jcla.23975
32. Mease P, van den Bosch F. IL-23 and axial disease: Do they come together? Rheumatology (Oxford). 2021;60(Suppl. 4):iv28-iv33. DOI:10.1093/rheumatology/keab617
33. Baldrighi M, Mallat Z, Li X. NLRP3 inflammasome pathways in atherosclerosis. Atherosclerosis. 2017;267:127-38. DOI:10.1016/j.atherosclerosis.2017.10.027
34. Petes C, Wynick C, Guzzo C, et al. IL-27 enhances LPS-induced IL-1β in human monocytes and murine macrophages. J Leukoc Biol. 2017;102(1):83-94. DOI:10.1189/jlb.3A0316-098R
35. Gregersen I, Sandanger O, Askevold ET, et al. Interleukin 27 is increased in carotid atherosclerosis and promotes NLRP3 inflammasome activation. PLoS One. 2017;12(11):e0188387. DOI:10.1371/journal.pone.0188387
36. Guzzo C, Ayer A, Basta S, et al. IL-27 enhances LPS-induced proinflammatory cytokine production via upregulation of TLR4 expression and signaling in human monocytes. J Immunol. 2012;188(2):864-73. DOI:10.4049/jimmunol.1101912
37. Jin W, Zhao Y, Yan W, et al. Elevated circulating interleukin-27 in patients with coronary artery disease is associated with dendritic cells, oxidized low-density lipoprotein, and severity of coronary artery stenosis. Mediators Inflamm. 2012;2012:506283. DOI:10.1155/2012/506283
38. Fu H, Tang YY, Ouyang XP, et al. Interleukin-27 inhibits foam cell formation by promoting macrophage ABCA1 expression through JAK2/STAT3 pathway. Biochem Biophys Res Commun. 2014;452(4):881-7. DOI:10.1016/j.bbrc.2014.08.120
39. Phan WL, Huang YT, Ma MC. Interleukin-27 protects cardiomyocyte-like H9c2 cells against metabolic syndrome: Role of STAT3 signaling. Biomed Res Int. 2015;2015:689614. DOI:10.1155/2015/689614
40. Tanaka T, Obana M, Mohri T, et al. Interleukin-27 induces the endothelial differentiation in Sca-1+ cardiac resident stem cells. Cytokine. 2015;75(2):365-72. DOI:10.1016/j.cyto.2015.06.009
41. Koltsova EK, Kim G, Lloyd KM, et al. Interleukin-27 receptor limits atherosclerosis in Ldlr-/- mice. Circ Res. 2012;111(10):1274-85. DOI:10.1161/CIRCRESAHA.112.277525
42. Hirase T, Hara H, Miyazaki Y, et al. Interleukin 27 inhibits atherosclerosis via immunoregulation of macrophages in mice. Am J Physiol Heart Circ Physiol. 2013;305(3):H420-9. DOI:10.1152/ajpheart.00198.2013
43. Ma MC, Wang BW, Yeh TP, et al. Interleukin-27, a novel cytokine induced by ischemia-reperfusion injury in rat hearts, mediates cardioprotective effects via the gp130/STAT3 pathway. Basic Res Cardiol. 2015;110(3):22. DOI:10.1007/s00395-015-0480-y
44. Пешкова Ю.О., Хорева М.В., Ганковская Л.В., Кольцова Е.К. Анализ количества и функциональной активности Т-клеток в аневризме брюшной аорты у мышей с отсутствием рецептора ИЛ-27. Иммунология. 2022;43(1):44-53 [Peshkova IО, Khoreva MV, Gankovskaya LV, Koltsova EK. Analysis of the number and functional activity of T cells in AAA in mice lacking the IL-27 receptor. Immunology. 2022;43(1):44-53 (in Russian)]. DOI:10.33029/0206-4952-2022-43-1-44-53
45. Liu B, Fu Q, Yan QN, et al. Value of biochemical marker detection in risk stratification in patients with acute coronary syndrome. Nan Fang Yi Ke Da Xue Xue Bao. 2010;30(5):1015-9 (in Chinese). PMID: 20501382
46. Lin Y, Huang Y, Lu Z, et al. Decreased plasma IL-35 levels are related to the left ventricular ejection fraction in coronary artery diseases. PLoS One. 2012;7(12):e52490. DOI:10.1371/journal.pone.0052490
47. Wang Y, Zhou C, Yu T, Zhao F. Correlation between changes in serum RBP4, hs-CRP, and IL-27 levels and rosuvastatin in the treatment of coronary heart disease. J Healthc Eng. 2021;2021:8476592. DOI:10.1155/2021/8476592
48. Miura K, Saita E, Suzuki-Sugihara N, et al. Plasma interleukin-27 levels in patients with coronary artery disease. Medicine (Baltimore). 2017;96(43):e8260. DOI:10.1097/MD.0000000000008260
49. Ye J, Wang Y, Wang Z, et al. The expression of IL-12 family members in patients with hypertension and its association with the occurrence of carotid atherosclerosis. Mediators Inflamm. 2020;2020:2369279. DOI:10.1155/2020/2369279
50. Iravani Saadi M, Salami J, Abdi H, et al. Expression of interleukin 1, interleukin 27, and TNF α genes in patients with ischemic cardiomyopathy versus idiopathic dilated cardiomyopathy: A case-control study. Health Sci Rep. 2022;5(4):e701. DOI:10.1002/hsr2.701
51. Алиева А.М., Алмазова И.И., Пинчук Т.В., и др. Значение копептина в диагностике и прогнозе течения сердечно-сосудистых заболеваний. Клиническая медицина. 2020;98(3):203-9 [Aliyeva AM, Almazova II, Pinchuk TV, et al. The value of copeptin in the diagnosis and prognosis of cardiovascular diseases. Clinical Medicine. 2020;98(3):203-9 (in Russian)]. DOI:10.30629/0023-2149-2020-98-3-203-209
52. Алиева А.М., Алмазова И.И., Пинчук Т.В., и др. Фракталкин и сердечно-сосудистые заболевания. Consilium Medicum. 2020;22(5):83-6 [Aliyeva AM, Almazova II, Pinchuk TV, et al. Fractalkin and cardiovascular diseases. Consilium Medicum. 2020;22(5):83-6 (in Russian)]. DOI:10.26442/20751753.2020.5.200186
53. Алиева А.М., Байкова И.Е., Кисляков В.А., и др. Галектин-3: диагностическая и прогностическая ценность определения у пациентов с хронической сердечной недостаточностью. Терапевтический архив. 2019;91(9):145-9 [Aliyeva AM, Baykova IE, Kislyakov VA, et al. Galactin-3: diagnostic and prognostic value in patients with chronic heart failure. Ter Arkh. 2019;91(9):145-9 (In Russian)]. DOI:10.26442/00403660.2019.09.000226
54. Алиева А.М., Пинчук Т.В., Алмазова И.И., и др. Клиническое значение определения биомаркера крови ST2 у больных с хронической сердечной недостаточностью. Consilium Medicum. 2021;23(6):522-6 [Aliyeva AM, Pinchuk TV, Almazova II, et al. Сlinical value of blood biomarker ST2 in patients with chronic heart failure. Consilium Medicum. 2021;23(6):522-6 (in Russian)]. DOI:10.26442/20751753.2021.6.200606
________________________________________________
1. Shlyakhto EV, Zvartau NE, Villevalde SV, et al. Cardiovascular risk management system: prerequisites for developing, organization principles, target groups. Russian Journal of Cardiology. 2019;24(11):69-82 (in Russian). DOI:10.15829/1560-4071-2019-11-69-82
2. GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1659-724. DOI:10.1016/S0140-6736(16)31679-8
3. Li H, Zou J, Yu XH, et al. Zinc finger E-box binding homeobox 1 and atherosclerosis: New insights and therapeutic potential. J Cell Physiol. 2021;236(6):4216-30. DOI:10.1002/jcp.30177
4. Fadeev GA, Fatykhov RG, Tsibulkin NA, et al. Inflammatory mechanisms in genesis of atherosclerosis. The Bulletin of Contemporary Clinical Medicine. 2020;13(6):62-7 (in Russian). DOI:10.20969/VSKM.2020.13(6).62-67
5. Jafarizade M, Kahe F, Sharfaei S, et al. The role of interleukin-27 in atherosclerosis: A contemporary review. Cardiology. 2021;146(4):517-30. DOI:10.1159/000515359
6. Witztum JL, Lichtman AH. The influence of innate and adaptive immune responses on atherosclerosis. Annu Rev Pathol. 2014;9:73-102. DOI:10.1146/annurev-pathol-020712-163936
7. Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 2011;17(11):1410-22. DOI:10.1038/nm.2538
8. Posadas-Sanchez R, Perez-Hernandez N, Rodriguez-Perez JM, et al. Interleukin-27 polymorphisms are associated with premature coronary artery disease and metabolic parameters in the Mexican population: the genetics of atherosclerotic disease (GEA) Mexican study. Oncotarget. 2017;8(38):64459-70. DOI:10.18632/oncotarget.16223
9. Pflanz S, Timans JC, Cheung J, et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity. 2002;16(6):779-90. DOI:10.1016/s1074-7613(02)00324-2
10. Meka RR, Venkatesha SH, Dudics S, et al. IL-27-induced modulation of autoimmunity and its therapeutic potential. Autoimmun Rev. 2015;14(12):1131-41. DOI:10.1016/j.autrev.2015.08.001
11. Vargas-Alarcon G, Perez-Hernández N, Rodríguez-Perez JM, et al. Interleukin 27 polymorphisms, their association with insulin resistance and their contribution to subclinical atherosclerosis. The GEA Mexican study. Cytokine. 2019;114:32-7. DOI: 10.1016/j.cyto.2018.11.028
12. Caveney NA, Glassman CR, Jude KM, et al. Structure of the IL-27 quaternary receptor signaling complex. Elife. 2022;11:e78463. DOI:10.7554/eLife.78463
13. Han L, Chen Z, Yu K, et al. Interleukin 27 signaling in rheumatoid arthritis patients: Good or evil? Front Immunol. 2022;12:787252. DOI:10.3389/fimmu.2021.787252
14. Miteva K, Baptista D, Montecucco F, et al. Cardiotrophin-1 deficiency abrogates atherosclerosis progression. Sci Rep. 2020;10(1):5791. DOI:10.1038/s41598-020-62596-6
15. Chen Y, Zeng J, Zhang R, et al. Effect of interleukin-27 genetic variants on atrial fibrillation susceptibility. Genet Test Mol Biomarkers. 2017;21(2):97-101. DOI:10.1089/gtmb.2016.0219
16. Ye J, Wang Y, Wang Z, et al. Roles and mechanisms of interleukin-12 family members in cardiovascular diseases: Opportunities and challenges. Front Pharmacol. 2020;11:129. DOI:10.3389/fphar.2020.00129
17. Hibbert L, Pflanz S, De Waal Malefyt R, et al. IL-27 and IFN-alpha signal via Stat1 and Stat3 and induce T-bet and IL-12Rbeta2 in naive T cells. J Interferon Cytokine Res. 2003;23(9):513-22. DOI:10.1089/10799900360708632
18. Hunter CA, Kastelein R. Interleukin-27: Balancing protective and pathological immunity. Immunity. 2012;37(6):960-9. DOI:10.1016/j.immuni.2012.11.003
19. Moon SJ, Park JS, Heo YJ, et al. In vivo action of IL-27: Reciprocal regulation of Th17 and Treg cells in collagen-induced arthritis. Exp Mol Med. 2013;45(10):e46. DOI:10.1038/emm.2013.89
20. Kurdi M, Zgheib C, Booz GW. Recent developments on the crosstalk between STAT3 and inflammation in heart function and disease. Front Immunol. 2018;9:3029. DOI:10.3389/fimmu.2018.03029
21. Lucas S, Ghilardi N, Li J, de Sauvage FJ. IL-27 regulates IL-12 responsiveness of naive CD4+ T cells through Stat1-dependent and -independent mechanisms. Proc Natl Acad Sci U S A. 2003;100(25):15047-52. DOI:10.1073/pnas.2536517100
22. Yoshimoto T, Yoshimoto T, Yasuda K, et al. IL-27 suppresses Th2 cell development and Th2 cytokines production from polarized Th2 cells: a novel therapeutic way for Th2-mediated allergic inflammation. J Immunol. 2007;179(7):4415-23. DOI:10.4049/jimmunol.179.7.4415
23. Bosmann M, Ward PA. Modulation of inflammation by interleukin-27. J Leukoc Biol. 2013;94(6):1159–65. DOI:10.1189/jlb.0213107
24. Jones GW, Hill DG, Cardus A, Jones SA. IL-27: A double agent in the IL-6 family. Clin Exp Immunol. 2018;193(1):37-46. DOI:10.1111/cei.13116
25. Ma N, Fang Y, Xu R, et al. Ebi3 promotes T- and B-cell division and differentiation via STAT3. Mol Immunol. 2019;107:61-70. DOI:10.1016/j.molimm.2019.01.009
26. Dai L, Li Z, Tao Y, et al. Emerging roles of suppressor of cytokine signaling 3 in human cancers. Biomed Pharmacother. 2021;144:112262. DOI:10.1016/j.biopha.2021.112262
27. Owaki T, Asakawa M, Morishima N, et al. STAT3 is indispensable to IL-27-mediated cell proliferation but not to IL-27-induced Th1 differentiation and suppression of proinflammatory cytokine production. J Immunol. 2008;180(5):2903-11. DOI:10.4049/jimmunol.180.5.2903
28. Hirano T, Ishihara K, Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene. 2000;19(21):2548-56. DOI:10.1038/sj.onc.1203551
29. Qiu HN, Liu B, Liu W, Liu S. Interleukin-27 enhances TNF-α-mediated activation of human coronary artery endothelial cells. Mol Cell Biochem. 2016;411(1-2):1-10. DOI:10.1007/s11010-015-2563-3
30. Jafarzadeh A, Nemati M, Rezayati MT. Serum levels of interleukin (IL)-27 in patients with ischemic heart disease. Cytokine. 2011;56(2):153-6. DOI:10.1016/j.cyto.2011.06.014
31. Zhu L, Lin X, Chen M. LncRNA NEAT1 correlates with Th17 cells and proinflammatory cytokines, also reflects stenosis degree and cholesterol level in coronary heart disease patients. J Clin Lab Anal. 2022;36(6):e23975. DOI:10.1002/jcla.23975
32. Mease P, van den Bosch F. IL-23 and axial disease: Do they come together? Rheumatology (Oxford). 2021;60(Suppl. 4):iv28-iv33. DOI:10.1093/rheumatology/keab617
33. Baldrighi M, Mallat Z, Li X. NLRP3 inflammasome pathways in atherosclerosis. Atherosclerosis. 2017;267:127-38. DOI:10.1016/j.atherosclerosis.2017.10.027
34. Petes C, Wynick C, Guzzo C, et al. IL-27 enhances LPS-induced IL-1β in human monocytes and murine macrophages. J Leukoc Biol. 2017;102(1):83-94. DOI:10.1189/jlb.3A0316-098R
35. Gregersen I, Sandanger O, Askevold ET, et al. Interleukin 27 is increased in carotid atherosclerosis and promotes NLRP3 inflammasome activation. PLoS One. 2017;12(11):e0188387. DOI:10.1371/journal.pone.0188387
36. Guzzo C, Ayer A, Basta S, et al. IL-27 enhances LPS-induced proinflammatory cytokine production via upregulation of TLR4 expression and signaling in human monocytes. J Immunol. 2012;188(2):864-73. DOI:10.4049/jimmunol.1101912
37. Jin W, Zhao Y, Yan W, et al. Elevated circulating interleukin-27 in patients with coronary artery disease is associated with dendritic cells, oxidized low-density lipoprotein, and severity of coronary artery stenosis. Mediators Inflamm. 2012;2012:506283. DOI:10.1155/2012/506283
38. Fu H, Tang YY, Ouyang XP, et al. Interleukin-27 inhibits foam cell formation by promoting macrophage ABCA1 expression through JAK2/STAT3 pathway. Biochem Biophys Res Commun. 2014;452(4):881-7. DOI:10.1016/j.bbrc.2014.08.120
39. Phan WL, Huang YT, Ma MC. Interleukin-27 protects cardiomyocyte-like H9c2 cells against metabolic syndrome: Role of STAT3 signaling. Biomed Res Int. 2015;2015:689614. DOI:10.1155/2015/689614
40. Tanaka T, Obana M, Mohri T, et al. Interleukin-27 induces the endothelial differentiation in Sca-1+ cardiac resident stem cells. Cytokine. 2015;75(2):365-72. DOI:10.1016/j.cyto.2015.06.009
41. Koltsova EK, Kim G, Lloyd KM, et al. Interleukin-27 receptor limits atherosclerosis in Ldlr-/- mice. Circ Res. 2012;111(10):1274-85. DOI:10.1161/CIRCRESAHA.112.277525
42. Hirase T, Hara H, Miyazaki Y, et al. Interleukin 27 inhibits atherosclerosis via immunoregulation of macrophages in mice. Am J Physiol Heart Circ Physiol. 2013;305(3):H420-9. DOI:10.1152/ajpheart.00198.2013
43. Ma MC, Wang BW, Yeh TP, et al. Interleukin-27, a novel cytokine induced by ischemia-reperfusion injury in rat hearts, mediates cardioprotective effects via the gp130/STAT3 pathway. Basic Res Cardiol. 2015;110(3):22. DOI:10.1007/s00395-015-0480-y
44. Peshkova IО, Khoreva MV, Gankovskaya LV, Koltsova EK. Analysis of the number and functional activity of T cells in AAA in mice lacking the IL-27 receptor. Immunology. 2022;43(1):44-53 (in Russian). DOI:10.33029/0206-4952-2022-43-1-44-53
45. Liu B, Fu Q, Yan QN, et al. Value of biochemical marker detection in risk stratification in patients with acute coronary syndrome. Nan Fang Yi Ke Da Xue Xue Bao. 2010;30(5):1015-9 (in Chinese). PMID: 20501382
46. Lin Y, Huang Y, Lu Z, et al. Decreased plasma IL-35 levels are related to the left ventricular ejection fraction in coronary artery diseases. PLoS One. 2012;7(12):e52490. DOI:10.1371/journal.pone.0052490
47. Wang Y, Zhou C, Yu T, Zhao F. Correlation between changes in serum RBP4, hs-CRP, and IL-27 levels and rosuvastatin in the treatment of coronary heart disease. J Healthc Eng. 2021;2021:8476592. DOI:10.1155/2021/8476592
48. Miura K, Saita E, Suzuki-Sugihara N, et al. Plasma interleukin-27 levels in patients with coronary artery disease. Medicine (Baltimore). 2017;96(43):e8260. DOI:10.1097/MD.0000000000008260
49. Ye J, Wang Y, Wang Z, et al. The expression of IL-12 family members in patients with hypertension and its association with the occurrence of carotid atherosclerosis. Mediators Inflamm. 2020;2020:2369279. DOI:10.1155/2020/2369279
50. Iravani Saadi M, Salami J, Abdi H, et al. Expression of interleukin 1, interleukin 27, and TNF α genes in patients with ischemic cardiomyopathy versus idiopathic dilated cardiomyopathy: A case-control study. Health Sci Rep. 2022;5(4):e701. DOI:10.1002/hsr2.701
51. Aliyeva AM, Almazova II, Pinchuk TV, et al. The value of copeptin in the diagnosis and prognosis of cardiovascular diseases. Clinical Medicine. 2020;98(3):203-9 (in Russian). DOI:10.30629/0023-2149-2020-98-3-203-209
52. Aliyeva AM, Almazova II, Pinchuk TV, et al. Fractalkin and cardiovascular diseases. Consilium Medicum. 2020;22(5):83-6 (in Russian). DOI:10.26442/20751753.2020.5.200186
53. Aliyeva AM, Baykova IE, Kislyakov VA, et al. Galactin-3: diagnostic and prognostic value in patients with chronic heart failure. Ter Arkh. 2019;91(9):145-9 (In Russian). DOI:10.26442/00403660.2019.09.000226
54. Aliyeva AM, Pinchuk TV, Almazova II, et al. Сlinical value of blood biomarker ST2 in patients with chronic heart failure. Consilium Medicum. 2021;23(6):522-6 (in Russian). DOI:10.26442/20751753.2021.6.200606
1ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия; 2ФГБУ «Национальный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России, Санкт-Петербург, Россия; 3ФГБОУ ВО «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» Минобрнауки России, Нальчик, Россия; 4ГБУЗ «Центр аллергологии и иммунологии» Минздрава Кабардино-Балкарской Республики, Нальчик, Россия
*amisha_alieva@mail.ru
________________________________________________
Amina M. Alieva*1, Natalya V. Teplova1, Elena V. Reznik1, Leyla R. Sarakaeva2, Alik M. Rahaev3, Dzhannet A. Elmurzaeva3, Makhty I. Akkiev3, Madina Ya. Shavaeva3, Maryana A. Akkieva4, Igor G. Nikitin1
1Pirogov Russian National Research Medical University, Moscow, Russia; 2Almazov National Medical Research Center, Saint Petersburg, Russia; 3Berbekov Kabardino-Balkarian State University, Nalchik, Russia; 4Center of Allergology and Immunology, Nalchik, Russia
*amisha_alieva@mail.ru