Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
LOX-1 в роли биологического маркера и терапевтической мишени при сердечно-сосудистой патологии (обзор литературы)
LOX-1 в роли биологического маркера и терапевтической мишени при сердечно-сосудистой патологии (обзор литературы)
Алиева А.М., Байкова И.Е., Резник Е.В., Теплова Н.В., Валиев Р.К., Гызыева М.Х., Султангалиева А.Б., Котикова И.А., Новикова Н.А., Корвяков С.А., Никитин И.Г. LOX-1 в роли биологического маркера и терапевтической мишени при сердечно-сосудистой патологии (обзор литературы). Consilium Medicum. 2024;26(10):666–673. DOI: 10.26442/20751753.2024.10.202945
© ООО «КОНСИЛИУМ МЕДИКУМ», 2024 г.
© ООО «КОНСИЛИУМ МЕДИКУМ», 2024 г.
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Сердечно-сосудистые заболевания (ССЗ) представляют собой глобальную медицинскую, социальную и экономическую проблему. В настоящее время продолжаются поиск и изучение новых биологических маркеров, способных обеспечить раннюю диагностику ССЗ, служить лабораторным инструментом оценки эффективности проводимого лечения или использоваться в качестве прогностических маркеров и критериев стратификации риска. Интерес ученых сосредоточен на изучении лектиноподобного рецептора 1-го типа для окисленных липопротеидов низкой плотности (LOX-1) в качестве диагностического и прогностического маркера при ССЗ. В представленном литературном обзоре подчеркивается потенциальная значимость исследования LOX-1 как диагностического и прогностического лабораторного инструмента при ССЗ. Предполагается, что будущие клинические и экспериментальные исследования подтвердят возможность применения LOX-1 в качестве дополнительного неинвазивного инструмента для диагностики и оценки прогноза у пациентов с ССЗ. Модуляция уровней и экспрессии LOX-1 с использованием фармакологических препаратов может оказаться перспективным направлением для терапии ССЗ.
Ключевые слова: сердечно-сосудистые заболевания, атеросклероз, ишемическая болезнь сердца, биологический маркер, окисленные липопротеиды низкой плотности, LOX-1
Keywords: cardiovascular diseases, atherosclerosis, coronary heart disease, biological marker, ox-LDL, LOX-1
Ключевые слова: сердечно-сосудистые заболевания, атеросклероз, ишемическая болезнь сердца, биологический маркер, окисленные липопротеиды низкой плотности, LOX-1
________________________________________________
Keywords: cardiovascular diseases, atherosclerosis, coronary heart disease, biological marker, ox-LDL, LOX-1
Полный текст
Список литературы
1. Roth GA, Mensah GA, Johnson CO, et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update from the GBD 2019 Study. J Am Coll Cardiol. 2020;76(25):2982-3021. DOI:10.1016/j.jacc.2020.11.010
2. Deng P, Fu Y, Chen M, et al. Temporal trends in inequalities of the burden of cardiovascular disease across 186 countries and territories. Int J Equity Health. 2023;22(1):164. DOI:10.1186/s12939-023-01988-2
3. Silva S, Fatumo S, Nitsch D. Mendelian randomization studies on coronary artery disease: a systematic review and meta-analysis. Syst Rev. 2024;13(1):29.
DOI:10.1186/s13643-023-02442-8
4. Алиева А.М., Теплова Н.В., Батов М.А., и др. Пентраксин-3 – перспективный биологический маркер при сердечной недостаточности: литературный обзор. Consilium Medicum. 2022;24(1):53-9 [Alieva AM, Teplova NV, Batov MA, et al. Pentraxin-3 – a promising biological marker in heart failure: literature review. Consilium Medicum. 2022;24(1):53-9 (in Russian)]. DOI:10.26442/20751753.2022.1.201382
5. Алиева А.М., Резник Е.В., Пинчук Т.В., и др. Фактор дифференцировки роста-15 (GDF-15) как биологический маркер при сердечной недостаточности. Архивъ внутренней медицины. 2023;13(1):14-23 [Alieva AM, Reznik EV, Pinchuk TV, et al. Growth Differentiation Factor-15 (GDF-15) is a Biological Marker in Heart Failure. The Russian Archives of Internal Medicine. 2023;13(1):14-23 (in Russian)]. DOI:10.20514/2226-6704-2023-13-1-14-23
6. Алиева А.М., Теплова Н.В., Кисляков В.А., и др. Биомаркеры в кардиологии: микроРНК и сердечная недостаточность. Терапия. 2022;1:60-70 [Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkery v kardiologii: mikroRNK i serdechnaya nedostatochnost'. Terapiya. 2022;1:60-70 (in Russian)]. DOI:10.18565/therapy.2022.1.60-70
7. Lubrano V, Balzan S, Papa A. LOX-1 variants modulate the severity of cardiovascular disease: state of the art and future directions. Mol Cell Biochem. Epub 2023 Oct 3. DOI:10.1007/s11010-023-04859-0
8. Sánchez-León ME, Loaeza-Reyes KJ, Matias-Cervantes CA, et al. LOX-1 in Cardiovascular Disease: A Comprehensive Molecular and Clinical Review. Int J Mol Sci. 2024;25(10):5276. DOI:10.3390/ijms25105276
9. Bagheri B, Khatibiyan Feyzabadi Z, Nouri A, et al. Atherosclerosis and Toll-Like Receptor4 (TLR4), Lectin-Like Oxidized Low-Density Lipoprotein-1 (LOX-1), and Proprotein Convertase Subtilisin/Kexin Type9 (PCSK9). Mediators Inflamm. 2024;2024:5830491. DOI:10.1155/2024/5830491
10. Truthe S, Klassert TE, Schmelz S, et al. Role of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Inflammation and Pathogen-Associated Interactions. J Innate Immun. 2024;16(1):105-32. DOI:10.1159/000535793
11. Pyrpyris N, Dimitriadis K, Beneki E, et al. LOX-1 Receptor: A Diagnostic Tool and Therapeutic Target in Atherogenesis. Curr Probl Cardiol. 2024;49(1 Pt. C):102117. DOI:10.1016/j.cpcardiol.2023.102117
12. Munno M, Mallia A, Greco A, et al. Radical Oxygen Species, Oxidized Low-Density Lipoproteins, and Lectin-like Oxidized Low-Density Lipoprotein Receptor 1: A Vicious Circle in Atherosclerotic Process. Antioxidants (Basel). 2024;13(5):583. DOI:10.3390/antiox13050583
13. Barreto J, Karathanasis SK, Remaley A, et al. Role of LOX-1 (Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1) as a Cardiovascular Risk Predictor: Mechanistic Insight and Potential Clinical Use. Arterioscler Thromb Vasc Biol. 2021;41(1):153-66. DOI:10.1161/ATVBAHA.120.315421
14. Inoue N, Okamura T, Kokubo Y, et al. LOX index, a novel predictive biochemical marker for coronary heart disease and stroke. Clin Chem. 2010;56(4):550-8. DOI:10.1373/clinchem.2009.140707
15. Markstad H, Edsfeldt A, Yao Mattison I, et al. High Levels of Soluble Lectinlike Oxidized Low-Density Lipoprotein Receptor-1 Are Associated With Carotid Plaque Inflammation and Increased Risk of Ischemic Stroke. J Am Heart Assoc. 2019;8(4):e009874. DOI:10.1161/JAHA.118.009874
16. Skarpengland T, Skjelland M, Kong XY, et al. Increased Levels of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Ischemic Stroke and Transient Ischemic Attack. J Am Heart Assoc. 2018;7(2):e006479. DOI:10.1161/JAHA.117.006479
17. Otsuki T, Maeda S, Mukai J, et al. Association between plasma sLOX-1 concentration and arterial stiffness in middle-aged and older individuals. J Clin Biochem Nutr.
2015;57(2):151-5. DOI:10.3164/jcbn.15-27
18. Zhang Q, Chu Y, Jin G, et al. Association Between LOX-1, LAL, and ACAT1 Gene Single Nucleotide Polymorphisms and Carotid Plaque in a Northern Chinese Population. Genet Test Mol Biomarkers. 2020;24(3):138-44. DOI:10.1089/gtmb.2019.0209
19. Salehipour P, Rezagholizadeh F, Mahdiannasser M, et al. Association of OLR1 gene polymorphisms with the risk of coronary artery disease: A systematic review and meta-analysis. Heart Lung. 2021;50(2):334-43. DOI:10.1016/j.hrtlng.2021.01.015
20. Xu X, Hou X, Liang Y, et al. The gene polymorphism of LOX1 predicts the incidence of LVH in patients with essential hypertension. Cell Physiol Biochem. 2014;33(1):88-96. DOI:10.1159/000356652
21. Sheikh MSA. Circulatory soluble LOX-1 is a novel predictor for coronary artery disease patients. Cardiovasc J Afr. 2023;34(2):104-8. DOI:10.5830/CVJA-2022-038
22. Md Sayed AS, Zhao Z, Guo L, et al. Serum lectin-like oxidized-low density lipoprotein receptor-1 and adiponectin levels are associated with coronary artery disease accompanied with metabolic syndrome. Iran Red Crescent Med J. 2014;16(8):e12106. DOI:10.5812/ircmj.12106
23. Kobayashi N, Hata N, Kume N, et al. Soluble lectin-like oxidized low-density lipoprotein receptor-1 as an early biomarker for ST elevation myocardial infarction: time-dependent comparison with other biomarkers: time-dependent comparison with other biomarkers. Circ J. 2011;75(6):1433-9. DOI:10.1253/circj. cj-10-0913
24. Hussein RA, Abdul-Rasheed OF, Basheer M. Evaluation of soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) and sLOX-1/oxidized LDL ratio as novel biomarkers of acute coronary syndrome. Acta Biochim Pol. 2022;69(2):309-14. DOI:10.18388/abp.2020_5735
25. Zhao ZW, Xu YW, Li SM, et al. Baseline Serum sLOX-1 Concentrations Are Associated with 2-Year Major Adverse Cardiovascular and Cerebrovascular Events in Patients after Percutaneous Coronary Intervention. Dis Markers. 2019;2019:4925767. DOI:10.1155/2019/4925767
26. Besli F, Gullulu S, Sag S, et al. The relationship between serum lectin-like oxidized LDL receptor-1 levels and systolic heart failure. Acta Cardiol. 2016;71(2):185-90. DOI:10.2143/AC.71.2.3141848
27. Stankova TR, Delcheva GT, Maneva AI, et al. Serum Levels of Carbamylated LDL, Nitrotyrosine and Soluble Lectin-like Oxidized Low-density Lipoprotein Receptor-1 in Poorly Controlled Type 2 Diabetes Mellitus. Folia Med (Plovdiv). 2019;61(3):419-25. DOI:10.3897/folmed.61.e39343
28. Lee AS, Wang YC, Chang SS, et al. Detection of a High Ratio of Soluble to Membrane-Bound LOX-1 in Aspirated Coronary Thrombi from Patients With ST-Segment-Elevation Myocardial Infarction. J Am Heart Assoc. 2020;9(2):e014008. DOI:10.1161/JAHA.119.014008
29. Li D, Li B, Yang L, et al. Human cytomegalovirus infection is correlated with atherosclerotic plaque vulnerability in carotid artery. J Gene Med. 2020;22(10):e3236. DOI:10.1002/jgm.3236
30. Dogan I, Dogan T, Yetim M, et al. Relation of Serum ADMA, Apelin-13 and LOX-1 Levels with Inflammatory and Echocardiographic Parameters in Hemodialysis Patients. Ther Apher Dial. 2018;22(2):109-17. DOI:10.1111/1744-9987.12613
31. Taskin HE, Kocael A, Kocael P, et al. Original contribution: sleeve gastrectomy reduces soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) levels in patients with morbid obesity. Surg Endosc. 2022;36(4):2643-52. DOI:10.1007/s00464-021-08989-8
32. Vavere AL, Sinsakul M, Ongstad EL, et al. Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1 Inhibition in Type 2 Diabetes: Phase 1 Results. J Am Heart Assoc. 2023;12(3):e027540. DOI:10.1161/JAHA.122.027540
33. Sui D, Yu H. Protective roles of apremilast via Sirtuin 1 in atherosclerosis. Bioengineered. 2022;13(5):13872-81. DOI:10.1080/21655979.2022.2085390
34. Yang T, Minami M, Yoshida K, et al. Niclosamide downregulates LOX-1 expression in mouse vascular smooth muscle cells and changes the composition of atherosclerotic plaques in ApoE-/- mice. Heart Vessels. 2022;37(3):517-27. DOI:10.1007/s00380-021-01983-z
35. Liu H, Xu S, Li G, et al. Sarpogrelate and rosuvastatin synergistically ameliorate aortic damage induced by hyperlipidemia in apolipoprotein E-deficient mice. Exp Ther Med. 2020;20(6):170. DOI:10.3892/etm.2020.9300
36. Zhou S, Li Z, Liu P, et al. Donepezil Prevents ox-LDL-Induced Attachment of THP-1 Monocytes to Human Aortic Endothelial Cells (HAECs). Chem Res Toxicol. 2020;33(4):975-81. DOI:10.1021/acs.chemrestox.9b00509
37. Togami K, Zhan X, Ishizawa K, et al. Development of LOX-1 Antibody Modified Immuno-liposomes as Drug Carriers to Macrophages in Atherosclerotic Lesions. Pharmazie. 2023;78(8):113-6. DOI:10.1691/ph.2023.3004
38. Wang Z, Chen X, Liu J, et al. Inclisiran inhibits oxidized low-density lipoprotein-induced foam cell formation in Raw264.7 macrophages via activating the PPARγ pathway. Autoimmunity. 2022;55(4):223-32. DOI:10.1080/08916934.2022.2051142
39. Zhang L, Cheng L, Wang Q, et al. Atorvastatin protects cardiomyocytes from oxidative stress by inhibiting LOX-1 expression and cardiomyocyte apoptosis. Acta Biochim Biophys Sin (Shanghai). 2015;47(3):174-82. DOI:10.1093/abbs/gmu131
40. Biocca S, Iacovelli F, Matarazzo S, et al. Molecular mechanism of statin-mediated LOX-1 inhibition. Cell Cycle. 2015;14(10):1583-95. DOI:10.1080/15384101.2015.1026486
41. Xiong Q, Wang Z, Yu Y, et al. Hydrogen sulfide stabilizes atherosclerotic plaques in apolipoprotein E knockout mice. Pharmacol Res. 2019;144:90-8. DOI:10.1016/j.phrs.2019.04.006
42. Yu Z, Peng Q, Li S, et al. Myriocin and d-PDMP ameliorate atherosclerosis in ApoE-/- mice via reducing lipid uptake and vascular inflammation. Clin Sci (Lond). 2020;134(5):439-58. DOI: 10.1042/CS20191028
43. Yan L, Jia Q, Cao H, et al. Fisetin ameliorates atherosclerosis by regulating PCSK9 and LOX-1 in apoE-/- mice. Exp Ther Med. 2021;21(1):25. DOI:10.3892/etm.2020.9457
44. Chiu TH, Ku CW, Ho TJ, et al. Schisanhenol ameliorates oxLDL-caused endothelial dysfunction by inhibiting LOX-1 signaling. Environ Toxicol. 2023;38(7):1589-96. DOI:10.1002/tox.23788
45. Lee HS, Lee MJ, Kim H, et al. Curcumin inhibits TNF-alpha-induced lectin-like oxidised LDL receptor-1 (LOX-1) expression and suppresses the inflammatory response in human umbilical vein endothelial cells (HUVECs) by an antioxidant mechanism. J Enzyme Inhib Med Chem. 2010;25(5):720-9. DOI:10.3109/14756360903555274
46. Luo R, Zhao L, Li S, et al. Curcumin Alleviates Palmitic Acid-Induced LOX-1 Upregulation by Suppressing Endoplasmic Reticulum Stress in HUVECs. Biomed Res Int. 2021;2021:9983725. DOI:10.1155/2021/9983725
47. Xu S, Liu Z, Huang Y, et al. Tanshinone II-A inhibits oxidized LDL-induced LOX-1 expression in macrophages by reducing intracellular superoxide radical generation and NF-kappaB activation. Transl Res. 2012;160:114-24. DOI:10.1016/j.trsl.2012.01.008
48. Wen J, Chang Y, Huo S, et al. Tanshinone IIA attenuates atherosclerosis via inhibiting NLRP3 inflammasome activation. Aging. 2020;13:910-32. DOI:10.18632/aging.202202
49. Feng Z, Yang X, Zhang L, et al. Ginkgolide B ameliorates oxidized low-density lipoprotein-induced endothelial dysfunction via modulating Lectin-like ox-LDL-receptor-1 and NADPH oxidase 4 expression and inflammatory cascades. Phytother Res. 2018;32(12):2417-27. DOI:10.1002/ptr.6177
50. Wang G, Liu Z, Li M, et al. Ginkgolide B Mediated Alleviation of Inflammatory Cascades and Altered Lipid Metabolism in HUVECs via Targeting PCSK-9 Expression and Functionality. Biomed Res Int. 2019;2019:7284767. DOI:10.1155/2019/7284767
51. Xu Q, Li YC, Du C, et al. Effects of Apigenin on the Expression of LOX-1, Bcl-2, and Bax in Hyperlipidemia Rats. Chem Biodivers. 2021;18(8):e2100049. DOI:10.1002/cbdv.202100049
52. Bai X, Wang S, Shu L, et al. Hawthorn leaf flavonoids alleviate the deterioration of atherosclerosis by inhibiting SCAP-SREBP2-LDLR pathway through sPLA2-IIA signaling in macrophages in mice. J Ethnopharmacol. 2024;327:118006. DOI:10.1016/j.jep.2024.118006
53. Ding Y, Feng Y, Zhu W, et al. [Gly14]-Humanin Prevents Lipid Deposition and Endothelial Cell Apoptosis in a Lectin-like Oxidized Low-density Lipoprotein Receptor-1-Dependent Manner. Lipids. 2019;54(11-12):697-705. DOI:10.1002/lipd.12195
54. Yu J, Zhou L, Song H, et al. (-)-Epicatechin gallate blocked cellular foam formation in atherosclerosis by modulating CD36 expression in vitro and in vivo. Food Funct. 2023;14(5):2444-58. DOI:10.1039/d2fo03218j
55. Li Q, Liu X, Zhang X, et al. Terpene Lactucopicrin Limits Macrophage Foam Cell Formation by a Reduction of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Lipid Rafts. Mol Nutr Food Res. 2022;66(4):e2100905. DOI:10.1002/mnfr.202100905
56. Im YS, Gwon MH, Yun JM. Protective effects of phenethyl isothiocyanate on foam cell formation by combined treatment of oxidized low-density lipoprotein and lipopolysaccharide in THP-1 macrophage. Food Sci Nutr. 2021;9(6):3269-79. DOI:10.1002/fsn3.2293
57. Pengnet S, Prommaouan S, Sumarithum P, et al. Naringin Reverses High-Cholesterol Diet-Induced Vascular Dysfunction and Oxidative Stress in Rats via Regulating LOX-1 and NADPH Oxidase Subunit Expression. Biomed Res Int. 2019;2019:3708497. DOI:10.1155/2019/3708497
58. Manogaran M, Vuanghao L, Mohamed R. Gynura procumbens ethanol extract and its fractions inhibit macrophage derived foam cell formation. J Ethnopharmacol. 2020;249:112410. DOI:10.1016/j.jep.2019.112410
2. Deng P, Fu Y, Chen M, et al. Temporal trends in inequalities of the burden of cardiovascular disease across 186 countries and territories. Int J Equity Health. 2023;22(1):164. DOI:10.1186/s12939-023-01988-2
3. Silva S, Fatumo S, Nitsch D. Mendelian randomization studies on coronary artery disease: a systematic review and meta-analysis. Syst Rev. 2024;13(1):29.
DOI:10.1186/s13643-023-02442-8
4. Alieva AM, Teplova NV, Batov MA, et al. Pentraxin-3 – a promising biological marker in heart failure: literature review. Consilium Medicum. 2022;24(1):53-9 (in Russian). DOI:10.26442/20751753.2022.1.201382
5. Alieva AM, Reznik EV, Pinchuk TV, et al. Growth Differentiation Factor-15 (GDF-15) is a Biological Marker in Heart Failure. The Russian Archives of Internal Medicine. 2023;13(1):14-23 (in Russian). DOI:10.20514/2226-6704-2023-13-1-14-23
6. Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkery v kardiologii: mikroRNK i serdechnaya nedostatochnost'. Terapiya. 2022;1:60-70 (in Russian).
DOI:10.18565/therapy.2022.1.60-70
7. Lubrano V, Balzan S, Papa A. LOX-1 variants modulate the severity of cardiovascular disease: state of the art and future directions. Mol Cell Biochem. Epub 2023 Oct 3. DOI:10.1007/s11010-023-04859-0
8. Sánchez-León ME, Loaeza-Reyes KJ, Matias-Cervantes CA, et al. LOX-1 in Cardiovascular Disease: A Comprehensive Molecular and Clinical Review. Int J Mol Sci. 2024;25(10):5276. DOI:10.3390/ijms25105276
9. Bagheri B, Khatibiyan Feyzabadi Z, Nouri A, et al. Atherosclerosis and Toll-Like Receptor4 (TLR4), Lectin-Like Oxidized Low-Density Lipoprotein-1 (LOX-1), and Proprotein Convertase Subtilisin/Kexin Type9 (PCSK9). Mediators Inflamm. 2024;2024:5830491. DOI:10.1155/2024/5830491
10. Truthe S, Klassert TE, Schmelz S, et al. Role of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Inflammation and Pathogen-Associated Interactions. J Innate Immun. 2024;16(1):105-32. DOI:10.1159/000535793
11. Pyrpyris N, Dimitriadis K, Beneki E, et al. LOX-1 Receptor: A Diagnostic Tool and Therapeutic Target in Atherogenesis. Curr Probl Cardiol. 2024;49(1 Pt. C):102117. DOI:10.1016/j.cpcardiol.2023.102117
12. Munno M, Mallia A, Greco A, et al. Radical Oxygen Species, Oxidized Low-Density Lipoproteins, and Lectin-like Oxidized Low-Density Lipoprotein Receptor 1: A Vicious Circle in Atherosclerotic Process. Antioxidants (Basel). 2024;13(5):583. DOI:10.3390/antiox13050583
13. Barreto J, Karathanasis SK, Remaley A, et al. Role of LOX-1 (Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1) as a Cardiovascular Risk Predictor: Mechanistic Insight and Potential Clinical Use. Arterioscler Thromb Vasc Biol. 2021;41(1):153-66. DOI:10.1161/ATVBAHA.120.315421
14. Inoue N, Okamura T, Kokubo Y, et al. LOX index, a novel predictive biochemical marker for coronary heart disease and stroke. Clin Chem. 2010;56(4):550-8. DOI:10.1373/clinchem.2009.140707
15. Markstad H, Edsfeldt A, Yao Mattison I, et al. High Levels of Soluble Lectinlike Oxidized Low-Density Lipoprotein Receptor-1 Are Associated With Carotid Plaque Inflammation and Increased Risk of Ischemic Stroke. J Am Heart Assoc. 2019;8(4):e009874. DOI:10.1161/JAHA.118.009874
16. Skarpengland T, Skjelland M, Kong XY, et al. Increased Levels of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Ischemic Stroke and Transient Ischemic Attack. J Am Heart Assoc. 2018;7(2):e006479. DOI:10.1161/JAHA.117.006479
17. Otsuki T, Maeda S, Mukai J, et al. Association between plasma sLOX-1 concentration and arterial stiffness in middle-aged and older individuals. J Clin Biochem Nutr.
2015;57(2):151-5. DOI:10.3164/jcbn.15-27
18. Zhang Q, Chu Y, Jin G, et al. Association Between LOX-1, LAL, and ACAT1 Gene Single Nucleotide Polymorphisms and Carotid Plaque in a Northern Chinese Population. Genet Test Mol Biomarkers. 2020;24(3):138-44. DOI:10.1089/gtmb.2019.0209
19. Salehipour P, Rezagholizadeh F, Mahdiannasser M, et al. Association of OLR1 gene polymorphisms with the risk of coronary artery disease: A systematic review and meta-analysis. Heart Lung. 2021;50(2):334-43. DOI:10.1016/j.hrtlng.2021.01.015
20. Xu X, Hou X, Liang Y, et al. The gene polymorphism of LOX1 predicts the incidence of LVH in patients with essential hypertension. Cell Physiol Biochem. 2014;33(1):88-96. DOI:10.1159/000356652
21. Sheikh MSA. Circulatory soluble LOX-1 is a novel predictor for coronary artery disease patients. Cardiovasc J Afr. 2023;34(2):104-8. DOI:10.5830/CVJA-2022-038
22. Md Sayed AS, Zhao Z, Guo L, et al. Serum lectin-like oxidized-low density lipoprotein receptor-1 and adiponectin levels are associated with coronary artery disease accompanied with metabolic syndrome. Iran Red Crescent Med J. 2014;16(8):e12106. DOI:10.5812/ircmj.12106
23. Kobayashi N, Hata N, Kume N, et al. Soluble lectin-like oxidized low-density lipoprotein receptor-1 as an early biomarker for ST elevation myocardial infarction: time-dependent comparison with other biomarkers: time-dependent comparison with other biomarkers. Circ J. 2011;75(6):1433-9. DOI:10.1253/circj. cj-10-0913
24. Hussein RA, Abdul-Rasheed OF, Basheer M. Evaluation of soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) and sLOX-1/oxidized LDL ratio as novel biomarkers of acute coronary syndrome. Acta Biochim Pol. 2022;69(2):309-14. DOI:10.18388/abp.2020_5735
25. Zhao ZW, Xu YW, Li SM, et al. Baseline Serum sLOX-1 Concentrations Are Associated with 2-Year Major Adverse Cardiovascular and Cerebrovascular Events in Patients after Percutaneous Coronary Intervention. Dis Markers. 2019;2019:4925767. DOI:10.1155/2019/4925767
26. Besli F, Gullulu S, Sag S, et al. The relationship between serum lectin-like oxidized LDL receptor-1 levels and systolic heart failure. Acta Cardiol. 2016;71(2):185-90. DOI:10.2143/AC.71.2.3141848
27. Stankova TR, Delcheva GT, Maneva AI, et al. Serum Levels of Carbamylated LDL, Nitrotyrosine and Soluble Lectin-like Oxidized Low-density Lipoprotein Receptor-1 in Poorly Controlled Type 2 Diabetes Mellitus. Folia Med (Plovdiv). 2019;61(3):419-25. DOI:10.3897/folmed.61.e39343
28. Lee AS, Wang YC, Chang SS, et al. Detection of a High Ratio of Soluble to Membrane-Bound LOX-1 in Aspirated Coronary Thrombi from Patients With ST-Segment-Elevation Myocardial Infarction. J Am Heart Assoc. 2020;9(2):e014008. DOI:10.1161/JAHA.119.014008
29. Li D, Li B, Yang L, et al. Human cytomegalovirus infection is correlated with atherosclerotic plaque vulnerability in carotid artery. J Gene Med. 2020;22(10):e3236. DOI:10.1002/jgm.3236
30. Dogan I, Dogan T, Yetim M, et al. Relation of Serum ADMA, Apelin-13 and LOX-1 Levels with Inflammatory and Echocardiographic Parameters in Hemodialysis Patients. Ther Apher Dial. 2018;22(2):109-17. DOI:10.1111/1744-9987.12613
31. Taskin HE, Kocael A, Kocael P, et al. Original contribution: sleeve gastrectomy reduces soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) levels in patients with morbid obesity. Surg Endosc. 2022;36(4):2643-52. DOI:10.1007/s00464-021-08989-8
32. Vavere AL, Sinsakul M, Ongstad EL, et al. Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1 Inhibition in Type 2 Diabetes: Phase 1 Results. J Am Heart Assoc. 2023;12(3):e027540. DOI:10.1161/JAHA.122.027540
33. Sui D, Yu H. Protective roles of apremilast via Sirtuin 1 in atherosclerosis. Bioengineered. 2022;13(5):13872-81. DOI:10.1080/21655979.2022.2085390
34. Yang T, Minami M, Yoshida K, et al. Niclosamide downregulates LOX-1 expression in mouse vascular smooth muscle cells and changes the composition of atherosclerotic plaques in ApoE-/- mice. Heart Vessels. 2022;37(3):517-27. DOI:10.1007/s00380-021-01983-z
35. Liu H, Xu S, Li G, et al. Sarpogrelate and rosuvastatin synergistically ameliorate aortic damage induced by hyperlipidemia in apolipoprotein E-deficient mice. Exp Ther Med. 2020;20(6):170. DOI:10.3892/etm.2020.9300
36. Zhou S, Li Z, Liu P, et al. Donepezil Prevents ox-LDL-Induced Attachment of THP-1 Monocytes to Human Aortic Endothelial Cells (HAECs). Chem Res Toxicol. 2020;33(4):975-81. DOI:10.1021/acs.chemrestox.9b00509
37. Togami K, Zhan X, Ishizawa K, et al. Development of LOX-1 Antibody Modified Immuno-liposomes as Drug Carriers to Macrophages in Atherosclerotic Lesions. Pharmazie. 2023;78(8):113-6. DOI:10.1691/ph.2023.3004
38. Wang Z, Chen X, Liu J, et al. Inclisiran inhibits oxidized low-density lipoprotein-induced foam cell formation in Raw264.7 macrophages via activating the PPARγ pathway. Autoimmunity. 2022;55(4):223-32. DOI:10.1080/08916934.2022.2051142
39. Zhang L, Cheng L, Wang Q, et al. Atorvastatin protects cardiomyocytes from oxidative stress by inhibiting LOX-1 expression and cardiomyocyte apoptosis. Acta Biochim Biophys Sin (Shanghai). 2015;47(3):174-82. DOI:10.1093/abbs/gmu131
40. Biocca S, Iacovelli F, Matarazzo S, et al. Molecular mechanism of statin-mediated LOX-1 inhibition. Cell Cycle. 2015;14(10):1583-95. DOI:10.1080/15384101.2015.1026486
41. Xiong Q, Wang Z, Yu Y, et al. Hydrogen sulfide stabilizes atherosclerotic plaques in apolipoprotein E knockout mice. Pharmacol Res. 2019;144:90-8. DOI:10.1016/j.phrs.2019.04.006
42. Yu Z, Peng Q, Li S, et al. Myriocin and d-PDMP ameliorate atherosclerosis in ApoE-/- mice via reducing lipid uptake and vascular inflammation. Clin Sci (Lond). 2020;134(5):439-58. DOI: 10.1042/CS20191028
43. Yan L, Jia Q, Cao H, et al. Fisetin ameliorates atherosclerosis by regulating PCSK9 and LOX-1 in apoE-/- mice. Exp Ther Med. 2021;21(1):25. DOI:10.3892/etm.2020.9457
44. Chiu TH, Ku CW, Ho TJ, et al. Schisanhenol ameliorates oxLDL-caused endothelial dysfunction by inhibiting LOX-1 signaling. Environ Toxicol. 2023;38(7):1589-96. DOI:10.1002/tox.23788
45. Lee HS, Lee MJ, Kim H, et al. Curcumin inhibits TNF-alpha-induced lectin-like oxidised LDL receptor-1 (LOX-1) expression and suppresses the inflammatory response in human umbilical vein endothelial cells (HUVECs) by an antioxidant mechanism. J Enzyme Inhib Med Chem. 2010;25(5):720-9. DOI:10.3109/14756360903555274
46. Luo R, Zhao L, Li S, et al. Curcumin Alleviates Palmitic Acid-Induced LOX-1 Upregulation by Suppressing Endoplasmic Reticulum Stress in HUVECs. Biomed Res Int. 2021;2021:9983725. DOI:10.1155/2021/9983725
47. Xu S, Liu Z, Huang Y, et al. Tanshinone II-A inhibits oxidized LDL-induced LOX-1 expression in macrophages by reducing intracellular superoxide radical generation and NF-kappaB activation. Transl Res. 2012;160:114-24. DOI:10.1016/j.trsl.2012.01.008
48. Wen J, Chang Y, Huo S, et al. Tanshinone IIA attenuates atherosclerosis via inhibiting NLRP3 inflammasome activation. Aging. 2020;13:910-32. DOI:10.18632/aging.202202
49. Feng Z, Yang X, Zhang L, et al. Ginkgolide B ameliorates oxidized low-density lipoprotein-induced endothelial dysfunction via modulating Lectin-like ox-LDL-receptor-1 and NADPH oxidase 4 expression and inflammatory cascades. Phytother Res. 2018;32(12):2417-27. DOI:10.1002/ptr.6177
50. Wang G, Liu Z, Li M, et al. Ginkgolide B Mediated Alleviation of Inflammatory Cascades and Altered Lipid Metabolism in HUVECs via Targeting PCSK-9 Expression and Functionality. Biomed Res Int. 2019;2019:7284767. DOI:10.1155/2019/7284767
51. Xu Q, Li YC, Du C, et al. Effects of Apigenin on the Expression of LOX-1, Bcl-2, and Bax in Hyperlipidemia Rats. Chem Biodivers. 2021;18(8):e2100049. DOI:10.1002/cbdv.202100049
52. Bai X, Wang S, Shu L, et al. Hawthorn leaf flavonoids alleviate the deterioration of atherosclerosis by inhibiting SCAP-SREBP2-LDLR pathway through sPLA2-IIA signaling in macrophages in mice. J Ethnopharmacol. 2024;327:118006. DOI:10.1016/j.jep.2024.118006
53. Ding Y, Feng Y, Zhu W, et al. [Gly14]-Humanin Prevents Lipid Deposition and Endothelial Cell Apoptosis in a Lectin-like Oxidized Low-density Lipoprotein Receptor-1-Dependent Manner. Lipids. 2019;54(11-12):697-705. DOI:10.1002/lipd.12195
54. Yu J, Zhou L, Song H, et al. (-)-Epicatechin gallate blocked cellular foam formation in atherosclerosis by modulating CD36 expression in vitro and in vivo. Food Funct. 2023;14(5):2444-58. DOI:10.1039/d2fo03218j
55. Li Q, Liu X, Zhang X, et al. Terpene Lactucopicrin Limits Macrophage Foam Cell Formation by a Reduction of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Lipid Rafts. Mol Nutr Food Res. 2022;66(4):e2100905. DOI:10.1002/mnfr.202100905
56. Im YS, Gwon MH, Yun JM. Protective effects of phenethyl isothiocyanate on foam cell formation by combined treatment of oxidized low-density lipoprotein and lipopolysaccharide in THP-1 macrophage. Food Sci Nutr. 2021;9(6):3269-79. DOI:10.1002/fsn3.2293
57. Pengnet S, Prommaouan S, Sumarithum P, et al. Naringin Reverses High-Cholesterol Diet-Induced Vascular Dysfunction and Oxidative Stress in Rats via Regulating LOX-1 and NADPH Oxidase Subunit Expression. Biomed Res Int. 2019;2019:3708497. DOI:10.1155/2019/3708497
58. Manogaran M, Vuanghao L, Mohamed R. Gynura procumbens ethanol extract and its fractions inhibit macrophage derived foam cell formation. J Ethnopharmacol. 2020;249:112410. DOI:10.1016/j.jep.2019.112410
2. Deng P, Fu Y, Chen M, et al. Temporal trends in inequalities of the burden of cardiovascular disease across 186 countries and territories. Int J Equity Health. 2023;22(1):164. DOI:10.1186/s12939-023-01988-2
3. Silva S, Fatumo S, Nitsch D. Mendelian randomization studies on coronary artery disease: a systematic review and meta-analysis. Syst Rev. 2024;13(1):29.
DOI:10.1186/s13643-023-02442-8
4. Алиева А.М., Теплова Н.В., Батов М.А., и др. Пентраксин-3 – перспективный биологический маркер при сердечной недостаточности: литературный обзор. Consilium Medicum. 2022;24(1):53-9 [Alieva AM, Teplova NV, Batov MA, et al. Pentraxin-3 – a promising biological marker in heart failure: literature review. Consilium Medicum. 2022;24(1):53-9 (in Russian)]. DOI:10.26442/20751753.2022.1.201382
5. Алиева А.М., Резник Е.В., Пинчук Т.В., и др. Фактор дифференцировки роста-15 (GDF-15) как биологический маркер при сердечной недостаточности. Архивъ внутренней медицины. 2023;13(1):14-23 [Alieva AM, Reznik EV, Pinchuk TV, et al. Growth Differentiation Factor-15 (GDF-15) is a Biological Marker in Heart Failure. The Russian Archives of Internal Medicine. 2023;13(1):14-23 (in Russian)]. DOI:10.20514/2226-6704-2023-13-1-14-23
6. Алиева А.М., Теплова Н.В., Кисляков В.А., и др. Биомаркеры в кардиологии: микроРНК и сердечная недостаточность. Терапия. 2022;1:60-70 [Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkery v kardiologii: mikroRNK i serdechnaya nedostatochnost'. Terapiya. 2022;1:60-70 (in Russian)]. DOI:10.18565/therapy.2022.1.60-70
7. Lubrano V, Balzan S, Papa A. LOX-1 variants modulate the severity of cardiovascular disease: state of the art and future directions. Mol Cell Biochem. Epub 2023 Oct 3. DOI:10.1007/s11010-023-04859-0
8. Sánchez-León ME, Loaeza-Reyes KJ, Matias-Cervantes CA, et al. LOX-1 in Cardiovascular Disease: A Comprehensive Molecular and Clinical Review. Int J Mol Sci. 2024;25(10):5276. DOI:10.3390/ijms25105276
9. Bagheri B, Khatibiyan Feyzabadi Z, Nouri A, et al. Atherosclerosis and Toll-Like Receptor4 (TLR4), Lectin-Like Oxidized Low-Density Lipoprotein-1 (LOX-1), and Proprotein Convertase Subtilisin/Kexin Type9 (PCSK9). Mediators Inflamm. 2024;2024:5830491. DOI:10.1155/2024/5830491
10. Truthe S, Klassert TE, Schmelz S, et al. Role of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Inflammation and Pathogen-Associated Interactions. J Innate Immun. 2024;16(1):105-32. DOI:10.1159/000535793
11. Pyrpyris N, Dimitriadis K, Beneki E, et al. LOX-1 Receptor: A Diagnostic Tool and Therapeutic Target in Atherogenesis. Curr Probl Cardiol. 2024;49(1 Pt. C):102117. DOI:10.1016/j.cpcardiol.2023.102117
12. Munno M, Mallia A, Greco A, et al. Radical Oxygen Species, Oxidized Low-Density Lipoproteins, and Lectin-like Oxidized Low-Density Lipoprotein Receptor 1: A Vicious Circle in Atherosclerotic Process. Antioxidants (Basel). 2024;13(5):583. DOI:10.3390/antiox13050583
13. Barreto J, Karathanasis SK, Remaley A, et al. Role of LOX-1 (Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1) as a Cardiovascular Risk Predictor: Mechanistic Insight and Potential Clinical Use. Arterioscler Thromb Vasc Biol. 2021;41(1):153-66. DOI:10.1161/ATVBAHA.120.315421
14. Inoue N, Okamura T, Kokubo Y, et al. LOX index, a novel predictive biochemical marker for coronary heart disease and stroke. Clin Chem. 2010;56(4):550-8. DOI:10.1373/clinchem.2009.140707
15. Markstad H, Edsfeldt A, Yao Mattison I, et al. High Levels of Soluble Lectinlike Oxidized Low-Density Lipoprotein Receptor-1 Are Associated With Carotid Plaque Inflammation and Increased Risk of Ischemic Stroke. J Am Heart Assoc. 2019;8(4):e009874. DOI:10.1161/JAHA.118.009874
16. Skarpengland T, Skjelland M, Kong XY, et al. Increased Levels of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Ischemic Stroke and Transient Ischemic Attack. J Am Heart Assoc. 2018;7(2):e006479. DOI:10.1161/JAHA.117.006479
17. Otsuki T, Maeda S, Mukai J, et al. Association between plasma sLOX-1 concentration and arterial stiffness in middle-aged and older individuals. J Clin Biochem Nutr.
2015;57(2):151-5. DOI:10.3164/jcbn.15-27
18. Zhang Q, Chu Y, Jin G, et al. Association Between LOX-1, LAL, and ACAT1 Gene Single Nucleotide Polymorphisms and Carotid Plaque in a Northern Chinese Population. Genet Test Mol Biomarkers. 2020;24(3):138-44. DOI:10.1089/gtmb.2019.0209
19. Salehipour P, Rezagholizadeh F, Mahdiannasser M, et al. Association of OLR1 gene polymorphisms with the risk of coronary artery disease: A systematic review and meta-analysis. Heart Lung. 2021;50(2):334-43. DOI:10.1016/j.hrtlng.2021.01.015
20. Xu X, Hou X, Liang Y, et al. The gene polymorphism of LOX1 predicts the incidence of LVH in patients with essential hypertension. Cell Physiol Biochem. 2014;33(1):88-96. DOI:10.1159/000356652
21. Sheikh MSA. Circulatory soluble LOX-1 is a novel predictor for coronary artery disease patients. Cardiovasc J Afr. 2023;34(2):104-8. DOI:10.5830/CVJA-2022-038
22. Md Sayed AS, Zhao Z, Guo L, et al. Serum lectin-like oxidized-low density lipoprotein receptor-1 and adiponectin levels are associated with coronary artery disease accompanied with metabolic syndrome. Iran Red Crescent Med J. 2014;16(8):e12106. DOI:10.5812/ircmj.12106
23. Kobayashi N, Hata N, Kume N, et al. Soluble lectin-like oxidized low-density lipoprotein receptor-1 as an early biomarker for ST elevation myocardial infarction: time-dependent comparison with other biomarkers: time-dependent comparison with other biomarkers. Circ J. 2011;75(6):1433-9. DOI:10.1253/circj. cj-10-0913
24. Hussein RA, Abdul-Rasheed OF, Basheer M. Evaluation of soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) and sLOX-1/oxidized LDL ratio as novel biomarkers of acute coronary syndrome. Acta Biochim Pol. 2022;69(2):309-14. DOI:10.18388/abp.2020_5735
25. Zhao ZW, Xu YW, Li SM, et al. Baseline Serum sLOX-1 Concentrations Are Associated with 2-Year Major Adverse Cardiovascular and Cerebrovascular Events in Patients after Percutaneous Coronary Intervention. Dis Markers. 2019;2019:4925767. DOI:10.1155/2019/4925767
26. Besli F, Gullulu S, Sag S, et al. The relationship between serum lectin-like oxidized LDL receptor-1 levels and systolic heart failure. Acta Cardiol. 2016;71(2):185-90. DOI:10.2143/AC.71.2.3141848
27. Stankova TR, Delcheva GT, Maneva AI, et al. Serum Levels of Carbamylated LDL, Nitrotyrosine and Soluble Lectin-like Oxidized Low-density Lipoprotein Receptor-1 in Poorly Controlled Type 2 Diabetes Mellitus. Folia Med (Plovdiv). 2019;61(3):419-25. DOI:10.3897/folmed.61.e39343
28. Lee AS, Wang YC, Chang SS, et al. Detection of a High Ratio of Soluble to Membrane-Bound LOX-1 in Aspirated Coronary Thrombi from Patients With ST-Segment-Elevation Myocardial Infarction. J Am Heart Assoc. 2020;9(2):e014008. DOI:10.1161/JAHA.119.014008
29. Li D, Li B, Yang L, et al. Human cytomegalovirus infection is correlated with atherosclerotic plaque vulnerability in carotid artery. J Gene Med. 2020;22(10):e3236. DOI:10.1002/jgm.3236
30. Dogan I, Dogan T, Yetim M, et al. Relation of Serum ADMA, Apelin-13 and LOX-1 Levels with Inflammatory and Echocardiographic Parameters in Hemodialysis Patients. Ther Apher Dial. 2018;22(2):109-17. DOI:10.1111/1744-9987.12613
31. Taskin HE, Kocael A, Kocael P, et al. Original contribution: sleeve gastrectomy reduces soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) levels in patients with morbid obesity. Surg Endosc. 2022;36(4):2643-52. DOI:10.1007/s00464-021-08989-8
32. Vavere AL, Sinsakul M, Ongstad EL, et al. Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1 Inhibition in Type 2 Diabetes: Phase 1 Results. J Am Heart Assoc. 2023;12(3):e027540. DOI:10.1161/JAHA.122.027540
33. Sui D, Yu H. Protective roles of apremilast via Sirtuin 1 in atherosclerosis. Bioengineered. 2022;13(5):13872-81. DOI:10.1080/21655979.2022.2085390
34. Yang T, Minami M, Yoshida K, et al. Niclosamide downregulates LOX-1 expression in mouse vascular smooth muscle cells and changes the composition of atherosclerotic plaques in ApoE-/- mice. Heart Vessels. 2022;37(3):517-27. DOI:10.1007/s00380-021-01983-z
35. Liu H, Xu S, Li G, et al. Sarpogrelate and rosuvastatin synergistically ameliorate aortic damage induced by hyperlipidemia in apolipoprotein E-deficient mice. Exp Ther Med. 2020;20(6):170. DOI:10.3892/etm.2020.9300
36. Zhou S, Li Z, Liu P, et al. Donepezil Prevents ox-LDL-Induced Attachment of THP-1 Monocytes to Human Aortic Endothelial Cells (HAECs). Chem Res Toxicol. 2020;33(4):975-81. DOI:10.1021/acs.chemrestox.9b00509
37. Togami K, Zhan X, Ishizawa K, et al. Development of LOX-1 Antibody Modified Immuno-liposomes as Drug Carriers to Macrophages in Atherosclerotic Lesions. Pharmazie. 2023;78(8):113-6. DOI:10.1691/ph.2023.3004
38. Wang Z, Chen X, Liu J, et al. Inclisiran inhibits oxidized low-density lipoprotein-induced foam cell formation in Raw264.7 macrophages via activating the PPARγ pathway. Autoimmunity. 2022;55(4):223-32. DOI:10.1080/08916934.2022.2051142
39. Zhang L, Cheng L, Wang Q, et al. Atorvastatin protects cardiomyocytes from oxidative stress by inhibiting LOX-1 expression and cardiomyocyte apoptosis. Acta Biochim Biophys Sin (Shanghai). 2015;47(3):174-82. DOI:10.1093/abbs/gmu131
40. Biocca S, Iacovelli F, Matarazzo S, et al. Molecular mechanism of statin-mediated LOX-1 inhibition. Cell Cycle. 2015;14(10):1583-95. DOI:10.1080/15384101.2015.1026486
41. Xiong Q, Wang Z, Yu Y, et al. Hydrogen sulfide stabilizes atherosclerotic plaques in apolipoprotein E knockout mice. Pharmacol Res. 2019;144:90-8. DOI:10.1016/j.phrs.2019.04.006
42. Yu Z, Peng Q, Li S, et al. Myriocin and d-PDMP ameliorate atherosclerosis in ApoE-/- mice via reducing lipid uptake and vascular inflammation. Clin Sci (Lond). 2020;134(5):439-58. DOI: 10.1042/CS20191028
43. Yan L, Jia Q, Cao H, et al. Fisetin ameliorates atherosclerosis by regulating PCSK9 and LOX-1 in apoE-/- mice. Exp Ther Med. 2021;21(1):25. DOI:10.3892/etm.2020.9457
44. Chiu TH, Ku CW, Ho TJ, et al. Schisanhenol ameliorates oxLDL-caused endothelial dysfunction by inhibiting LOX-1 signaling. Environ Toxicol. 2023;38(7):1589-96. DOI:10.1002/tox.23788
45. Lee HS, Lee MJ, Kim H, et al. Curcumin inhibits TNF-alpha-induced lectin-like oxidised LDL receptor-1 (LOX-1) expression and suppresses the inflammatory response in human umbilical vein endothelial cells (HUVECs) by an antioxidant mechanism. J Enzyme Inhib Med Chem. 2010;25(5):720-9. DOI:10.3109/14756360903555274
46. Luo R, Zhao L, Li S, et al. Curcumin Alleviates Palmitic Acid-Induced LOX-1 Upregulation by Suppressing Endoplasmic Reticulum Stress in HUVECs. Biomed Res Int. 2021;2021:9983725. DOI:10.1155/2021/9983725
47. Xu S, Liu Z, Huang Y, et al. Tanshinone II-A inhibits oxidized LDL-induced LOX-1 expression in macrophages by reducing intracellular superoxide radical generation and NF-kappaB activation. Transl Res. 2012;160:114-24. DOI:10.1016/j.trsl.2012.01.008
48. Wen J, Chang Y, Huo S, et al. Tanshinone IIA attenuates atherosclerosis via inhibiting NLRP3 inflammasome activation. Aging. 2020;13:910-32. DOI:10.18632/aging.202202
49. Feng Z, Yang X, Zhang L, et al. Ginkgolide B ameliorates oxidized low-density lipoprotein-induced endothelial dysfunction via modulating Lectin-like ox-LDL-receptor-1 and NADPH oxidase 4 expression and inflammatory cascades. Phytother Res. 2018;32(12):2417-27. DOI:10.1002/ptr.6177
50. Wang G, Liu Z, Li M, et al. Ginkgolide B Mediated Alleviation of Inflammatory Cascades and Altered Lipid Metabolism in HUVECs via Targeting PCSK-9 Expression and Functionality. Biomed Res Int. 2019;2019:7284767. DOI:10.1155/2019/7284767
51. Xu Q, Li YC, Du C, et al. Effects of Apigenin on the Expression of LOX-1, Bcl-2, and Bax in Hyperlipidemia Rats. Chem Biodivers. 2021;18(8):e2100049. DOI:10.1002/cbdv.202100049
52. Bai X, Wang S, Shu L, et al. Hawthorn leaf flavonoids alleviate the deterioration of atherosclerosis by inhibiting SCAP-SREBP2-LDLR pathway through sPLA2-IIA signaling in macrophages in mice. J Ethnopharmacol. 2024;327:118006. DOI:10.1016/j.jep.2024.118006
53. Ding Y, Feng Y, Zhu W, et al. [Gly14]-Humanin Prevents Lipid Deposition and Endothelial Cell Apoptosis in a Lectin-like Oxidized Low-density Lipoprotein Receptor-1-Dependent Manner. Lipids. 2019;54(11-12):697-705. DOI:10.1002/lipd.12195
54. Yu J, Zhou L, Song H, et al. (-)-Epicatechin gallate blocked cellular foam formation in atherosclerosis by modulating CD36 expression in vitro and in vivo. Food Funct. 2023;14(5):2444-58. DOI:10.1039/d2fo03218j
55. Li Q, Liu X, Zhang X, et al. Terpene Lactucopicrin Limits Macrophage Foam Cell Formation by a Reduction of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Lipid Rafts. Mol Nutr Food Res. 2022;66(4):e2100905. DOI:10.1002/mnfr.202100905
56. Im YS, Gwon MH, Yun JM. Protective effects of phenethyl isothiocyanate on foam cell formation by combined treatment of oxidized low-density lipoprotein and lipopolysaccharide in THP-1 macrophage. Food Sci Nutr. 2021;9(6):3269-79. DOI:10.1002/fsn3.2293
57. Pengnet S, Prommaouan S, Sumarithum P, et al. Naringin Reverses High-Cholesterol Diet-Induced Vascular Dysfunction and Oxidative Stress in Rats via Regulating LOX-1 and NADPH Oxidase Subunit Expression. Biomed Res Int. 2019;2019:3708497. DOI:10.1155/2019/3708497
58. Manogaran M, Vuanghao L, Mohamed R. Gynura procumbens ethanol extract and its fractions inhibit macrophage derived foam cell formation. J Ethnopharmacol. 2020;249:112410. DOI:10.1016/j.jep.2019.112410
________________________________________________
2. Deng P, Fu Y, Chen M, et al. Temporal trends in inequalities of the burden of cardiovascular disease across 186 countries and territories. Int J Equity Health. 2023;22(1):164. DOI:10.1186/s12939-023-01988-2
3. Silva S, Fatumo S, Nitsch D. Mendelian randomization studies on coronary artery disease: a systematic review and meta-analysis. Syst Rev. 2024;13(1):29.
DOI:10.1186/s13643-023-02442-8
4. Alieva AM, Teplova NV, Batov MA, et al. Pentraxin-3 – a promising biological marker in heart failure: literature review. Consilium Medicum. 2022;24(1):53-9 (in Russian). DOI:10.26442/20751753.2022.1.201382
5. Alieva AM, Reznik EV, Pinchuk TV, et al. Growth Differentiation Factor-15 (GDF-15) is a Biological Marker in Heart Failure. The Russian Archives of Internal Medicine. 2023;13(1):14-23 (in Russian). DOI:10.20514/2226-6704-2023-13-1-14-23
6. Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkery v kardiologii: mikroRNK i serdechnaya nedostatochnost'. Terapiya. 2022;1:60-70 (in Russian).
DOI:10.18565/therapy.2022.1.60-70
7. Lubrano V, Balzan S, Papa A. LOX-1 variants modulate the severity of cardiovascular disease: state of the art and future directions. Mol Cell Biochem. Epub 2023 Oct 3. DOI:10.1007/s11010-023-04859-0
8. Sánchez-León ME, Loaeza-Reyes KJ, Matias-Cervantes CA, et al. LOX-1 in Cardiovascular Disease: A Comprehensive Molecular and Clinical Review. Int J Mol Sci. 2024;25(10):5276. DOI:10.3390/ijms25105276
9. Bagheri B, Khatibiyan Feyzabadi Z, Nouri A, et al. Atherosclerosis and Toll-Like Receptor4 (TLR4), Lectin-Like Oxidized Low-Density Lipoprotein-1 (LOX-1), and Proprotein Convertase Subtilisin/Kexin Type9 (PCSK9). Mediators Inflamm. 2024;2024:5830491. DOI:10.1155/2024/5830491
10. Truthe S, Klassert TE, Schmelz S, et al. Role of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Inflammation and Pathogen-Associated Interactions. J Innate Immun. 2024;16(1):105-32. DOI:10.1159/000535793
11. Pyrpyris N, Dimitriadis K, Beneki E, et al. LOX-1 Receptor: A Diagnostic Tool and Therapeutic Target in Atherogenesis. Curr Probl Cardiol. 2024;49(1 Pt. C):102117. DOI:10.1016/j.cpcardiol.2023.102117
12. Munno M, Mallia A, Greco A, et al. Radical Oxygen Species, Oxidized Low-Density Lipoproteins, and Lectin-like Oxidized Low-Density Lipoprotein Receptor 1: A Vicious Circle in Atherosclerotic Process. Antioxidants (Basel). 2024;13(5):583. DOI:10.3390/antiox13050583
13. Barreto J, Karathanasis SK, Remaley A, et al. Role of LOX-1 (Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1) as a Cardiovascular Risk Predictor: Mechanistic Insight and Potential Clinical Use. Arterioscler Thromb Vasc Biol. 2021;41(1):153-66. DOI:10.1161/ATVBAHA.120.315421
14. Inoue N, Okamura T, Kokubo Y, et al. LOX index, a novel predictive biochemical marker for coronary heart disease and stroke. Clin Chem. 2010;56(4):550-8. DOI:10.1373/clinchem.2009.140707
15. Markstad H, Edsfeldt A, Yao Mattison I, et al. High Levels of Soluble Lectinlike Oxidized Low-Density Lipoprotein Receptor-1 Are Associated With Carotid Plaque Inflammation and Increased Risk of Ischemic Stroke. J Am Heart Assoc. 2019;8(4):e009874. DOI:10.1161/JAHA.118.009874
16. Skarpengland T, Skjelland M, Kong XY, et al. Increased Levels of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Ischemic Stroke and Transient Ischemic Attack. J Am Heart Assoc. 2018;7(2):e006479. DOI:10.1161/JAHA.117.006479
17. Otsuki T, Maeda S, Mukai J, et al. Association between plasma sLOX-1 concentration and arterial stiffness in middle-aged and older individuals. J Clin Biochem Nutr.
2015;57(2):151-5. DOI:10.3164/jcbn.15-27
18. Zhang Q, Chu Y, Jin G, et al. Association Between LOX-1, LAL, and ACAT1 Gene Single Nucleotide Polymorphisms and Carotid Plaque in a Northern Chinese Population. Genet Test Mol Biomarkers. 2020;24(3):138-44. DOI:10.1089/gtmb.2019.0209
19. Salehipour P, Rezagholizadeh F, Mahdiannasser M, et al. Association of OLR1 gene polymorphisms with the risk of coronary artery disease: A systematic review and meta-analysis. Heart Lung. 2021;50(2):334-43. DOI:10.1016/j.hrtlng.2021.01.015
20. Xu X, Hou X, Liang Y, et al. The gene polymorphism of LOX1 predicts the incidence of LVH in patients with essential hypertension. Cell Physiol Biochem. 2014;33(1):88-96. DOI:10.1159/000356652
21. Sheikh MSA. Circulatory soluble LOX-1 is a novel predictor for coronary artery disease patients. Cardiovasc J Afr. 2023;34(2):104-8. DOI:10.5830/CVJA-2022-038
22. Md Sayed AS, Zhao Z, Guo L, et al. Serum lectin-like oxidized-low density lipoprotein receptor-1 and adiponectin levels are associated with coronary artery disease accompanied with metabolic syndrome. Iran Red Crescent Med J. 2014;16(8):e12106. DOI:10.5812/ircmj.12106
23. Kobayashi N, Hata N, Kume N, et al. Soluble lectin-like oxidized low-density lipoprotein receptor-1 as an early biomarker for ST elevation myocardial infarction: time-dependent comparison with other biomarkers: time-dependent comparison with other biomarkers. Circ J. 2011;75(6):1433-9. DOI:10.1253/circj. cj-10-0913
24. Hussein RA, Abdul-Rasheed OF, Basheer M. Evaluation of soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) and sLOX-1/oxidized LDL ratio as novel biomarkers of acute coronary syndrome. Acta Biochim Pol. 2022;69(2):309-14. DOI:10.18388/abp.2020_5735
25. Zhao ZW, Xu YW, Li SM, et al. Baseline Serum sLOX-1 Concentrations Are Associated with 2-Year Major Adverse Cardiovascular and Cerebrovascular Events in Patients after Percutaneous Coronary Intervention. Dis Markers. 2019;2019:4925767. DOI:10.1155/2019/4925767
26. Besli F, Gullulu S, Sag S, et al. The relationship between serum lectin-like oxidized LDL receptor-1 levels and systolic heart failure. Acta Cardiol. 2016;71(2):185-90. DOI:10.2143/AC.71.2.3141848
27. Stankova TR, Delcheva GT, Maneva AI, et al. Serum Levels of Carbamylated LDL, Nitrotyrosine and Soluble Lectin-like Oxidized Low-density Lipoprotein Receptor-1 in Poorly Controlled Type 2 Diabetes Mellitus. Folia Med (Plovdiv). 2019;61(3):419-25. DOI:10.3897/folmed.61.e39343
28. Lee AS, Wang YC, Chang SS, et al. Detection of a High Ratio of Soluble to Membrane-Bound LOX-1 in Aspirated Coronary Thrombi from Patients With ST-Segment-Elevation Myocardial Infarction. J Am Heart Assoc. 2020;9(2):e014008. DOI:10.1161/JAHA.119.014008
29. Li D, Li B, Yang L, et al. Human cytomegalovirus infection is correlated with atherosclerotic plaque vulnerability in carotid artery. J Gene Med. 2020;22(10):e3236. DOI:10.1002/jgm.3236
30. Dogan I, Dogan T, Yetim M, et al. Relation of Serum ADMA, Apelin-13 and LOX-1 Levels with Inflammatory and Echocardiographic Parameters in Hemodialysis Patients. Ther Apher Dial. 2018;22(2):109-17. DOI:10.1111/1744-9987.12613
31. Taskin HE, Kocael A, Kocael P, et al. Original contribution: sleeve gastrectomy reduces soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) levels in patients with morbid obesity. Surg Endosc. 2022;36(4):2643-52. DOI:10.1007/s00464-021-08989-8
32. Vavere AL, Sinsakul M, Ongstad EL, et al. Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1 Inhibition in Type 2 Diabetes: Phase 1 Results. J Am Heart Assoc. 2023;12(3):e027540. DOI:10.1161/JAHA.122.027540
33. Sui D, Yu H. Protective roles of apremilast via Sirtuin 1 in atherosclerosis. Bioengineered. 2022;13(5):13872-81. DOI:10.1080/21655979.2022.2085390
34. Yang T, Minami M, Yoshida K, et al. Niclosamide downregulates LOX-1 expression in mouse vascular smooth muscle cells and changes the composition of atherosclerotic plaques in ApoE-/- mice. Heart Vessels. 2022;37(3):517-27. DOI:10.1007/s00380-021-01983-z
35. Liu H, Xu S, Li G, et al. Sarpogrelate and rosuvastatin synergistically ameliorate aortic damage induced by hyperlipidemia in apolipoprotein E-deficient mice. Exp Ther Med. 2020;20(6):170. DOI:10.3892/etm.2020.9300
36. Zhou S, Li Z, Liu P, et al. Donepezil Prevents ox-LDL-Induced Attachment of THP-1 Monocytes to Human Aortic Endothelial Cells (HAECs). Chem Res Toxicol. 2020;33(4):975-81. DOI:10.1021/acs.chemrestox.9b00509
37. Togami K, Zhan X, Ishizawa K, et al. Development of LOX-1 Antibody Modified Immuno-liposomes as Drug Carriers to Macrophages in Atherosclerotic Lesions. Pharmazie. 2023;78(8):113-6. DOI:10.1691/ph.2023.3004
38. Wang Z, Chen X, Liu J, et al. Inclisiran inhibits oxidized low-density lipoprotein-induced foam cell formation in Raw264.7 macrophages via activating the PPARγ pathway. Autoimmunity. 2022;55(4):223-32. DOI:10.1080/08916934.2022.2051142
39. Zhang L, Cheng L, Wang Q, et al. Atorvastatin protects cardiomyocytes from oxidative stress by inhibiting LOX-1 expression and cardiomyocyte apoptosis. Acta Biochim Biophys Sin (Shanghai). 2015;47(3):174-82. DOI:10.1093/abbs/gmu131
40. Biocca S, Iacovelli F, Matarazzo S, et al. Molecular mechanism of statin-mediated LOX-1 inhibition. Cell Cycle. 2015;14(10):1583-95. DOI:10.1080/15384101.2015.1026486
41. Xiong Q, Wang Z, Yu Y, et al. Hydrogen sulfide stabilizes atherosclerotic plaques in apolipoprotein E knockout mice. Pharmacol Res. 2019;144:90-8. DOI:10.1016/j.phrs.2019.04.006
42. Yu Z, Peng Q, Li S, et al. Myriocin and d-PDMP ameliorate atherosclerosis in ApoE-/- mice via reducing lipid uptake and vascular inflammation. Clin Sci (Lond). 2020;134(5):439-58. DOI: 10.1042/CS20191028
43. Yan L, Jia Q, Cao H, et al. Fisetin ameliorates atherosclerosis by regulating PCSK9 and LOX-1 in apoE-/- mice. Exp Ther Med. 2021;21(1):25. DOI:10.3892/etm.2020.9457
44. Chiu TH, Ku CW, Ho TJ, et al. Schisanhenol ameliorates oxLDL-caused endothelial dysfunction by inhibiting LOX-1 signaling. Environ Toxicol. 2023;38(7):1589-96. DOI:10.1002/tox.23788
45. Lee HS, Lee MJ, Kim H, et al. Curcumin inhibits TNF-alpha-induced lectin-like oxidised LDL receptor-1 (LOX-1) expression and suppresses the inflammatory response in human umbilical vein endothelial cells (HUVECs) by an antioxidant mechanism. J Enzyme Inhib Med Chem. 2010;25(5):720-9. DOI:10.3109/14756360903555274
46. Luo R, Zhao L, Li S, et al. Curcumin Alleviates Palmitic Acid-Induced LOX-1 Upregulation by Suppressing Endoplasmic Reticulum Stress in HUVECs. Biomed Res Int. 2021;2021:9983725. DOI:10.1155/2021/9983725
47. Xu S, Liu Z, Huang Y, et al. Tanshinone II-A inhibits oxidized LDL-induced LOX-1 expression in macrophages by reducing intracellular superoxide radical generation and NF-kappaB activation. Transl Res. 2012;160:114-24. DOI:10.1016/j.trsl.2012.01.008
48. Wen J, Chang Y, Huo S, et al. Tanshinone IIA attenuates atherosclerosis via inhibiting NLRP3 inflammasome activation. Aging. 2020;13:910-32. DOI:10.18632/aging.202202
49. Feng Z, Yang X, Zhang L, et al. Ginkgolide B ameliorates oxidized low-density lipoprotein-induced endothelial dysfunction via modulating Lectin-like ox-LDL-receptor-1 and NADPH oxidase 4 expression and inflammatory cascades. Phytother Res. 2018;32(12):2417-27. DOI:10.1002/ptr.6177
50. Wang G, Liu Z, Li M, et al. Ginkgolide B Mediated Alleviation of Inflammatory Cascades and Altered Lipid Metabolism in HUVECs via Targeting PCSK-9 Expression and Functionality. Biomed Res Int. 2019;2019:7284767. DOI:10.1155/2019/7284767
51. Xu Q, Li YC, Du C, et al. Effects of Apigenin on the Expression of LOX-1, Bcl-2, and Bax in Hyperlipidemia Rats. Chem Biodivers. 2021;18(8):e2100049. DOI:10.1002/cbdv.202100049
52. Bai X, Wang S, Shu L, et al. Hawthorn leaf flavonoids alleviate the deterioration of atherosclerosis by inhibiting SCAP-SREBP2-LDLR pathway through sPLA2-IIA signaling in macrophages in mice. J Ethnopharmacol. 2024;327:118006. DOI:10.1016/j.jep.2024.118006
53. Ding Y, Feng Y, Zhu W, et al. [Gly14]-Humanin Prevents Lipid Deposition and Endothelial Cell Apoptosis in a Lectin-like Oxidized Low-density Lipoprotein Receptor-1-Dependent Manner. Lipids. 2019;54(11-12):697-705. DOI:10.1002/lipd.12195
54. Yu J, Zhou L, Song H, et al. (-)-Epicatechin gallate blocked cellular foam formation in atherosclerosis by modulating CD36 expression in vitro and in vivo. Food Funct. 2023;14(5):2444-58. DOI:10.1039/d2fo03218j
55. Li Q, Liu X, Zhang X, et al. Terpene Lactucopicrin Limits Macrophage Foam Cell Formation by a Reduction of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Lipid Rafts. Mol Nutr Food Res. 2022;66(4):e2100905. DOI:10.1002/mnfr.202100905
56. Im YS, Gwon MH, Yun JM. Protective effects of phenethyl isothiocyanate on foam cell formation by combined treatment of oxidized low-density lipoprotein and lipopolysaccharide in THP-1 macrophage. Food Sci Nutr. 2021;9(6):3269-79. DOI:10.1002/fsn3.2293
57. Pengnet S, Prommaouan S, Sumarithum P, et al. Naringin Reverses High-Cholesterol Diet-Induced Vascular Dysfunction and Oxidative Stress in Rats via Regulating LOX-1 and NADPH Oxidase Subunit Expression. Biomed Res Int. 2019;2019:3708497. DOI:10.1155/2019/3708497
58. Manogaran M, Vuanghao L, Mohamed R. Gynura procumbens ethanol extract and its fractions inhibit macrophage derived foam cell formation. J Ethnopharmacol. 2020;249:112410. DOI:10.1016/j.jep.2019.112410
Авторы
А.М. Алиева*1, И.Е. Байкова1, Е.В. Резник1, Н.В. Теплова1, Р.К. Валиев2, М.Х. Гызыева3, А.Б. Султангалиева1, И.А. Котикова1, Н.А. Новикова4, С.А. Корвяков4, И.Г. Никитин1
1ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия;
2ГБУЗ «Московский клинический научно-практический центр им. А.С. Логинова» Департамента здравоохранения г. Москвы, Москва, Россия;
3Пятигорский медико-фармацевтический институт – филиал ФГБОУ ВО «Волгоградский государственный медицинский университет» Минздрава России, Пятигорск, Россия;
4ФГБНУ «Российский научный центр хирургии им. акад. Б.В. Петровского», Москва, Россия
*amisha_alieva@mail.ru
1Pirogov Russian National Research Medical University, Moscow, Russia;
2Loginov Moscow Clinical Scientific Center, Moscow, Russia;
3Pyatigorsk Medical and Pharmaceutical Institute – branch of the Volgograd State Medical University, Pyatigorsk, Russia;
4Petrovsky National Research Centre of Surgery, Moscow, Russia
*amisha_alieva@mail.ru
1ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия;
2ГБУЗ «Московский клинический научно-практический центр им. А.С. Логинова» Департамента здравоохранения г. Москвы, Москва, Россия;
3Пятигорский медико-фармацевтический институт – филиал ФГБОУ ВО «Волгоградский государственный медицинский университет» Минздрава России, Пятигорск, Россия;
4ФГБНУ «Российский научный центр хирургии им. акад. Б.В. Петровского», Москва, Россия
*amisha_alieva@mail.ru
________________________________________________
1Pirogov Russian National Research Medical University, Moscow, Russia;
2Loginov Moscow Clinical Scientific Center, Moscow, Russia;
3Pyatigorsk Medical and Pharmaceutical Institute – branch of the Volgograd State Medical University, Pyatigorsk, Russia;
4Petrovsky National Research Centre of Surgery, Moscow, Russia
*amisha_alieva@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
