Сердечно-сосудистые заболевания (ССЗ) представляют собой глобальную медицинскую, социальную и экономическую проблему. В настоящее время продолжаются поиск и изучение новых биологических маркеров, способных обеспечить раннюю диагностику ССЗ, служить лабораторным инструментом оценки эффективности проводимого лечения или использоваться в качестве прогностических маркеров и критериев стратификации риска. Интерес ученых сосредоточен на изучении лектиноподобного рецептора 1-го типа для окисленных липопротеидов низкой плотности (LOX-1) в качестве диагностического и прогностического маркера при ССЗ. В представленном литературном обзоре подчеркивается потенциальная значимость исследования LOX-1 как диагностического и прогностического лабораторного инструмента при ССЗ. Предполагается, что будущие клинические и экспериментальные исследования подтвердят возможность применения LOX-1 в качестве дополнительного неинвазивного инструмента для диагностики и оценки прогноза у пациентов с ССЗ. Модуляция уровней и экспрессии LOX-1 с использованием фармакологических препаратов может оказаться перспективным направлением для терапии ССЗ.
Cardiovascular diseases (CVD) are a global medical, social and economic problem. Currently, the search and study of new biological markers that can provide early diagnosis of CVD, serve as a laboratory tool for evaluating the effectiveness of treatment or be used as prognostic markers and criteria for risk stratification continues. The interest of scientists is focused on the study of the type 1 lectin-like receptor for oxidized low-density lipoproteins (LOX-1) as a diagnostic and prognostic marker in CVD. The presented literature review highlights the potential significance of the LOX-1 study as a diagnostic and prognostic laboratory tool in CVD. It is expected that future clinical and experimental studies will confirm the possibility of using LOX-1 as an additional non-invasive tool for diagnosis and prognosis assessment in patients with CVD. Modulation of LOX-1 levels and expression using pharmacological drugs may prove to be a promising direction for the treatment of CVD.
1. Roth GA, Mensah GA, Johnson CO, et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update from the GBD 2019 Study. J Am Coll Cardiol. 2020;76(25):2982-3021. DOI:10.1016/j.jacc.2020.11.010
2. Deng P, Fu Y, Chen M, et al. Temporal trends in inequalities of the burden of cardiovascular disease across 186 countries and territories. Int J Equity Health. 2023;22(1):164. DOI:10.1186/s12939-023-01988-2
3. Silva S, Fatumo S, Nitsch D. Mendelian randomization studies on coronary artery disease: a systematic review and meta-analysis. Syst Rev. 2024;13(1):29.
DOI:10.1186/s13643-023-02442-8
4. Алиева А.М., Теплова Н.В., Батов М.А., и др. Пентраксин-3 – перспективный биологический маркер при сердечной недостаточности: литературный обзор. Consilium Medicum. 2022;24(1):53-9 [Alieva AM, Teplova NV, Batov MA, et al. Pentraxin-3 – a promising biological marker in heart failure: literature review. Consilium Medicum. 2022;24(1):53-9 (in Russian)]. DOI:10.26442/20751753.2022.1.201382
5. Алиева А.М., Резник Е.В., Пинчук Т.В., и др. Фактор дифференцировки роста-15 (GDF-15) как биологический маркер при сердечной недостаточности. Архивъ внутренней медицины. 2023;13(1):14-23 [Alieva AM, Reznik EV, Pinchuk TV, et al. Growth Differentiation Factor-15 (GDF-15) is a Biological Marker in Heart Failure. The Russian Archives of Internal Medicine. 2023;13(1):14-23 (in Russian)]. DOI:10.20514/2226-6704-2023-13-1-14-23
6. Алиева А.М., Теплова Н.В., Кисляков В.А., и др. Биомаркеры в кардиологии: микроРНК и сердечная недостаточность. Терапия. 2022;1:60-70 [Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkery v kardiologii: mikroRNK i serdechnaya nedostatochnost'. Terapiya. 2022;1:60-70 (in Russian)]. DOI:10.18565/therapy.2022.1.60-70
7. Lubrano V, Balzan S, Papa A. LOX-1 variants modulate the severity of cardiovascular disease: state of the art and future directions. Mol Cell Biochem. Epub 2023 Oct 3. DOI:10.1007/s11010-023-04859-0
8. Sánchez-León ME, Loaeza-Reyes KJ, Matias-Cervantes CA, et al. LOX-1 in Cardiovascular Disease: A Comprehensive Molecular and Clinical Review. Int J Mol Sci. 2024;25(10):5276. DOI:10.3390/ijms25105276
9. Bagheri B, Khatibiyan Feyzabadi Z, Nouri A, et al. Atherosclerosis and Toll-Like Receptor4 (TLR4), Lectin-Like Oxidized Low-Density Lipoprotein-1 (LOX-1), and Proprotein Convertase Subtilisin/Kexin Type9 (PCSK9). Mediators Inflamm. 2024;2024:5830491. DOI:10.1155/2024/5830491
10. Truthe S, Klassert TE, Schmelz S, et al. Role of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Inflammation and Pathogen-Associated Interactions. J Innate Immun. 2024;16(1):105-32. DOI:10.1159/000535793
11. Pyrpyris N, Dimitriadis K, Beneki E, et al. LOX-1 Receptor: A Diagnostic Tool and Therapeutic Target in Atherogenesis. Curr Probl Cardiol. 2024;49(1 Pt. C):102117. DOI:10.1016/j.cpcardiol.2023.102117
12. Munno M, Mallia A, Greco A, et al. Radical Oxygen Species, Oxidized Low-Density Lipoproteins, and Lectin-like Oxidized Low-Density Lipoprotein Receptor 1: A Vicious Circle in Atherosclerotic Process. Antioxidants (Basel). 2024;13(5):583. DOI:10.3390/antiox13050583
13. Barreto J, Karathanasis SK, Remaley A, et al. Role of LOX-1 (Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1) as a Cardiovascular Risk Predictor: Mechanistic Insight and Potential Clinical Use. Arterioscler Thromb Vasc Biol. 2021;41(1):153-66. DOI:10.1161/ATVBAHA.120.315421
14. Inoue N, Okamura T, Kokubo Y, et al. LOX index, a novel predictive biochemical marker for coronary heart disease and stroke. Clin Chem. 2010;56(4):550-8. DOI:10.1373/clinchem.2009.140707
15. Markstad H, Edsfeldt A, Yao Mattison I, et al. High Levels of Soluble Lectinlike Oxidized Low-Density Lipoprotein Receptor-1 Are Associated With Carotid Plaque Inflammation and Increased Risk of Ischemic Stroke. J Am Heart Assoc. 2019;8(4):e009874. DOI:10.1161/JAHA.118.009874
16. Skarpengland T, Skjelland M, Kong XY, et al. Increased Levels of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Ischemic Stroke and Transient Ischemic Attack. J Am Heart Assoc. 2018;7(2):e006479. DOI:10.1161/JAHA.117.006479
17. Otsuki T, Maeda S, Mukai J, et al. Association between plasma sLOX-1 concentration and arterial stiffness in middle-aged and older individuals. J Clin Biochem Nutr.
2015;57(2):151-5. DOI:10.3164/jcbn.15-27
18. Zhang Q, Chu Y, Jin G, et al. Association Between LOX-1, LAL, and ACAT1 Gene Single Nucleotide Polymorphisms and Carotid Plaque in a Northern Chinese Population. Genet Test Mol Biomarkers. 2020;24(3):138-44. DOI:10.1089/gtmb.2019.0209
19. Salehipour P, Rezagholizadeh F, Mahdiannasser M, et al. Association of OLR1 gene polymorphisms with the risk of coronary artery disease: A systematic review and meta-analysis. Heart Lung. 2021;50(2):334-43. DOI:10.1016/j.hrtlng.2021.01.015
20. Xu X, Hou X, Liang Y, et al. The gene polymorphism of LOX1 predicts the incidence of LVH in patients with essential hypertension. Cell Physiol Biochem. 2014;33(1):88-96. DOI:10.1159/000356652
21. Sheikh MSA. Circulatory soluble LOX-1 is a novel predictor for coronary artery disease patients. Cardiovasc J Afr. 2023;34(2):104-8. DOI:10.5830/CVJA-2022-038
22. Md Sayed AS, Zhao Z, Guo L, et al. Serum lectin-like oxidized-low density lipoprotein receptor-1 and adiponectin levels are associated with coronary artery disease accompanied with metabolic syndrome. Iran Red Crescent Med J. 2014;16(8):e12106. DOI:10.5812/ircmj.12106
23. Kobayashi N, Hata N, Kume N, et al. Soluble lectin-like oxidized low-density lipoprotein receptor-1 as an early biomarker for ST elevation myocardial infarction: time-dependent comparison with other biomarkers: time-dependent comparison with other biomarkers. Circ J. 2011;75(6):1433-9. DOI:10.1253/circj. cj-10-0913
24. Hussein RA, Abdul-Rasheed OF, Basheer M. Evaluation of soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) and sLOX-1/oxidized LDL ratio as novel biomarkers of acute coronary syndrome. Acta Biochim Pol. 2022;69(2):309-14. DOI:10.18388/abp.2020_5735
25. Zhao ZW, Xu YW, Li SM, et al. Baseline Serum sLOX-1 Concentrations Are Associated with 2-Year Major Adverse Cardiovascular and Cerebrovascular Events in Patients after Percutaneous Coronary Intervention. Dis Markers. 2019;2019:4925767. DOI:10.1155/2019/4925767
26. Besli F, Gullulu S, Sag S, et al. The relationship between serum lectin-like oxidized LDL receptor-1 levels and systolic heart failure. Acta Cardiol. 2016;71(2):185-90. DOI:10.2143/AC.71.2.3141848
27. Stankova TR, Delcheva GT, Maneva AI, et al. Serum Levels of Carbamylated LDL, Nitrotyrosine and Soluble Lectin-like Oxidized Low-density Lipoprotein Receptor-1 in Poorly Controlled Type 2 Diabetes Mellitus. Folia Med (Plovdiv). 2019;61(3):419-25. DOI:10.3897/folmed.61.e39343
28. Lee AS, Wang YC, Chang SS, et al. Detection of a High Ratio of Soluble to Membrane-Bound LOX-1 in Aspirated Coronary Thrombi from Patients With ST-Segment-Elevation Myocardial Infarction. J Am Heart Assoc. 2020;9(2):e014008. DOI:10.1161/JAHA.119.014008
29. Li D, Li B, Yang L, et al. Human cytomegalovirus infection is correlated with atherosclerotic plaque vulnerability in carotid artery. J Gene Med. 2020;22(10):e3236. DOI:10.1002/jgm.3236
30. Dogan I, Dogan T, Yetim M, et al. Relation of Serum ADMA, Apelin-13 and LOX-1 Levels with Inflammatory and Echocardiographic Parameters in Hemodialysis Patients. Ther Apher Dial. 2018;22(2):109-17. DOI:10.1111/1744-9987.12613
31. Taskin HE, Kocael A, Kocael P, et al. Original contribution: sleeve gastrectomy reduces soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) levels in patients with morbid obesity. Surg Endosc. 2022;36(4):2643-52. DOI:10.1007/s00464-021-08989-8
32. Vavere AL, Sinsakul M, Ongstad EL, et al. Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1 Inhibition in Type 2 Diabetes: Phase 1 Results. J Am Heart Assoc. 2023;12(3):e027540. DOI:10.1161/JAHA.122.027540
33. Sui D, Yu H. Protective roles of apremilast via Sirtuin 1 in atherosclerosis. Bioengineered. 2022;13(5):13872-81. DOI:10.1080/21655979.2022.2085390
34. Yang T, Minami M, Yoshida K, et al. Niclosamide downregulates LOX-1 expression in mouse vascular smooth muscle cells and changes the composition of atherosclerotic plaques in ApoE-/- mice. Heart Vessels. 2022;37(3):517-27. DOI:10.1007/s00380-021-01983-z
35. Liu H, Xu S, Li G, et al. Sarpogrelate and rosuvastatin synergistically ameliorate aortic damage induced by hyperlipidemia in apolipoprotein E-deficient mice. Exp Ther Med. 2020;20(6):170. DOI:10.3892/etm.2020.9300
36. Zhou S, Li Z, Liu P, et al. Donepezil Prevents ox-LDL-Induced Attachment of THP-1 Monocytes to Human Aortic Endothelial Cells (HAECs). Chem Res Toxicol. 2020;33(4):975-81. DOI:10.1021/acs.chemrestox.9b00509
37. Togami K, Zhan X, Ishizawa K, et al. Development of LOX-1 Antibody Modified Immuno-liposomes as Drug Carriers to Macrophages in Atherosclerotic Lesions. Pharmazie. 2023;78(8):113-6. DOI:10.1691/ph.2023.3004
38. Wang Z, Chen X, Liu J, et al. Inclisiran inhibits oxidized low-density lipoprotein-induced foam cell formation in Raw264.7 macrophages via activating the PPARγ pathway. Autoimmunity. 2022;55(4):223-32. DOI:10.1080/08916934.2022.2051142
39. Zhang L, Cheng L, Wang Q, et al. Atorvastatin protects cardiomyocytes from oxidative stress by inhibiting LOX-1 expression and cardiomyocyte apoptosis. Acta Biochim Biophys Sin (Shanghai). 2015;47(3):174-82. DOI:10.1093/abbs/gmu131
40. Biocca S, Iacovelli F, Matarazzo S, et al. Molecular mechanism of statin-mediated LOX-1 inhibition. Cell Cycle. 2015;14(10):1583-95. DOI:10.1080/15384101.2015.1026486
41. Xiong Q, Wang Z, Yu Y, et al. Hydrogen sulfide stabilizes atherosclerotic plaques in apolipoprotein E knockout mice. Pharmacol Res. 2019;144:90-8. DOI:10.1016/j.phrs.2019.04.006
42. Yu Z, Peng Q, Li S, et al. Myriocin and d-PDMP ameliorate atherosclerosis in ApoE-/- mice via reducing lipid uptake and vascular inflammation. Clin Sci (Lond). 2020;134(5):439-58. DOI: 10.1042/CS20191028
43. Yan L, Jia Q, Cao H, et al. Fisetin ameliorates atherosclerosis by regulating PCSK9 and LOX-1 in apoE-/- mice. Exp Ther Med. 2021;21(1):25. DOI:10.3892/etm.2020.9457
44. Chiu TH, Ku CW, Ho TJ, et al. Schisanhenol ameliorates oxLDL-caused endothelial dysfunction by inhibiting LOX-1 signaling. Environ Toxicol. 2023;38(7):1589-96. DOI:10.1002/tox.23788
45. Lee HS, Lee MJ, Kim H, et al. Curcumin inhibits TNF-alpha-induced lectin-like oxidised LDL receptor-1 (LOX-1) expression and suppresses the inflammatory response in human umbilical vein endothelial cells (HUVECs) by an antioxidant mechanism. J Enzyme Inhib Med Chem. 2010;25(5):720-9. DOI:10.3109/14756360903555274
46. Luo R, Zhao L, Li S, et al. Curcumin Alleviates Palmitic Acid-Induced LOX-1 Upregulation by Suppressing Endoplasmic Reticulum Stress in HUVECs. Biomed Res Int. 2021;2021:9983725. DOI:10.1155/2021/9983725
47. Xu S, Liu Z, Huang Y, et al. Tanshinone II-A inhibits oxidized LDL-induced LOX-1 expression in macrophages by reducing intracellular superoxide radical generation and NF-kappaB activation. Transl Res. 2012;160:114-24. DOI:10.1016/j.trsl.2012.01.008
48. Wen J, Chang Y, Huo S, et al. Tanshinone IIA attenuates atherosclerosis via inhibiting NLRP3 inflammasome activation. Aging. 2020;13:910-32. DOI:10.18632/aging.202202
49. Feng Z, Yang X, Zhang L, et al. Ginkgolide B ameliorates oxidized low-density lipoprotein-induced endothelial dysfunction via modulating Lectin-like ox-LDL-receptor-1 and NADPH oxidase 4 expression and inflammatory cascades. Phytother Res. 2018;32(12):2417-27. DOI:10.1002/ptr.6177
50. Wang G, Liu Z, Li M, et al. Ginkgolide B Mediated Alleviation of Inflammatory Cascades and Altered Lipid Metabolism in HUVECs via Targeting PCSK-9 Expression and Functionality. Biomed Res Int. 2019;2019:7284767. DOI:10.1155/2019/7284767
51. Xu Q, Li YC, Du C, et al. Effects of Apigenin on the Expression of LOX-1, Bcl-2, and Bax in Hyperlipidemia Rats. Chem Biodivers. 2021;18(8):e2100049. DOI:10.1002/cbdv.202100049
52. Bai X, Wang S, Shu L, et al. Hawthorn leaf flavonoids alleviate the deterioration of atherosclerosis by inhibiting SCAP-SREBP2-LDLR pathway through sPLA2-IIA signaling in macrophages in mice. J Ethnopharmacol. 2024;327:118006. DOI:10.1016/j.jep.2024.118006
53. Ding Y, Feng Y, Zhu W, et al. [Gly14]-Humanin Prevents Lipid Deposition and Endothelial Cell Apoptosis in a Lectin-like Oxidized Low-density Lipoprotein Receptor-1-Dependent Manner. Lipids. 2019;54(11-12):697-705. DOI:10.1002/lipd.12195
54. Yu J, Zhou L, Song H, et al. (-)-Epicatechin gallate blocked cellular foam formation in atherosclerosis by modulating CD36 expression in vitro and in vivo. Food Funct. 2023;14(5):2444-58. DOI:10.1039/d2fo03218j
55. Li Q, Liu X, Zhang X, et al. Terpene Lactucopicrin Limits Macrophage Foam Cell Formation by a Reduction of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Lipid Rafts. Mol Nutr Food Res. 2022;66(4):e2100905. DOI:10.1002/mnfr.202100905
56. Im YS, Gwon MH, Yun JM. Protective effects of phenethyl isothiocyanate on foam cell formation by combined treatment of oxidized low-density lipoprotein and lipopolysaccharide in THP-1 macrophage. Food Sci Nutr. 2021;9(6):3269-79. DOI:10.1002/fsn3.2293
57. Pengnet S, Prommaouan S, Sumarithum P, et al. Naringin Reverses High-Cholesterol Diet-Induced Vascular Dysfunction and Oxidative Stress in Rats via Regulating LOX-1 and NADPH Oxidase Subunit Expression. Biomed Res Int. 2019;2019:3708497. DOI:10.1155/2019/3708497
58. Manogaran M, Vuanghao L, Mohamed R. Gynura procumbens ethanol extract and its fractions inhibit macrophage derived foam cell formation. J Ethnopharmacol. 2020;249:112410. DOI:10.1016/j.jep.2019.112410
________________________________________________
1. Roth GA, Mensah GA, Johnson CO, et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update from the GBD 2019 Study. J Am Coll Cardiol. 2020;76(25):2982-3021. DOI:10.1016/j.jacc.2020.11.010
2. Deng P, Fu Y, Chen M, et al. Temporal trends in inequalities of the burden of cardiovascular disease across 186 countries and territories. Int J Equity Health. 2023;22(1):164. DOI:10.1186/s12939-023-01988-2
3. Silva S, Fatumo S, Nitsch D. Mendelian randomization studies on coronary artery disease: a systematic review and meta-analysis. Syst Rev. 2024;13(1):29.
DOI:10.1186/s13643-023-02442-8
4. Alieva AM, Teplova NV, Batov MA, et al. Pentraxin-3 – a promising biological marker in heart failure: literature review. Consilium Medicum. 2022;24(1):53-9 (in Russian). DOI:10.26442/20751753.2022.1.201382
5. Alieva AM, Reznik EV, Pinchuk TV, et al. Growth Differentiation Factor-15 (GDF-15) is a Biological Marker in Heart Failure. The Russian Archives of Internal Medicine. 2023;13(1):14-23 (in Russian). DOI:10.20514/2226-6704-2023-13-1-14-23
6. Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkery v kardiologii: mikroRNK i serdechnaya nedostatochnost'. Terapiya. 2022;1:60-70 (in Russian).
DOI:10.18565/therapy.2022.1.60-70
7. Lubrano V, Balzan S, Papa A. LOX-1 variants modulate the severity of cardiovascular disease: state of the art and future directions. Mol Cell Biochem. Epub 2023 Oct 3. DOI:10.1007/s11010-023-04859-0
8. Sánchez-León ME, Loaeza-Reyes KJ, Matias-Cervantes CA, et al. LOX-1 in Cardiovascular Disease: A Comprehensive Molecular and Clinical Review. Int J Mol Sci. 2024;25(10):5276. DOI:10.3390/ijms25105276
9. Bagheri B, Khatibiyan Feyzabadi Z, Nouri A, et al. Atherosclerosis and Toll-Like Receptor4 (TLR4), Lectin-Like Oxidized Low-Density Lipoprotein-1 (LOX-1), and Proprotein Convertase Subtilisin/Kexin Type9 (PCSK9). Mediators Inflamm. 2024;2024:5830491. DOI:10.1155/2024/5830491
10. Truthe S, Klassert TE, Schmelz S, et al. Role of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Inflammation and Pathogen-Associated Interactions. J Innate Immun. 2024;16(1):105-32. DOI:10.1159/000535793
11. Pyrpyris N, Dimitriadis K, Beneki E, et al. LOX-1 Receptor: A Diagnostic Tool and Therapeutic Target in Atherogenesis. Curr Probl Cardiol. 2024;49(1 Pt. C):102117. DOI:10.1016/j.cpcardiol.2023.102117
12. Munno M, Mallia A, Greco A, et al. Radical Oxygen Species, Oxidized Low-Density Lipoproteins, and Lectin-like Oxidized Low-Density Lipoprotein Receptor 1: A Vicious Circle in Atherosclerotic Process. Antioxidants (Basel). 2024;13(5):583. DOI:10.3390/antiox13050583
13. Barreto J, Karathanasis SK, Remaley A, et al. Role of LOX-1 (Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1) as a Cardiovascular Risk Predictor: Mechanistic Insight and Potential Clinical Use. Arterioscler Thromb Vasc Biol. 2021;41(1):153-66. DOI:10.1161/ATVBAHA.120.315421
14. Inoue N, Okamura T, Kokubo Y, et al. LOX index, a novel predictive biochemical marker for coronary heart disease and stroke. Clin Chem. 2010;56(4):550-8. DOI:10.1373/clinchem.2009.140707
15. Markstad H, Edsfeldt A, Yao Mattison I, et al. High Levels of Soluble Lectinlike Oxidized Low-Density Lipoprotein Receptor-1 Are Associated With Carotid Plaque Inflammation and Increased Risk of Ischemic Stroke. J Am Heart Assoc. 2019;8(4):e009874. DOI:10.1161/JAHA.118.009874
16. Skarpengland T, Skjelland M, Kong XY, et al. Increased Levels of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Ischemic Stroke and Transient Ischemic Attack. J Am Heart Assoc. 2018;7(2):e006479. DOI:10.1161/JAHA.117.006479
17. Otsuki T, Maeda S, Mukai J, et al. Association between plasma sLOX-1 concentration and arterial stiffness in middle-aged and older individuals. J Clin Biochem Nutr.
2015;57(2):151-5. DOI:10.3164/jcbn.15-27
18. Zhang Q, Chu Y, Jin G, et al. Association Between LOX-1, LAL, and ACAT1 Gene Single Nucleotide Polymorphisms and Carotid Plaque in a Northern Chinese Population. Genet Test Mol Biomarkers. 2020;24(3):138-44. DOI:10.1089/gtmb.2019.0209
19. Salehipour P, Rezagholizadeh F, Mahdiannasser M, et al. Association of OLR1 gene polymorphisms with the risk of coronary artery disease: A systematic review and meta-analysis. Heart Lung. 2021;50(2):334-43. DOI:10.1016/j.hrtlng.2021.01.015
20. Xu X, Hou X, Liang Y, et al. The gene polymorphism of LOX1 predicts the incidence of LVH in patients with essential hypertension. Cell Physiol Biochem. 2014;33(1):88-96. DOI:10.1159/000356652
21. Sheikh MSA. Circulatory soluble LOX-1 is a novel predictor for coronary artery disease patients. Cardiovasc J Afr. 2023;34(2):104-8. DOI:10.5830/CVJA-2022-038
22. Md Sayed AS, Zhao Z, Guo L, et al. Serum lectin-like oxidized-low density lipoprotein receptor-1 and adiponectin levels are associated with coronary artery disease accompanied with metabolic syndrome. Iran Red Crescent Med J. 2014;16(8):e12106. DOI:10.5812/ircmj.12106
23. Kobayashi N, Hata N, Kume N, et al. Soluble lectin-like oxidized low-density lipoprotein receptor-1 as an early biomarker for ST elevation myocardial infarction: time-dependent comparison with other biomarkers: time-dependent comparison with other biomarkers. Circ J. 2011;75(6):1433-9. DOI:10.1253/circj. cj-10-0913
24. Hussein RA, Abdul-Rasheed OF, Basheer M. Evaluation of soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) and sLOX-1/oxidized LDL ratio as novel biomarkers of acute coronary syndrome. Acta Biochim Pol. 2022;69(2):309-14. DOI:10.18388/abp.2020_5735
25. Zhao ZW, Xu YW, Li SM, et al. Baseline Serum sLOX-1 Concentrations Are Associated with 2-Year Major Adverse Cardiovascular and Cerebrovascular Events in Patients after Percutaneous Coronary Intervention. Dis Markers. 2019;2019:4925767. DOI:10.1155/2019/4925767
26. Besli F, Gullulu S, Sag S, et al. The relationship between serum lectin-like oxidized LDL receptor-1 levels and systolic heart failure. Acta Cardiol. 2016;71(2):185-90. DOI:10.2143/AC.71.2.3141848
27. Stankova TR, Delcheva GT, Maneva AI, et al. Serum Levels of Carbamylated LDL, Nitrotyrosine and Soluble Lectin-like Oxidized Low-density Lipoprotein Receptor-1 in Poorly Controlled Type 2 Diabetes Mellitus. Folia Med (Plovdiv). 2019;61(3):419-25. DOI:10.3897/folmed.61.e39343
28. Lee AS, Wang YC, Chang SS, et al. Detection of a High Ratio of Soluble to Membrane-Bound LOX-1 in Aspirated Coronary Thrombi from Patients With ST-Segment-Elevation Myocardial Infarction. J Am Heart Assoc. 2020;9(2):e014008. DOI:10.1161/JAHA.119.014008
29. Li D, Li B, Yang L, et al. Human cytomegalovirus infection is correlated with atherosclerotic plaque vulnerability in carotid artery. J Gene Med. 2020;22(10):e3236. DOI:10.1002/jgm.3236
30. Dogan I, Dogan T, Yetim M, et al. Relation of Serum ADMA, Apelin-13 and LOX-1 Levels with Inflammatory and Echocardiographic Parameters in Hemodialysis Patients. Ther Apher Dial. 2018;22(2):109-17. DOI:10.1111/1744-9987.12613
31. Taskin HE, Kocael A, Kocael P, et al. Original contribution: sleeve gastrectomy reduces soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) levels in patients with morbid obesity. Surg Endosc. 2022;36(4):2643-52. DOI:10.1007/s00464-021-08989-8
32. Vavere AL, Sinsakul M, Ongstad EL, et al. Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1 Inhibition in Type 2 Diabetes: Phase 1 Results. J Am Heart Assoc. 2023;12(3):e027540. DOI:10.1161/JAHA.122.027540
33. Sui D, Yu H. Protective roles of apremilast via Sirtuin 1 in atherosclerosis. Bioengineered. 2022;13(5):13872-81. DOI:10.1080/21655979.2022.2085390
34. Yang T, Minami M, Yoshida K, et al. Niclosamide downregulates LOX-1 expression in mouse vascular smooth muscle cells and changes the composition of atherosclerotic plaques in ApoE-/- mice. Heart Vessels. 2022;37(3):517-27. DOI:10.1007/s00380-021-01983-z
35. Liu H, Xu S, Li G, et al. Sarpogrelate and rosuvastatin synergistically ameliorate aortic damage induced by hyperlipidemia in apolipoprotein E-deficient mice. Exp Ther Med. 2020;20(6):170. DOI:10.3892/etm.2020.9300
36. Zhou S, Li Z, Liu P, et al. Donepezil Prevents ox-LDL-Induced Attachment of THP-1 Monocytes to Human Aortic Endothelial Cells (HAECs). Chem Res Toxicol. 2020;33(4):975-81. DOI:10.1021/acs.chemrestox.9b00509
37. Togami K, Zhan X, Ishizawa K, et al. Development of LOX-1 Antibody Modified Immuno-liposomes as Drug Carriers to Macrophages in Atherosclerotic Lesions. Pharmazie. 2023;78(8):113-6. DOI:10.1691/ph.2023.3004
38. Wang Z, Chen X, Liu J, et al. Inclisiran inhibits oxidized low-density lipoprotein-induced foam cell formation in Raw264.7 macrophages via activating the PPARγ pathway. Autoimmunity. 2022;55(4):223-32. DOI:10.1080/08916934.2022.2051142
39. Zhang L, Cheng L, Wang Q, et al. Atorvastatin protects cardiomyocytes from oxidative stress by inhibiting LOX-1 expression and cardiomyocyte apoptosis. Acta Biochim Biophys Sin (Shanghai). 2015;47(3):174-82. DOI:10.1093/abbs/gmu131
40. Biocca S, Iacovelli F, Matarazzo S, et al. Molecular mechanism of statin-mediated LOX-1 inhibition. Cell Cycle. 2015;14(10):1583-95. DOI:10.1080/15384101.2015.1026486
41. Xiong Q, Wang Z, Yu Y, et al. Hydrogen sulfide stabilizes atherosclerotic plaques in apolipoprotein E knockout mice. Pharmacol Res. 2019;144:90-8. DOI:10.1016/j.phrs.2019.04.006
42. Yu Z, Peng Q, Li S, et al. Myriocin and d-PDMP ameliorate atherosclerosis in ApoE-/- mice via reducing lipid uptake and vascular inflammation. Clin Sci (Lond). 2020;134(5):439-58. DOI: 10.1042/CS20191028
43. Yan L, Jia Q, Cao H, et al. Fisetin ameliorates atherosclerosis by regulating PCSK9 and LOX-1 in apoE-/- mice. Exp Ther Med. 2021;21(1):25. DOI:10.3892/etm.2020.9457
44. Chiu TH, Ku CW, Ho TJ, et al. Schisanhenol ameliorates oxLDL-caused endothelial dysfunction by inhibiting LOX-1 signaling. Environ Toxicol. 2023;38(7):1589-96. DOI:10.1002/tox.23788
45. Lee HS, Lee MJ, Kim H, et al. Curcumin inhibits TNF-alpha-induced lectin-like oxidised LDL receptor-1 (LOX-1) expression and suppresses the inflammatory response in human umbilical vein endothelial cells (HUVECs) by an antioxidant mechanism. J Enzyme Inhib Med Chem. 2010;25(5):720-9. DOI:10.3109/14756360903555274
46. Luo R, Zhao L, Li S, et al. Curcumin Alleviates Palmitic Acid-Induced LOX-1 Upregulation by Suppressing Endoplasmic Reticulum Stress in HUVECs. Biomed Res Int. 2021;2021:9983725. DOI:10.1155/2021/9983725
47. Xu S, Liu Z, Huang Y, et al. Tanshinone II-A inhibits oxidized LDL-induced LOX-1 expression in macrophages by reducing intracellular superoxide radical generation and NF-kappaB activation. Transl Res. 2012;160:114-24. DOI:10.1016/j.trsl.2012.01.008
48. Wen J, Chang Y, Huo S, et al. Tanshinone IIA attenuates atherosclerosis via inhibiting NLRP3 inflammasome activation. Aging. 2020;13:910-32. DOI:10.18632/aging.202202
49. Feng Z, Yang X, Zhang L, et al. Ginkgolide B ameliorates oxidized low-density lipoprotein-induced endothelial dysfunction via modulating Lectin-like ox-LDL-receptor-1 and NADPH oxidase 4 expression and inflammatory cascades. Phytother Res. 2018;32(12):2417-27. DOI:10.1002/ptr.6177
50. Wang G, Liu Z, Li M, et al. Ginkgolide B Mediated Alleviation of Inflammatory Cascades and Altered Lipid Metabolism in HUVECs via Targeting PCSK-9 Expression and Functionality. Biomed Res Int. 2019;2019:7284767. DOI:10.1155/2019/7284767
51. Xu Q, Li YC, Du C, et al. Effects of Apigenin on the Expression of LOX-1, Bcl-2, and Bax in Hyperlipidemia Rats. Chem Biodivers. 2021;18(8):e2100049. DOI:10.1002/cbdv.202100049
52. Bai X, Wang S, Shu L, et al. Hawthorn leaf flavonoids alleviate the deterioration of atherosclerosis by inhibiting SCAP-SREBP2-LDLR pathway through sPLA2-IIA signaling in macrophages in mice. J Ethnopharmacol. 2024;327:118006. DOI:10.1016/j.jep.2024.118006
53. Ding Y, Feng Y, Zhu W, et al. [Gly14]-Humanin Prevents Lipid Deposition and Endothelial Cell Apoptosis in a Lectin-like Oxidized Low-density Lipoprotein Receptor-1-Dependent Manner. Lipids. 2019;54(11-12):697-705. DOI:10.1002/lipd.12195
54. Yu J, Zhou L, Song H, et al. (-)-Epicatechin gallate blocked cellular foam formation in atherosclerosis by modulating CD36 expression in vitro and in vivo. Food Funct. 2023;14(5):2444-58. DOI:10.1039/d2fo03218j
55. Li Q, Liu X, Zhang X, et al. Terpene Lactucopicrin Limits Macrophage Foam Cell Formation by a Reduction of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Lipid Rafts. Mol Nutr Food Res. 2022;66(4):e2100905. DOI:10.1002/mnfr.202100905
56. Im YS, Gwon MH, Yun JM. Protective effects of phenethyl isothiocyanate on foam cell formation by combined treatment of oxidized low-density lipoprotein and lipopolysaccharide in THP-1 macrophage. Food Sci Nutr. 2021;9(6):3269-79. DOI:10.1002/fsn3.2293
57. Pengnet S, Prommaouan S, Sumarithum P, et al. Naringin Reverses High-Cholesterol Diet-Induced Vascular Dysfunction and Oxidative Stress in Rats via Regulating LOX-1 and NADPH Oxidase Subunit Expression. Biomed Res Int. 2019;2019:3708497. DOI:10.1155/2019/3708497
58. Manogaran M, Vuanghao L, Mohamed R. Gynura procumbens ethanol extract and its fractions inhibit macrophage derived foam cell formation. J Ethnopharmacol. 2020;249:112410. DOI:10.1016/j.jep.2019.112410
1ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия; 2ГБУЗ «Московский клинический научно-практический центр им. А.С. Логинова» Департамента здравоохранения г. Москвы, Москва, Россия; 3Пятигорский медико-фармацевтический институт – филиал ФГБОУ ВО «Волгоградский государственный медицинский университет» Минздрава России, Пятигорск, Россия; 4ФГБНУ «Российский научный центр хирургии им. акад. Б.В. Петровского», Москва, Россия
*amisha_alieva@mail.ru
________________________________________________
Amina M. Alieva*1, Irina E. Baykova1, Elena V. Reznik1, Natalia V. Teplova1, Ramiz K. Valiev2, Malika Kh. Gyzyeva3, Albina B. Sultangalieva1, Irina A. Kotikova1, Natalia A. Novikova4, Sergey A. Korvyakov4, Igor G. Nikitin1
1Pirogov Russian National Research Medical University, Moscow, Russia; 2Loginov Moscow Clinical Scientific Center, Moscow, Russia; 3Pyatigorsk Medical and Pharmaceutical Institute – branch of the Volgograd State Medical University, Pyatigorsk, Russia; 4Petrovsky National Research Centre of Surgery, Moscow, Russia
*amisha_alieva@mail.ru