Последствия коронавирусной инфекции: гемореологические нарушения и возможности их коррекции
Последствия коронавирусной инфекции: гемореологические нарушения и возможности их коррекции
Кручинина М.В., Громов А.А., Логвиненко И.И., Кручинина Э.В. Последствия коронавирусной инфекции: гемореологические нарушения и возможности их коррекции. Consilium Medicum. 2024;26(11):719–732.
DOI: 10.26442/20751753.2024.11.202965
Kruchinina MV, Gromov AA, Logvinenko II, Kruchinina EV. Consequences of coronavirus infection: Hemorheological disorders and possibilities for correction. Consilium Medicum. 2024;26(11):719–732.
DOI: 10.26442/20751753.2024.11.202965
Последствия коронавирусной инфекции: гемореологические нарушения и возможности их коррекции
Кручинина М.В., Громов А.А., Логвиненко И.И., Кручинина Э.В. Последствия коронавирусной инфекции: гемореологические нарушения и возможности их коррекции. Consilium Medicum. 2024;26(11):719–732.
DOI: 10.26442/20751753.2024.11.202965
Kruchinina MV, Gromov AA, Logvinenko II, Kruchinina EV. Consequences of coronavirus infection: Hemorheological disorders and possibilities for correction. Consilium Medicum. 2024;26(11):719–732.
DOI: 10.26442/20751753.2024.11.202965
Цель. Изучить внутрисосудистые изменения гемостаза и изменения электрических, вязкоупругих параметров эритроцитов (RBC) у реконвалесцентов COVID-19 и оценить эффективность фармакологической композиции никотинамида, кокарбоксилазы, трифосаденина, цианокобаламина для внутримышечного введения (препарат Кокарнит®) и цитидин-5-дифосфохолина (цитиколина, препарат Роноцит®) для устранения гемореологических нарушений. Материалы и методы. Обследованы 308 пациентов (154 мужчины и 154 женщины), средний возраст – 53,1±13,8 года, реконвалесцентов COVID-19, в сроки от 2 до 14 мес после перенесенного заболевания, и 50 человек, сопоставимых по возрасту и полу, не перенесших COVID-19. Перенесшие коронавирусную инфекцию 42 пациента из основной группы получили терапию комплексную – ТК (прием препаратов Роноцит® и Кокарнит®, World Medicine Ilac San. Ve Tic. A.S., Турция) и повторно обследованы через 8 нед. Электрические, вязкоупругие параметры RBC исследованы методом диэлектрофореза с помощью электрооптической системы детекции клеток; параметры гемостаза – стандартными методами. Результаты. У реконвалесцентов COVID-19 выявлено выраженное снижение поверхностного заряда RBC с повышенной склонностью к образованию агрегатов, уменьшение способности к деформации на фоне высоких обобщенных показателей вязкости и жесткости, преобладание незрелых клеток со сниженными показателями поляризуемости, высокой готовностью к гемолизу, значительно измененной структурой мембран RBC, ассоциированной с их утолщением и повышенной способностью проводить электрический ток (p=0,05–0,00001). Изменения клеточного звена, эндотелия и лейкоцитов оказались доминирующими в активации гемостаза и свидетельствовали о течении эндотелиита (p=0,00001). Сочетанная терапия препаратами Роноцит® и Кокарнит® в течение 8 нед привела к увеличению диаметра RBC, доли дискоцитов, снижению доли деформированных клеток и сфероцитов (p=0,00007–0,003), увеличению амплитуды деформации RBC на высоких частотах электрического поля (106, 5×105 Гц), емкости мембран и снижению обобщенных показателей жесткости и вязкости (p=0,0003–0,04), снижению электропроводности мембран клеток, увеличению скорости движения RBC к электродам, величины дипольного момента; произошло смешение равновесной частоты в низкочастотный диапазон (p=0,0001–0,052). Выявлено снижение степени гемолиза, в большей степени на низких частотах электрического поля (p=0,0004–0,05), повышение поляризуемости на частотах 5×105, 105, 5×104 Гц (p=0,005–0,05) и относительной поляризуемости (p=0,001). Отмечена нормализация уровня фактора Виллебранда (p=0,0001), отражающая восстановление целостности и функции эндотелия. Показатели внутрисосудистого свертывания, оцениваемые по уровню растворимых фибрин-мономерных комплексов, снизились (p=0,018). Установлены нормализация длительности кровотечения (p=0,012), удлинение времени свертывания (p=0,001) на фоне ТК. Заключение. Применение ТК препаратами Кокарнит® и Роноцит® позволило добиться улучшения электрических, вязкоупругих параметров RBC, нормализации внутрисосудистых нарушений и устранения эндотелиита у реконвалесцентов COVID-19, создавая основу для дальнейшей разработки патогенетической терапии постковидного синдрома.
Aim. To study intravascular changes in hemostasis and changes in electrical, viscoelastic parameters of erythrocytes in COVID-19 convalescents and to evaluate the effectiveness of the pharmacological composition of nicotinamide, cocarboxylase, trifosadenine, cyanocobalamin for intramuscular administration (Cocarnit® drug) and cytidine diphosphocholine (citicoline, Ronocit® drug) to eliminate hemorheological disorders. Materials and methods. Examined 308 patients (154 men and 154 women), average age 53.1±13.8 years, COVID-19 convalescents, within 2 to 14 months after the disease, 50 people of comparable age and gender who had not suffered COVID-19. 42 patients from the main group who had suffered coronavirus infection received complex therapy (taking the drugs Ronocit® and Cocarnit® (World Medicine Ilac San. Ve Tic. A.S., Turkey), and were re-examined after 8 weeks. The electrical, viscoelastic parameters of erythrocytes were studied by dielectrophoresis using an electro-optical cell detection system; hemostasis parameters were studied by standard methods. Results. COVID-19 convalescents revealed a marked decrease in the surface charge of erythrocytes with an increased tendency to aggregate formation, a decrease in the ability to deform against the background of high summarized viscosity and rigidity, the predominance of immature cells with reduced polarizability, high readiness for hemolysis, with a significantly altered structure of erythrocyte membranes associated with their thickening and increased ability to conduct electric current (p=0.05–0.00001). Changes in the cellular link, endothelium and leukocytes proved to be dominant in the activation of hemostasis and indicated the course of endotheliitis (p=0.00001). Combined therapy with Ronocit® and Cocarnit® drugs for 8 weeks led to an increase in the diameter of erythrocytes, the proportion of discocytes, a decrease in the proportion of deformed cells and spherocytes (p=0.00007–0.003), an increase in the amplitude of deformation of erythrocytes at high electric field frequencies (106, 5×105 Hz), membrane capacity and a decrease of summarized rigidity and viscosity (p=0.0003–0.04), a decrease in the electrical conductivity of cell membranes, an increase in the speed of movement of red blood cells to the electrodes, the magnitude of the dipole moment; there was a mixing of the crossover frequency into the low frequency range (p=0.0001–0.052). A decrease in the degree of hemolysis was revealed, to a greater extent at low frequencies of the electric field (p=0.0004–0.05), an increase in polarizability at frequencies 5×105, 105, and 5×104 Hz (p=0.005–0.05) and relative polarizability (p=0.001). The normalization of the Willebrand factor level (p=0.0001) was noted, reflecting the restoration of the integrity and function of the endothelium. Intravascular coagulation indices, estimated by the level of soluble fibrin-monomer complexes, decreased (p=0.018). Normalization of bleeding duration (p=0.012), prolongation of clotting time (p=0.001) against the background of complex therapy were established. Conclusion. The use of complex therapy with Cocarnit® and Ronocit® drugs made it possible to improve the electrical, viscoelastic parameters of erythrocytes, normalize intravascular disorders and eliminate endotheliitis in COVID-19 convalescents, creating the basis for further development of pathogenetic therapy for postcovid syndrome.
1. Wan EYF, Mathur S, Zhang R, et al. Association of COVID-19 with short- and long-term risk of cardiovascular disease and mortality: A prospective cohort in UK Biobank. Cardiovasc Res. 2023;119(8):1718-27. DOI:10.1093/cvr/cvac195
2. Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28(3):583-90. DOI:10.1038/s41591-022-01689-3
3. Remy-Jardin M, Duthoit L, Perez T, et al. Assessment of pulmonary arterial circulation 3 months after hospitalization for SARS-CoV-2 pneumonia: Dual-energy CT (DECT) angiographic study in 55 patients. EClinicalMedicine. 2021;34:100778. DOI:10.1016/j.eclinm.2021.100778
4. Coronavirus Disease (COVID-19): Post COVID-19 condition. Available at: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-(covid-19)-post-covid-1.... Accessed: 27.01.2023.
5. Ma Y, Deng J, Liu Q, et al. Long-term consequences of asymptomatic SARS-CoV-2 Infection: A systematic review and meta-analysis. Int J Environ Res Public Health. 2023;20(2):1613. DOI:10.3390/ijerph20021613
6. Haque A, Pant AB. Long COVID: Untangling the complex syndrome and the search for therapeutics. Viruses. 2022;15(1):42. DOI:10.3390/v15010042
7. Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: Major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):1-14. DOI:10.1038/s41579-022-00846-2
8. Jiménez D, García-Sanchez A, Rali P, et al. Incidence of VTE and bleeding among hospitalized patients with coronavirus disease 2019: A systematic review and meta-analysis. Chest. 2021;159(3):1182-96. DOI:10.1016/j.chest.2020.11.005
9. Gorog DA, Storey RF, Gurbel PA, et al. Current and novel biomarkers of thrombotic risk in COVID-19: a Consensus Statement from the International COVID-19 Thrombosis Biomarkers Colloquium. Nat Rev Cardiol. 2022;19(7):475-95. DOI:10.1038/s41569-021-00665-7
10. Кручинина М.В., Громов А.А., Генералов В.М., Кручинина Э.В. Эритроциты: роль в развитии нарушений микроциркуляции и гемостаза. Новосибирск: Офсет-ТМ, 2022 [Kruchinina MV, Gromov AA, Generalov VM, Kruchinina EV. Eritrotsity: rol’ v razvitii narushenii mikrotsirkuliatsii i gemostaza. Novosibirsk: Ofset-TM, 2022 (in Russian)].
11. Magro CM, Mulvey J, Kubiak J, et al. Severe COVID-19: A multifaceted viral vasculopathy syndrome. Ann Diagn Pathol. 2021;50:151645. DOI:10.1016/j.anndiagpath.2020.151645
12. Мартынов М.Ю., Боголепова А.Н., Ясаманова А.Н. Эндотелиальная дисфункция при COVID-19 и когнитивные нарушения. Журнал неврологии и психиатрии им. С.С. Корсакова. 2021;121(6):93‑9 [Martynov MU, Bogolepova AN, Yasamanova AN. Endothelial dysfunction in COVID-19 and cognitive impairment. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(6):93-9 (in Russian)]. DOI:10.17116/jnevro202112106193
13. Del Brutto OH, Wu S, Mera RM, et al. Cognitive decline among individuals with history of mild symptomatic SARSCoV-2 infection: A longitudinal prospective study nested to a population cohort. Eur J Neurol. 2021;10.1111/ene.14775. DOI:10.1111/ene.14775
14. Amalakanti S, Arepalli KVR, Jillella JP. Cognitive assessment in asymptomatic COVID-19 subjects. Virusdisease. 2021;8(23):146-9. DOI:10.1007/s13337-021-00663-w
15. Miners S, Kehoe PG, Love S. Cognitive impact of COVID-19: Looking beyond the short term. Alzheimers Res Ther. 2020;12(1):170. DOI:10.1186/s13195-020-00744-w
16. Guarnieri JW, Dybas JM, Fazelinia H, et al. Targeted down regulation of core mitochondrial genes during SARS-CoV-2 infection. bioRxiv. [Preprint]. 2022:2022.02.19.481089. DOI:10.1101/2022.02.19.481089
17. Bouchla A, Kriebardis AG, Georgatzakou HT, et al. Red blood cell abnormalities as the mirror of SARS-CoV-2 disease severity: A pilot study. Front Physiol. 2022;12:825055. DOI:10.3389/fphys.2021.825055
18. Thomas T, Stefanoni D, Dzieciatkowska M, et al. Evidence of structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 patients. J Proteome Res. 2020;19(11):4455-69. DOI:10.1021/acs.jproteome.0c00606
19. Алиева А.В. Показатели эндотелиальной дисфункции и частота тромботических осложнений у пациентов с сахарным диабетом 2 типа в различные сроки после COVID-19. Juvenis Scientia. 2023;9(4):35-41 [Alieva AV. Indicators of endothelial dysfunction and the rate of thrombotic complications in patients with type 2 diabetes mellitus at different periods after COVID-19. Juvenis Scientia. 2023;9(4):35-41 (in Russian)]. DOI:10.32415/jscientia_2023_9_4_35-41
20. Мкртумян А.М., Оранская А.Н. Кокарнит – высокоэффективный и безопасный подход к терапии диабетической нейропатии. Эффективная фармакотерапия. 2022;18(10):10-6 [Mkrtumyan AM, Oranskaya AN. Cocarnit – Highly Effective and Safe Approach to the Treatment of Diabetic Neuropathy. Effective Pharmacotherapy. 2022;18(10):10-6 (in Russian)]. DOI:10.33978/2307-3586-2022-18-10-10-162
21. Зуева И.Б., Ким Ю.В., Суслова М.Ю. Влияние цитиколина на когнитивные функции у пациентов, перенесших COVID-19. РМЖ. 2021;5:2-5 [Zueva IB, Kim YuV, Suslova MYu. Citicoline effect on cognitive function in COVID-19 patients. RMJ. 2021;5:2-5 (in Russian)].
22. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 4. Временные методические рекомендации (утв. Минздравом России 27 марта 2020 г.). М. 2020. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/049/881/original/COVID19_recomend_v.... Ссылка активна на 10.12.2022 [Profilaktika, diagnostika i lechenie novoi koronavirusnoi infektsii (COVID-19). Versiia 4. Vremennye metodicheskie rekomendatsii (utv. Minzdravom Rossii 27 marta 2020 g.). Moscow. 2020. Available at: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/049/881/original/COVID19_recomend_v.... Accessed: 10.12.2022 (in Russian)].
23. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 7. Временные методические рекомендации (утв. Минздравом России 3 июня 2020 г.). М. 2020. Режим доступа: https://medprint.ru/documents/user/МR_COVID-19_v7.pdf?ysclid=m0ujlyqe64769409724. Ссылка активна на 10.12.2022 [Profilaktika, diagnostika i lechenie novoi koronavirusnoi infektsii (COVID-19). Versiia 7. Vremennye metodicheskie rekomendatsii (utv. Minzdravom Rossii 3 iiunia 2020 g.). Moscow. 2020. Available at: https://medprint.ru/documents/user/МR_COVID-19_v7.pdf?ysclid=m0ujlyqe64769409724. Accessed: 10.12.2022 (in Russian)].
24. Генералов В.М., Кручинина М.В., Дурыманов А.Г., и др. Диэлектрофорез в диагностике инфекционных и неинфекционных заболеваний. Новосибирск: ЦЭРИС, 2011 [Generalov VM, Kruchinina MV, Durymanov AG, et al. Dielektroforez v diagnostike infektsionnykh i neinfektsionnykh zabolevanii. Novosibirsk: TsERIS, 2011 (in Russian)].
25. Генералов К.В., Генералов В.М., Кручинина М.В., Шувалов Г.В. Программа для ЭВМ «Определение параметров эритроцитов с помощью неоднородного переменного электрического поля». Свидетельство РФ №2016618155. Бюллетень «Программы для ЭВМ, БД, ТИМС». 2016;8. Режим доступа: http://www.vector.nsc.ru/ru/deyatelnost/patenty/patenty-2016-god. Ссылка активна на 23.06.2024 [Generalov KV, Generalov VM, Kruchinina MV, Shuvalov GV. Programma dlia EVM “Opredelenie parametrov eritrotsitov s pomoshch’iu neodnorodnogo peremennogo elektricheskogo polia”. Svidetel’stvo RF No.2016618155. Biulleten’ “Programmy dlia EVM, BD, TIMS”. 2016;8. Available at: http://www.vector.nsc.ru/ru/deyatelnost/patenty/patenty-2016-god. Accessed: 23.06.2024 (in Russian)].
26. Клиническая лабораторная диагностика. Учебник. Под ред. В.В. Долгова. М.: ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования», 2016 [Klinicheskaia laboratornaia diagnostika. Uchebnik. Pod red. VV Dolgova. Moscow: FGBOU DPO “Rossiiskaia meditsinskaia akademiia nepreryvnogo professional’nogo obrazovaniia”, 2016 (in Russian)].
27. Bellmann-Weiler R, Lanser L, Barket R, et al. Prevalence and predictive value of anemia and dysregulated iron homeostasis in patients with COVID-19 infection. J Clin Med. 2020;9(8):2429. DOI:10.3390/jcm9082429
28. Новицкий В.В., Рязанцева Н.В., Степовая Е.А. Физиология и патофизиология эритроцита. Томск: Изд-во Томск. ун-та, 2004 [Novitskii VV, Riazantseva NV, Stepovaia EA. Fiziologiia i patofiziologiia eritrotsita. Tomsk: Izd-vo Tomsk. un-ta, 2004 (in Russian)].
29. Lam LM, Murphy SJ, Kuri-Cervantes L, et al. Erythrocytes reveal complement activation in patients with COVID-19. medRxiv [Preprint]. 2020:2020.05.20.20104398. DOI:10.1101/2020.05.20.20104398
30. Muroya T, Kannan L, Ghiran IC, et al. C4d deposits on the surface of RBCs in trauma patients and interferes with their function. Crit Care Med. 2014;42(5):e364-72. DOI:10.1097/CCM.0000000000000231
31. Piagnerelli M, Vanderelst J, Rousseau A, et al. Red blood cell shape and deformability in patients with COVID-19 acute respiratory distress syndrome. Front Physiol. 2022;13:849910. DOI:10.3389/fphys.2022.849910
32. Kubánková M, Hohberger B, Hoffmanns J, et al. Physical phenotype of blood cells is altered in COVID-19. Biophys J. 2021;120(14):2838-47. DOI:10.1016/j.bpj.2021.05.025
33. Al-Kuraishy HM, Al-Gareeb AI, Onohuean H, El-Saber Batiha G. COVID-19 and erythrocrine function: The roller coaster and danger. Int J Immunopathol Pharmacol. 2022;36:3946320221103151. DOI:10.1177/03946320221103151
34. Berzuini A, Bianco C, Paccapelo C, et al. Red cell-bound antibodies and transfusion requirements in hospitalized patients with COVID-19. Blood. 2020;136(6):766-8. DOI:10.1182/blood.2020006695
35. Sastry S, Cuomo F, Muthusamy J. COVID-19 and thrombosis: The role of hemodynamics. Thromb Res. 2022;212:51-7. DOI:10.1016/j.thromres.2022.02.016
36. Lam LKM, Murphy S, Kokkinaki D, et al. DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia. Sci Transl Med. 2021;13(616):eabj1008. DOI:10.1126/scitranslmed.abj1008
37. Al-Kuraishy HM, Al-Gareeb AI, Al-Hussaniy HA, et al. Neutrophil extracellular traps (NETs) and COVID-19: A new frontiers for therapeutic modality. Int Immunopharmacol. 2022;104:108516. DOI:10.1016/j.intimp.2021.108516
38. Su WL, Lin CP, Hang HC, et al. Desaturation and heme elevation during COVID-19 infection: A potential prognostic factor of heme oxygenase-1. J Microbiol Immunol Infect. 2021;54(1):113-6. DOI:10.1016/j.jmii.2020.10.001
39. Nader E, Nougier C, Boisson C, et al. Increased blood viscosity and red blood cell aggregation in patients with COVID-19. Am J Hematol. 2022;97(3):283-92. DOI:10.1002/ajh.26440
40. Olagnier D, Farahani E, Thyrsted J, et al. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat Commun. 2020;11(1):4938. DOI:10.1038/s41467-020-18764-3
41. Shahbaz S, Xu L, Osman M, et al. Erythroid precursors and progenitors suppress adaptive immunity and get invaded by SARS-CoV-2. Stem Cell Reports. 2021;16(5):1165-81. DOI:10.1016/j.stemcr.2021.04.001
42. Xu B, Lei Y, Ren X, et al. SOD1 is a possible predictor of COVID-19 progression as revealed by plasma proteomics. ACS Omega. 2021;6(26):16826-36. DOI:10.1021/acsomega.1c01375
43. Shen S, Zhang J, Fang Y, et al. SARS-CoV-2 interacts with platelets and megakaryocytes via ACE2-independent mechanism. J Hematol Oncol. 2021;14(1):72.
DOI:10.1186/s13045-021-01082-6
44. Marfia G, Navone S, Guarnaccia L, et al. Decreased serum level of sphingosine-1-phosphate: a novel predictor of clinical severity in COVID-19. EMBO Mol Med. 2021;13(1):e13424. DOI:10.15252/emmm.202013424
45. Zuo Y, Estes SK, Ali RA, et al. Prothrombotic antiphospholipid antibodies in COVID-19. medRxiv [Preprint]. 2020:2020.06.15.20131607. DOI:10.1101/2020.06.15.20131607
46. Кручинина М.В., Громов А.А., Кручинина Э.В., Шишакина Ю.А. Изменения электрических и вязкоупругих параметров эритроцитов у пациентов с проявлениями метаболического синдрома, реконвалесцентов COVID-19, при воздействии цитиколина в эксперименте in vitro. Consilium Medicum. 2023;25(11):767-74 [Kruchinina MV, Gromov AA, Kruchinina EV, Shishakina YuA. Changes in the electrical and viscoelastic parameters of erythrocytes in patients with manifestations of metabolic syndrome, COVID-19 convalescents, when exposed to citicoline in an in vitro experiment. Consilium Medicum. 2023;25(11):767–74 (in Russian)]. DOI:10.26442/20751753.2023.11.202528
47. Путилина М.В. Персонифицированный выбор препаратов – предшественников холина с позиций доказательной медицины. Журнал неврологии и психиатрии им. С.С. Корсакова. 2020;120(6):144-51 [Putilina MV. A personalized selection of choline precursors in evidence – based medicine. S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(6):144-51 (in Russian)]. DOI:10.17116/jnevro2020120061144
48. Hu S, Wang Y, Li H. The regulation effect of α7nAChRs and M1AChRs on inflammation and immunity in sepsis. Mediators Inflamm. 2021;2021:9059601. DOI:10.1155/2021/9059601
49. Sharma C, Donu D, Cen Y. Emerging role of nicotinamide riboside in health and diseases. Nutrients. 2022;14(19):3889. DOI:10.3390/nu14193889
50. Громова О.А., Торшин И.Ю. Систематический анализ экспериментальной и клинической фармакологии никотинамида и перспективы лечения атеросклероза. Экспериментальная и клиническая гастроэнтерология. 2022;206(10):111-25 [Gromova OA, Torshin IYu. Systematic analysis of the experimental and clinical pharmacology of nicotinamide and prospects for the treatment of atherosclerosis. Experimental and Clinical Gastroenterology. 2022;206(10):111-25 (in Russian)].
DOI:10.31146/1682-8658-ecg-206-10-111-125
51. Raj V, Ojha S, Howarth FC, et al. Therapeutic potential of benfotiamine and its molecular targets. Eur Rev Med Pharmacol Sci. 2018;22(10):3261-73. DOI:10.26355/eurrev_201805_15089
52. Ших Е.В., Петунина Н.А., Недосугова Л.В., и др. Спонтанная и индуцированная секреция провоспалительных и противовоспалительных цитокинов у пациентов с сахарным диабетом 2 типа и синдромом диабетической стопы. Сахарный диабет. 2020;23(3):210-22 [Shikh EV, Petunina NA, Nedosugova LV, et al. Spontaneous and induced secretion of the pro-inflammatory and anti-inflammatory cytokines in patients with type 2 diabetes mellitus and diabetic foot syndrome. Diabetes Mellitus. 2020;23(3):210-22 (in Russian)]. DOI:10.14341/DM12343
53. Theiss EL, Griebsch LV, Lauer AA, et al. Vitamin B12 attenuates changes in phospholipid levels related to oxidative stress in SH-SY5Y cells. Cells. 2022;11(16):2574. DOI:10.3390/cells11162574
54. Jeon YM, Kwon Y, Lee S, et al. Vitamin B12 reduces TDP-43 toxicity by alleviating oxidative stress and mitochondrial dysfunction. Antioxidants (Basel). 2021;11(1):82. DOI:10.3390/antiox11010082
55. Mastropasqua L, Agnifili L, Ferrante C, et al. Citicoline/coenzyme Q10/vitamin B3 fixed combination exerts synergistic protective effects on neuronal cells exposed to oxidative stress. Nutrients. 2022;14(14):2963. DOI:10.3390/nu14142963
________________________________________________
1. Wan EYF, Mathur S, Zhang R, et al. Association of COVID-19 with short- and long-term risk of cardiovascular disease and mortality: A prospective cohort in UK Biobank. Cardiovasc Res. 2023;119(8):1718-27. DOI:10.1093/cvr/cvac195
2. Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28(3):583-90. DOI:10.1038/s41591-022-01689-3
3. Remy-Jardin M, Duthoit L, Perez T, et al. Assessment of pulmonary arterial circulation 3 months after hospitalization for SARS-CoV-2 pneumonia: Dual-energy CT (DECT) angiographic study in 55 patients. EClinicalMedicine. 2021;34:100778. DOI:10.1016/j.eclinm.2021.100778
4. Coronavirus Disease (COVID-19): Post COVID-19 condition. Available at: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-(covid-19)-post-covid-1.... Accessed: 27.01.2023.
5. Ma Y, Deng J, Liu Q, et al. Long-term consequences of asymptomatic SARS-CoV-2 Infection: A systematic review and meta-analysis. Int J Environ Res Public Health. 2023;20(2):1613. DOI:10.3390/ijerph20021613
6. Haque A, Pant AB. Long COVID: Untangling the complex syndrome and the search for therapeutics. Viruses. 2022;15(1):42. DOI:10.3390/v15010042
7. Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: Major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):1-14. DOI:10.1038/s41579-022-00846-2
8. Jiménez D, García-Sanchez A, Rali P, et al. Incidence of VTE and bleeding among hospitalized patients with coronavirus disease 2019: A systematic review and meta-analysis. Chest. 2021;159(3):1182-96. DOI:10.1016/j.chest.2020.11.005
9. Gorog DA, Storey RF, Gurbel PA, et al. Current and novel biomarkers of thrombotic risk in COVID-19: a Consensus Statement from the International COVID-19 Thrombosis Biomarkers Colloquium. Nat Rev Cardiol. 2022;19(7):475-95. DOI:10.1038/s41569-021-00665-7
10. Kruchinina MV, Gromov AA, Generalov VM, Kruchinina EV. Eritrotsity: rol’ v razvitii narushenii mikrotsirkuliatsii i gemostaza. Novosibirsk: Ofset-TM, 2022 (in Russian).
11. Magro CM, Mulvey J, Kubiak J, et al. Severe COVID-19: A multifaceted viral vasculopathy syndrome. Ann Diagn Pathol. 2021;50:151645. DOI:10.1016/j.anndiagpath.2020.151645
12. Martynov MU, Bogolepova AN, Yasamanova AN. Endothelial dysfunction in COVID-19 and cognitive impairment. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(6):93-9 (in Russian). DOI:10.17116/jnevro202112106193
13. Del Brutto OH, Wu S, Mera RM, et al. Cognitive decline among individuals with history of mild symptomatic SARSCoV-2 infection: A longitudinal prospective study nested to a population cohort. Eur J Neurol. 2021;10.1111/ene.14775. DOI:10.1111/ene.14775
14. Amalakanti S, Arepalli KVR, Jillella JP. Cognitive assessment in asymptomatic COVID-19 subjects. Virusdisease. 2021;8(23):146-9. DOI:10.1007/s13337-021-00663-w
15. Miners S, Kehoe PG, Love S. Cognitive impact of COVID-19: Looking beyond the short term. Alzheimers Res Ther. 2020;12(1):170. DOI:10.1186/s13195-020-00744-w
16. Guarnieri JW, Dybas JM, Fazelinia H, et al. Targeted down regulation of core mitochondrial genes during SARS-CoV-2 infection. bioRxiv. [Preprint]. 2022:2022.02.19.481089. DOI:10.1101/2022.02.19.481089
17. Bouchla A, Kriebardis AG, Georgatzakou HT, et al. Red blood cell abnormalities as the mirror of SARS-CoV-2 disease severity: A pilot study. Front Physiol. 2022;12:825055. DOI:10.3389/fphys.2021.825055
18. Thomas T, Stefanoni D, Dzieciatkowska M, et al. Evidence of structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 patients. J Proteome Res. 2020;19(11):4455-69. DOI:10.1021/acs.jproteome.0c00606
19. Alieva AV. Indicators of endothelial dysfunction and the rate of thrombotic complications in patients with type 2 diabetes mellitus at different periods after COVID-19. Juvenis Scientia. 2023;9(4):35-41 (in Russian). DOI:10.32415/jscientia_2023_9_4_35-41
20. Mkrtumyan AM, Oranskaya AN. Cocarnit – Highly Effective and Safe Approach to the Treatment of Diabetic Neuropathy. Effective Pharmacotherapy. 2022;18(10):10-6 (in Russian). DOI:10.33978/2307-3586-2022-18-10-10-162
21. Zueva IB, Kim YuV, Suslova MYu. Citicoline effect on cognitive function in COVID-19 patients. RMJ. 2021;5:2-5 (in Russian).
22. Profilaktika, diagnostika i lechenie novoi koronavirusnoi infektsii (COVID-19). Versiia 4. Vremennye metodicheskie rekomendatsii (utv. Minzdravom Rossii 27 marta 2020 g.). Moscow. 2020. Available at: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/049/881/original/COVID19_recomend_v.... Accessed: 10.12.2022 (in Russian).
23. Profilaktika, diagnostika i lechenie novoi koronavirusnoi infektsii (COVID-19). Versiia 7. Vremennye metodicheskie rekomendatsii (utv. Minzdravom Rossii 3 iiunia 2020 g.). Moscow. 2020. Available at: https://medprint.ru/documents/user/МR_COVID-19_v7.pdf?ysclid=m0ujlyqe64769409724. Accessed: 10.12.2022 (in Russian).
24. Generalov VM, Kruchinina MV, Durymanov AG, et al. Dielektroforez v diagnostike infektsionnykh i neinfektsionnykh zabolevanii. Novosibirsk: TsERIS, 2011 (in Russian).
25. Generalov KV, Generalov VM, Kruchinina MV, Shuvalov GV. Programma dlia EVM “Opredelenie parametrov eritrotsitov s pomoshch’iu neodnorodnogo peremennogo elektricheskogo polia”. Svidetel’stvo RF No.2016618155. Biulleten’ “Programmy dlia EVM, BD, TIMS”. 2016;8. Available at: http://www.vector.nsc.ru/ru/deyatelnost/patenty/patenty-2016-god. Accessed: 23.06.2024 (in Russian).
26. Klinicheskaia laboratornaia diagnostika. Uchebnik. Pod red. VV Dolgova. Moscow: FGBOU DPO “Rossiiskaia meditsinskaia akademiia nepreryvnogo professional’nogo obrazovaniia”, 2016 (in Russian).
27. Bellmann-Weiler R, Lanser L, Barket R, et al. Prevalence and predictive value of anemia and dysregulated iron homeostasis in patients with COVID-19 infection. J Clin Med. 2020;9(8):2429. DOI:10.3390/jcm9082429
28. Novitskii VV, Riazantseva NV, Stepovaia EA. Fiziologiia i patofiziologiia eritrotsita. Tomsk: Izd-vo Tomsk. un-ta, 2004 (in Russian).
29. Lam LM, Murphy SJ, Kuri-Cervantes L, et al. Erythrocytes reveal complement activation in patients with COVID-19. medRxiv [Preprint]. 2020:2020.05.20.20104398. DOI:10.1101/2020.05.20.20104398
30. Muroya T, Kannan L, Ghiran IC, et al. C4d deposits on the surface of RBCs in trauma patients and interferes with their function. Crit Care Med. 2014;42(5):e364-72. DOI:10.1097/CCM.0000000000000231
31. Piagnerelli M, Vanderelst J, Rousseau A, et al. Red blood cell shape and deformability in patients with COVID-19 acute respiratory distress syndrome. Front Physiol. 2022;13:849910. DOI:10.3389/fphys.2022.849910
32. Kubánková M, Hohberger B, Hoffmanns J, et al. Physical phenotype of blood cells is altered in COVID-19. Biophys J. 2021;120(14):2838-47. DOI:10.1016/j.bpj.2021.05.025
33. Al-Kuraishy HM, Al-Gareeb AI, Onohuean H, El-Saber Batiha G. COVID-19 and erythrocrine function: The roller coaster and danger. Int J Immunopathol Pharmacol. 2022;36:3946320221103151. DOI:10.1177/03946320221103151
34. Berzuini A, Bianco C, Paccapelo C, et al. Red cell-bound antibodies and transfusion requirements in hospitalized patients with COVID-19. Blood. 2020;136(6):766-8. DOI:10.1182/blood.2020006695
35. Sastry S, Cuomo F, Muthusamy J. COVID-19 and thrombosis: The role of hemodynamics. Thromb Res. 2022;212:51-7. DOI:10.1016/j.thromres.2022.02.016
36. Lam LKM, Murphy S, Kokkinaki D, et al. DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia. Sci Transl Med. 2021;13(616):eabj1008. DOI:10.1126/scitranslmed.abj1008
37. Al-Kuraishy HM, Al-Gareeb AI, Al-Hussaniy HA, et al. Neutrophil extracellular traps (NETs) and COVID-19: A new frontiers for therapeutic modality. Int Immunopharmacol. 2022;104:108516. DOI:10.1016/j.intimp.2021.108516
38. Su WL, Lin CP, Hang HC, et al. Desaturation and heme elevation during COVID-19 infection: A potential prognostic factor of heme oxygenase-1. J Microbiol Immunol Infect. 2021;54(1):113-6. DOI:10.1016/j.jmii.2020.10.001
39. Nader E, Nougier C, Boisson C, et al. Increased blood viscosity and red blood cell aggregation in patients with COVID-19. Am J Hematol. 2022;97(3):283-92. DOI:10.1002/ajh.26440
40. Olagnier D, Farahani E, Thyrsted J, et al. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat Commun. 2020;11(1):4938. DOI:10.1038/s41467-020-18764-3
41. Shahbaz S, Xu L, Osman M, et al. Erythroid precursors and progenitors suppress adaptive immunity and get invaded by SARS-CoV-2. Stem Cell Reports. 2021;16(5):1165-81. DOI:10.1016/j.stemcr.2021.04.001
42. Xu B, Lei Y, Ren X, et al. SOD1 is a possible predictor of COVID-19 progression as revealed by plasma proteomics. ACS Omega. 2021;6(26):16826-36. DOI:10.1021/acsomega.1c01375
43. Shen S, Zhang J, Fang Y, et al. SARS-CoV-2 interacts with platelets and megakaryocytes via ACE2-independent mechanism. J Hematol Oncol. 2021;14(1):72.
DOI:10.1186/s13045-021-01082-6
44. Marfia G, Navone S, Guarnaccia L, et al. Decreased serum level of sphingosine-1-phosphate: a novel predictor of clinical severity in COVID-19. EMBO Mol Med. 2021;13(1):e13424. DOI:10.15252/emmm.202013424
45. Zuo Y, Estes SK, Ali RA, et al. Prothrombotic antiphospholipid antibodies in COVID-19. medRxiv [Preprint]. 2020:2020.06.15.20131607. DOI:10.1101/2020.06.15.20131607
46. Kruchinina MV, Gromov AA, Kruchinina EV, Shishakina YuA. Changes in the electrical and viscoelastic parameters of erythrocytes in patients with manifestations of metabolic syndrome, COVID-19 convalescents, when exposed to citicoline in an in vitro experiment. Consilium Medicum. 2023;25(11):767–74 (in Russian). DOI:10.26442/20751753.2023.11.202528
47. Putilina MV. A personalized selection of choline precursors in evidence – based medicine. S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(6):144-51 (in Russian). DOI:10.17116/jnevro2020120061144
48. Hu S, Wang Y, Li H. The regulation effect of α7nAChRs and M1AChRs on inflammation and immunity in sepsis. Mediators Inflamm. 2021;2021:9059601. DOI:10.1155/2021/9059601
49. Sharma C, Donu D, Cen Y. Emerging role of nicotinamide riboside in health and diseases. Nutrients. 2022;14(19):3889. DOI:10.3390/nu14193889
50. Gromova OA, Torshin IYu. Systematic analysis of the experimental and clinical pharmacology of nicotinamide and prospects for the treatment of atherosclerosis. Experimental and Clinical Gastroenterology. 2022;206(10):111-25 (in Russian). DOI:10.31146/1682-8658-ecg-206-10-111-125
51. Raj V, Ojha S, Howarth FC, et al. Therapeutic potential of benfotiamine and its molecular targets. Eur Rev Med Pharmacol Sci. 2018;22(10):3261-73. DOI:10.26355/eurrev_201805_15089
52. Shikh EV, Petunina NA, Nedosugova LV, et al. Spontaneous and induced secretion of the pro-inflammatory and anti-inflammatory cytokines in patients with type 2 diabetes mellitus and diabetic foot syndrome. Diabetes Mellitus. 2020;23(3):210-22 (in Russian). DOI:10.14341/DM12343
53. Theiss EL, Griebsch LV, Lauer AA, et al. Vitamin B12 attenuates changes in phospholipid levels related to oxidative stress in SH-SY5Y cells. Cells. 2022;11(16):2574. DOI:10.3390/cells11162574
54. Jeon YM, Kwon Y, Lee S, et al. Vitamin B12 reduces TDP-43 toxicity by alleviating oxidative stress and mitochondrial dysfunction. Antioxidants (Basel). 2021;11(1):82. DOI:10.3390/antiox11010082
55. Mastropasqua L, Agnifili L, Ferrante C, et al. Citicoline/coenzyme Q10/vitamin B3 fixed combination exerts synergistic protective effects on neuronal cells exposed to oxidative stress. Nutrients. 2022;14(14):2963. DOI:10.3390/nu14142963
1Научно-исследовательский институт терапии и профилактической медицины – филиал ФГБНУ «Федеральный исследовательский центр Институт цитологии и генетики» Сибирского отделения Российской академии наук, Новосибирск, Россия; 2ФГБОУ ВО «Новосибирский государственный медицинский университет» Минздрава России, Новосибирск, Россия
*kruchmargo@yandex.ru
________________________________________________
Margarita V. Kruchinina*1,2, Andrei A. Gromov1, Irina I. Logvinenko1,2, Elina V. Kruchinina2
1Research Institute of Therapy and Preventive Medicine – branch of the Institute of Cytology and Genetics, Novosibirsk, Russia; 2Novosibirsk State Medical University, Novosibirsk, Russia
*kruchmargo@yandex.ru