Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Некоторые молекулярно-генетические детерминанты преждевременного старения женщины
© ООО «КОНСИЛИУМ МЕДИКУМ», 2024 г.
________________________________________________
Kudryavtseva EV, Berezina DA, Kornilov DO, Simarzina VM, Tryapitsyn MA, Bekhter AA, Kovalev VV, Zornikov DL. Some molecular-genetic determinants of premature aging in women. Consilium Medicum. 2024;26(12):809–814. DOI: 10.26442/20751753.2024.12.202970
Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Цель. Определить значение генетических полиморфизмов генов VDR и COL1A1 при ускоренном темпе старения.
Материалы и методы. В исследование включены 100 женщин в возрасте 20–35 лет, разделенных на группы с ускоренным (группа 1) и нормальным/замедленным (группа 2) темпом старения. Биологический возраст оценивался с использованием формулы В.П. Войтенко. Были проанализированы генетические полиморфизмы: VDR 283 A>G (Bsml), VDR 2 A>G (Fokl), COL1A1 1546 G>T, COL1A1 -1997 C>A.
Результаты. Полиморфизм VDR 283 A>G (AA) оказался связан с ускоренным старением, встречаясь чаще в группе 1 (18% против 4% в группе 2, p=0,025). Полиморфизм COL1A1 -1997 C>A чаще выявлен в группе 2 (76% против 56% в группе 1, p=0,035). Мультифакторная модель показала сочетания полиморфизмов, предсказывающие ускоренное или замедленное старение с точностью 0,72.
Заключение. Генетическая предрасположенность играет значимую роль в ускоренном старении. Анализ полиморфизмов VDR и COL1A1 помогает выявить риск преждевременного старения и может служить основой для дальнейших исследований и разработки новых подходов к профилактике возрастных заболеваний.
Ключевые слова: старение, генетическая предрасположенность, анти-эйджинг, биологический возраст, витамин D
________________________________________________
Background. Accelerated biological aging is associated with age-related diseases and an increased risk of mortality. Genetic predisposition may be an important factor in this process.
Aim. To determine the significance of genetic polymorphisms in the VDR and COL1A1 genes in accelerated aging.
Materials and methods. The study included 100 women aged 20–35 years, divided into groups with accelerated (Group 1) and normal/slow (Group 2) aging rates. We assessed biological age using V.P. Voytenko's formula. Genetic polymorphisms analyzed were: VDR 283 A>G (Bsml), VDR 2 A>G (Fokl), COL1A1 1546 G>T, COL1A1 -1997 C>A.
Results. The VDR 283 A>G (AA) polymorphism was associated with accelerated aging, occurring more frequently in Group 1 (18% vs 4% in Group 2, p=0.025). The COL1A1 -1997 C>A polymorphism was more prevalent in Group 2 (76% vs 56% in Group 1, p=0.035). A multifactorial model identified combinations of polymorphisms that predict accelerated or slow aging with an accuracy of 0.72.
Conclusion. Genetic predisposition plays a significant role in accelerated aging. Analysis of VDR and COL1A1 polymorphisms can help identify the risk of premature aging and may serve as a basis for further research and the development of new approaches to prevent age-related diseases.
Keywords: aging, genetic predisposition, anti-aging, biological age, vitamin D
2. Cui F, Tang L, Li D, et al. Early-life exposure to tobacco, genetic susceptibility, and accelerated biological aging in adulthood. Sci Adv. 2024;10. DOI:10.1126/sciadv.adl3747
3. Lin W. Gene–Environment Interactions and Gene–Gene Interactions on Two Biological Age Measures: Evidence from Taiwan Biobank Participants. Adv Biol. 2024;8. DOI:10.1002/adbi.202400149
4. Cizmeli C, Lobel M, Franasiak J, et al. Levels and associations among self-esteem, fertility distress, coping, and reaction to potentially being a genetic carrier in women with diminished ovarian reserve. Fertil Steril. 2013;99:2037-44.e3. DOI:10.1016/j.fertnstert.2013.02.033
5. Ковалев В.В., Кудрявцева Е.В., Миляева Н.М., Беломестнов С.Р. Большие акушерские синдромы: «гордиев узел» генных сетей. Уральский медицинский журнал.
2018;(13):40-7 [Kovalev VV, Kudryavtseva EV, Milyaeva NM, Belomestnov SR. Great Obstetric Syndromes: The ”Gordian Knot” of Genetic Networks. Ural'skii meditsinskii zhurnal.
2018;(13):40-7 (in Russian)]. DOI:10.25694/URMJ.2018.13.45
6. Lin W-Y. Lifestyle Factors and Genetic Variants on 2 Biological Age Measures: Evidence From 94 443 Taiwan Biobank Participants. The Journals of Gerontology: Series A. 2022;77:1189-98. DOI:10.1093/gerona/glab251
7. Kwon D, Belsky DW. A toolkit for quantification of biological age from blood chemistry and organ function test data: BioAge. Geroscience. 2021;43:2795-808.
DOI:10.1007/s11357-021-00480-5
8. Bian L, Ma Z, Fu X, et al. Associations of combined phenotypic aging and genetic risk with incident cancer: A prospective cohort study. Elife. 2024;13. DOI:10.7554/eLife.91101
9. Eskes T, Haanen C. Why do women live longer than men? European Journal of Obstetrics & Gynecology and Reproductive Biology. 2007;133:126-33. DOI:10.1016/j.ejogrb.2007.01.006
10. Duffy JMN, Adamson GD, Benson E, et al. Top 10 priorities for future infertility research: an international consensus development study. Human Reproduction. 2020;35:2715-24. DOI:10.1093/humrep/deaa242
11. Fantini C, Corinaldesi C, Lenzi A, et al. Vitamin D as a Shield against Aging. Int J Mol Sci. 2023;24:45-46. DOI:10.3390/ijms24054546
12. Ruggiero C, Tafaro L, Cianferotti L, et al. Targeting the Hallmarks of Aging with Vitamin D: Starting to Decode the Myth. Nutrients. 2024;16:906. DOI:10.3390/nu16060906
13. Vetter VM, Sommerer Y, Kalies CH, et al. Vitamin D supplementation is associated with slower epigenetic aging. Geroscience. 2022;44:1847-59. DOI:10.1007/s11357-022-00581-9
14. Drapkina OM, Shepel RN, Fomin VV, et al. Place of vitamin D in the prevention of premature aging and the development of age-associated diseases. Ter Arkh. 2018;90:69-75. DOI:10.26442/terarkh201890169-75
15. Podolsky MJ, Yang CD, Valenzuela CL, et al. Age-dependent regulation of cell-mediated collagen turnover. JCI Insight. 2020;5. DOI:10.1172/jci.insight.137519
16. Ariosa-Morejon Y, Santos A, Fischer R, et al. Age-dependent changes in protein incorporation into collagen-rich tissues of mice by in vivo pulsed SILAC labelling. Elife. 2021;10. DOI:10.7554/eLife.66635
17. Pu S-Y, Huang Y-L, Pu C-M, et al. Effects of Oral Collagen for Skin Anti-Aging: A Systematic Review and Meta-Analysis. Nutrients. 2023;15:2080. DOI:10.3390/nu15092080
18. He T, Fisher GJ, Kim AJ, et al. Age-related changes in dermal collagen physical properties in human skin. PLoS One. 2023;18:e0292791. DOI:10.1371/journal.pone.0292791
19. Umehara T, Winstanley YE, Andreas E, et al. Female reproductive life span is extended by targeted removal of fibrotic collagen from the mouse ovary. Sci Adv. 2022;8. DOI:10.1126/sciadv.abn4564
20. Маркина Л.Д. Определение биологического возраста человека методом Войтенко В.П. Владивосток. 2001. Режим доступа: https://nzdr.ru/data/media/biblio/kolxoz/B/BH/Markina%20L.D.%20Opredelenie%20biologicheskogo%20vozra.... Ссылка активна на 02.09.2024 [Markina LD. Opredelenie biologicheskogo vozrasta cheloveka metodom Voitenko V.P. Vladivistok. 2001. Available at: https://nzdr.ru/data/media/biblio/kolxoz/B/BH/Markina%20L.D.%20Opredelenie%20biologicheskogo%20vozra.... Accessed: 02.09.2024 (in Russian)].
21. Yang S-K, Liu N, Zhang W-J, et al. Impact of Vitamin D Receptor Gene Polymorphism on Systemic Lupus Erythematosus Susceptibility: A Pooled Analysis. Genet Test Mol Biomarkers. 2022;26:228-38. DOI:10.1089/gtmb.2021.0167
22. Pramono A, Jocken JWE, Adriaens ME, et al. The association between vitamin D receptor polymorphisms and tissue-specific insulin resistance in human obesity. Int J Obes. 2021;45:818-27. DOI:10.1038/s41366-021-00744-2
23. Pourostadi M, Sattarpour S, Poor BM, et al. Vitamin D Receptor Gene Polymorphism and the Risk of Multiple Sclerosis in the Azeri Population of Iran. Endocr Metab Immune Disord Drug Targets. 2021;21:1306-11. DOI:10.2174/1871530320666200910113954
24. Kang SY, Park S, Oh E, et al. Vitamin D receptor polymorphisms and Parkinson’s disease in a Korean population: Revisited. Neurosci Lett. 2016;628:230-5. DOI:10.1016/j.neulet.2016.06.041
25. Da Silva Sabião T, Alves de Menezes-Júnior LA, Batista AP, et al. Interaction between Fokl polymorphism and vitamin D deficiency in the symptoms of mental disorders in adults: a population-based study. Sci Rep. 2024;14:6925. DOI:10.1038/s41598-024-57558-1
26. Alzaim M, Al-Daghri NM, Sabico S, et al. The Association Between FokI Vitamin D Receptor Polymorphisms With Metabolic Syndrome Among Pregnant Arab Women. Front Endocrinol (Lausanne). 2022;13. DOI:10.3389/fendo.2022.844472
27. Schulz N, Dischereit G, Henke L, et al. Prevalence and effects of Vitamin D receptor polymorphism on bone mineral density and metabolism in patients with systemic sclerosis: a preliminary study. Clin Exp Med. 2024;24:121. DOI:10.1007/s10238-024-01385-1
28. Bozsodi A, Boja S, Szilagyi A, et al. Muscle strength is associated with vitamin D receptor gene variants. Journal of Orthopaedic Research. 2016;34:2031-7. DOI:10.1002/jor.23220
29. Berg AO, Jørgensen KN, Nerhus M, et al. Vitamin D levels, brain volume, and genetic architecture in patients with psychosis. PLoS One. 2018;13:e0200250. DOI:10.1371/journal.pone.0200250
30. Шамбатов М.А., Изможерова Н.В., Попов А.А., и др. Маркеры деградации коллагена при ремоделировании и диастолической дисфункции левого желудочка у пациенток с артериальной гипертензией. Уральский медицинский журнал. 2024;23:46-59 [Shambatov MA, Izmozherova NV, Popov AA, et al. Markers of collagen degradation in remodeling and diastolic dysfunction of the left ventricle in patients with arterial hypertension. Ural'skii meditsinskii zhurnal. 2024;23:46-59 (in Russian)]. DOI:10.52420/2071-5943-2024-23-1-46-59
31. Saito M, Ginszt M, Semenova EA, et al. Is COL1A1 Gene rs1107946 Polymorphism Associated with Sport Climbing Status and Flexibility? Genes (Basel). 2022;13:403. DOI:10.3390/genes13030403
32. Alves APVD, Freitas AB, Levi JE, et al. COL1A1, COL4A3, TIMP2 and TGFB1 polymorphisms in cervical insufficiency. J Perinat Med. 2021;49:553-8. DOI:10.1515/jpm-2020-0320
33. Deprest JA, Cartwright R, Dietz HP, et al. International Urogynecological Consultation (IUC): pathophysiology of pelvic organ prolapse (POP). Int Urogynecol J. 2022;33:1699-710. DOI:10.1007/s00192-022-05081-0
34. Бортник Е.А., Миляева Н.М., Ковалев В.В., и др. Молекулярно-генетические предикторы недостаточности мышц тазового дна с пролапсом гениталий у женщин с вагинальными родами в анамнезе. Медицинская наука и образование Урала. 2023;24:34-41 [Bortnik EA, Miliaeva NM, Kovalev VV, et al. Molecular-Genetic Predictors of Pelvic Floor Muscle Insufficiency with Genital Prolapse in Women with a History of Vaginal Births. Meditsinskaia nauka i obrazovanie Urala. 2023;24:34-41 (in Russian)]. DOI:10.36361/18148999_2023_24_3_34
35. Moqri M, Herzog C, Poganik JR, et al. Validation of biomarkers of aging. Nat Med. 2024;30:360-72. DOI:10.1038/s41591-023-02784-9
________________________________________________
1. Chen L, Wu B, Mo L, et al. Associations between biological ageing and the risk of, genetic susceptibility to, and life expectancy associated with rheumatoid arthritis: a secondary analysis of two observational studies. Lancet Healthy Longev. 2024;5:e45-55. DOI:10.1016/S2666-7568(23)00220-9
2. Cui F, Tang L, Li D, et al. Early-life exposure to tobacco, genetic susceptibility, and accelerated biological aging in adulthood. Sci Adv. 2024;10. DOI:10.1126/sciadv.adl3747
3. Lin W. Gene–Environment Interactions and Gene–Gene Interactions on Two Biological Age Measures: Evidence from Taiwan Biobank Participants. Adv Biol. 2024;8. DOI:10.1002/adbi.202400149
4. Cizmeli C, Lobel M, Franasiak J, et al. Levels and associations among self-esteem, fertility distress, coping, and reaction to potentially being a genetic carrier in women with diminished ovarian reserve. Fertil Steril. 2013;99:2037-44.e3. DOI:10.1016/j.fertnstert.2013.02.033
5. Kovalev VV, Kudryavtseva EV, Milyaeva NM, Belomestnov SR. Great Obstetric Syndromes: The ”Gordian Knot” of Genetic Networks. Ural'skii meditsinskii zhurnal. 2018;(13):40-7 (in Russian). DOI:10.25694/URMJ.2018.13.45
6. Lin W-Y. Lifestyle Factors and Genetic Variants on 2 Biological Age Measures: Evidence From 94 443 Taiwan Biobank Participants. The Journals of Gerontology: Series A. 2022;77:1189-98. DOI:10.1093/gerona/glab251
7. Kwon D, Belsky DW. A toolkit for quantification of biological age from blood chemistry and organ function test data: BioAge. Geroscience. 2021;43:2795-808.
DOI:10.1007/s11357-021-00480-5
8. Bian L, Ma Z, Fu X, et al. Associations of combined phenotypic aging and genetic risk with incident cancer: A prospective cohort study. Elife. 2024;13. DOI:10.7554/eLife.91101
9. Eskes T, Haanen C. Why do women live longer than men? European Journal of Obstetrics & Gynecology and Reproductive Biology. 2007;133:126-33. DOI:10.1016/j.ejogrb.2007.01.006
10. Duffy JMN, Adamson GD, Benson E, et al. Top 10 priorities for future infertility research: an international consensus development study. Human Reproduction. 2020;35:2715-24. DOI:10.1093/humrep/deaa242
11. Fantini C, Corinaldesi C, Lenzi A, et al. Vitamin D as a Shield against Aging. Int J Mol Sci. 2023;24:45-46. DOI:10.3390/ijms24054546
12. Ruggiero C, Tafaro L, Cianferotti L, et al. Targeting the Hallmarks of Aging with Vitamin D: Starting to Decode the Myth. Nutrients. 2024;16:906. DOI:10.3390/nu16060906
13. Vetter VM, Sommerer Y, Kalies CH, et al. Vitamin D supplementation is associated with slower epigenetic aging. Geroscience. 2022;44:1847-59. DOI:10.1007/s11357-022-00581-9
14. Drapkina OM, Shepel RN, Fomin VV, et al. Place of vitamin D in the prevention of premature aging and the development of age-associated diseases. Ter Arkh. 2018;90:69-75. DOI:10.26442/terarkh201890169-75
15. Podolsky MJ, Yang CD, Valenzuela CL, et al. Age-dependent regulation of cell-mediated collagen turnover. JCI Insight. 2020;5. DOI:10.1172/jci.insight.137519
16. Ariosa-Morejon Y, Santos A, Fischer R, et al. Age-dependent changes in protein incorporation into collagen-rich tissues of mice by in vivo pulsed SILAC labelling. Elife. 2021;10. DOI:10.7554/eLife.66635
17. Pu S-Y, Huang Y-L, Pu C-M, et al. Effects of Oral Collagen for Skin Anti-Aging: A Systematic Review and Meta-Analysis. Nutrients. 2023;15:2080. DOI:10.3390/nu15092080
18. He T, Fisher GJ, Kim AJ, et al. Age-related changes in dermal collagen physical properties in human skin. PLoS One. 2023;18:e0292791. DOI:10.1371/journal.pone.0292791
19. Umehara T, Winstanley YE, Andreas E, et al. Female reproductive life span is extended by targeted removal of fibrotic collagen from the mouse ovary. Sci Adv. 2022;8. DOI:10.1126/sciadv.abn4564
20. Markina LD. Opredelenie biologicheskogo vozrasta cheloveka metodom Voitenko V.P. Vladivistok. 2001. Available at: https://nzdr.ru/data/media/biblio/kolxoz/B/BH/Markina%20L.D.%20Opredelenie%20biologicheskogo%20vozra.... Accessed: 02.09.2024 (in Russian).
21. Yang S-K, Liu N, Zhang W-J, et al. Impact of Vitamin D Receptor Gene Polymorphism on Systemic Lupus Erythematosus Susceptibility: A Pooled Analysis. Genet Test Mol Biomarkers. 2022;26:228-38. DOI:10.1089/gtmb.2021.0167
22. Pramono A, Jocken JWE, Adriaens ME, et al. The association between vitamin D receptor polymorphisms and tissue-specific insulin resistance in human obesity. Int J Obes. 2021;45:818-27. DOI:10.1038/s41366-021-00744-2
23. Pourostadi M, Sattarpour S, Poor BM, et al. Vitamin D Receptor Gene Polymorphism and the Risk of Multiple Sclerosis in the Azeri Population of Iran. Endocr Metab Immune Disord Drug Targets. 2021;21:1306-11. DOI:10.2174/1871530320666200910113954
24. Kang SY, Park S, Oh E, et al. Vitamin D receptor polymorphisms and Parkinson’s disease in a Korean population: Revisited. Neurosci Lett. 2016;628:230-5. DOI:10.1016/j.neulet.2016.06.041
25. Da Silva Sabião T, Alves de Menezes-Júnior LA, Batista AP, et al. Interaction between Fokl polymorphism and vitamin D deficiency in the symptoms of mental disorders in adults: a population-based study. Sci Rep. 2024;14:6925. DOI:10.1038/s41598-024-57558-1
26. Alzaim M, Al-Daghri NM, Sabico S, et al. The Association Between FokI Vitamin D Receptor Polymorphisms With Metabolic Syndrome Among Pregnant Arab Women. Front Endocrinol (Lausanne). 2022;13. DOI:10.3389/fendo.2022.844472
27. Schulz N, Dischereit G, Henke L, et al. Prevalence and effects of Vitamin D receptor polymorphism on bone mineral density and metabolism in patients with systemic sclerosis: a preliminary study. Clin Exp Med. 2024;24:121. DOI:10.1007/s10238-024-01385-1
28. Bozsodi A, Boja S, Szilagyi A, et al. Muscle strength is associated with vitamin D receptor gene variants. Journal of Orthopaedic Research. 2016;34:2031-7. DOI:10.1002/jor.23220
29. Berg AO, Jørgensen KN, Nerhus M, et al. Vitamin D levels, brain volume, and genetic architecture in patients with psychosis. PLoS One. 2018;13:e0200250. DOI:10.1371/journal.pone.0200250
30. Shambatov MA, Izmozherova NV, Popov AA, et al. Markers of collagen degradation in remodeling and diastolic dysfunction of the left ventricle in patients with arterial hypertension. Ural'skii meditsinskii zhurnal. 2024;23:46-59 (in Russian). DOI:10.52420/2071-5943-2024-23-1-46-59
31. Saito M, Ginszt M, Semenova EA, et al. Is COL1A1 Gene rs1107946 Polymorphism Associated with Sport Climbing Status and Flexibility? Genes (Basel). 2022;13:403. DOI:10.3390/genes13030403
32. Alves APVD, Freitas AB, Levi JE, et al. COL1A1, COL4A3, TIMP2 and TGFB1 polymorphisms in cervical insufficiency. J Perinat Med. 2021;49:553-8. DOI:10.1515/jpm-2020-0320
33. Deprest JA, Cartwright R, Dietz HP, et al. International Urogynecological Consultation (IUC): pathophysiology of pelvic organ prolapse (POP). Int Urogynecol J. 2022;33:1699-710. DOI:10.1007/s00192-022-05081-0
34. Bortnik EA, Miliaeva NM, Kovalev VV, et al. Molecular-Genetic Predictors of Pelvic Floor Muscle Insufficiency with Genital Prolapse in Women with a History of Vaginal Births. Meditsinskaia nauka i obrazovanie Urala. 2023;24:34-41 (in Russian). DOI:10.36361/18148999_2023_24_3_34
35. Moqri M, Herzog C, Poganik JR, et al. Validation of biomarkers of aging. Nat Med. 2024;30:360-72. DOI:10.1038/s41591-023-02784-9
1ФГБОУ ВО «Уральский государственный медицинский университет» Минздрава России, Екатеринбург, Россия;
2ГАУ ДПО «Уральский институт управления здравоохранением им. А.Б. Блохина» Минздрава Свердловской области, Екатеринбург, Россия
*elenavladpopova@yandex.ru
________________________________________________
Elena V. Kudryavtseva*1,2, Dinara A. Berezina1, Daniil O. Kornilov1, Veronika M. Simarzina1, Mikhail A. Tryapitsyn1, Aleksey A. Bekhter1, Vladislav V. Kovalev2, Danila L. Zornikov1
1Ural State Medical University, Yekaterinburg, Russia;
2Blokhin Ural Institute of Healthcare Management, Yekaterinburg, Russia
*elenavladpopova@yandex.ru