Москва 125252, ул. Алабяна 13, корпус 1
+7 (495) 098-03-59
Заказать звонок
  • О портале
  • Контакты
  • ...
    Omnidoctor
    Библиотека
    • Издания для врачей
      • Consilium Medicum
      • Педиатрия.Consilium Medicum
      • Современная Онкология
      • Гинекология
      • Терапевтический архив
      • Газета «Участковый терапевт»
      • Газета «Женская консультация»
      • Газета «Участковый педиатр»
      • Справочник поликлинического врача
      • Cardioсоматика
      • Системные гипертензии
    • Издания для провизоров и фармацевтов
      • Газета «Первостольник»
      • Справочник провизора
    • Online-издания
      • Женская консультация
      • Участковый педиатр
      • Участковый терапевт
    Медиатека
    Мероприятия
    Спецпроекты
    • ИммуноГалактика (NEW!)
    • Гормональный оркестр
    • CardioSPACE
    • NeuroFusion (NEW!)
    • Современная Онкология
    • Урологика
    Пресс-центр
    Практикум
      Библиотека
      Медиатека
      Мероприятия
      Спецпроекты
      ИммуноГалактика (NEW!)
      Гормональный оркестр
      CardioSPACE
      NeuroFusion (NEW!)
      Современная Онкология
      Урологика
      Пресс-центр
      Практикум
      Omnidoctor
      Библиотека
      • Издания для врачей
        • Consilium Medicum
        • Педиатрия.Consilium Medicum
        • Современная Онкология
        • Гинекология
        • Терапевтический архив
        • Газета «Участковый терапевт»
        • Газета «Женская консультация»
        • Газета «Участковый педиатр»
        • Справочник поликлинического врача
        • Cardioсоматика
        • Системные гипертензии
      • Издания для провизоров и фармацевтов
        • Газета «Первостольник»
        • Справочник провизора
      • Online-издания
        • Женская консультация
        • Участковый педиатр
        • Участковый терапевт
      Медиатека
      Мероприятия
      Спецпроекты
      • ИммуноГалактика (NEW!)
      • Гормональный оркестр
      • CardioSPACE
      • NeuroFusion (NEW!)
      • Современная Онкология
      • Урологика
      Пресс-центр
      Практикум
        Omnidoctor
        • Библиотека
          • Назад
          • Библиотека
          • Издания для врачей
            • Назад
            • Издания для врачей
            • Consilium Medicum
            • Педиатрия.Consilium Medicum
            • Современная Онкология
            • Гинекология
            • Терапевтический архив
            • Газета «Участковый терапевт»
            • Газета «Женская консультация»
            • Газета «Участковый педиатр»
            • Справочник поликлинического врача
            • Cardioсоматика
            • Системные гипертензии
          • Издания для провизоров и фармацевтов
            • Назад
            • Издания для провизоров и фармацевтов
            • Газета «Первостольник»
            • Справочник провизора
          • Online-издания
            • Назад
            • Online-издания
            • Женская консультация
            • Участковый педиатр
            • Участковый терапевт
        • Медиатека
        • Мероприятия
        • Спецпроекты
          • Назад
          • Спецпроекты
          • ИммуноГалактика (NEW!)
          • Гормональный оркестр
          • CardioSPACE
          • NeuroFusion (NEW!)
          • Современная Онкология
          • Урологика
        • Пресс-центр
        • Практикум
        • Мой кабинет
        • +7 (495) 098-03-59
        Москва 125252, ул. Алабяна 13, корпус 1
        info@omnidoctor.ru
        • Вконтакте
        • Telegram
        • YouTube
        • Главная
        • Библиотека
        • Издания для врачей
        • Consilium Medicum
        • 2024
        • №3 Оториноларингология и пульмонология
        • Нейтрофильная астма: текущие перспективы

        Нейтрофильная астма: текущие перспективы

        Гайнитдинова В.В., Мержоева З.М., Александрова А.А. Нейтрофильная астма: текущие перспективы. Consilium Medicum. 2024;26(3):187–192. DOI: 10.26442/20751753.2024.3.202658

        © ООО «КОНСИЛИУМ МЕДИКУМ», 2024 г.

        ________________________________________________

        Gaynitdinova VV, Merzhoeva ZM, Aleksandrova AA. Neutrophilic asthma: current prospects. A review. Consilium Medicum. 2024;26(3):187–192. DOI: 10.26442/20751753.2024.3.202658

        Нейтрофильная астма: текущие перспективы

        Гайнитдинова В.В., Мержоева З.М., Александрова А.А. Нейтрофильная астма: текущие перспективы. Consilium Medicum. 2024;26(3):187–192. DOI: 10.26442/20751753.2024.3.202658

        © ООО «КОНСИЛИУМ МЕДИКУМ», 2024 г.

        ________________________________________________

        Gaynitdinova VV, Merzhoeva ZM, Aleksandrova AA. Neutrophilic asthma: current prospects. A review. Consilium Medicum. 2024;26(3):187–192. DOI: 10.26442/20751753.2024.3.202658

        • Читать PDF
          Нейтрофильная астма: текущие перспективы

        Материалы доступны только для специалистов сферы здравоохранения.
        Чтобы посмотреть материал полностью Авторизуйтесь или зарегистрируйтесь.

        • Аннотация
        • Полный текст
        • Список литературы
        • Авторы
        Аннотация
        Астма, вызванная эозинофильным воспалением дыхательных путей, обусловлена воздействием аллергена, хорошо лечится глюкокортикостероидами или моноклональными антителами к интерлейкину-4 и 5, но у некоторых пациентов не возникает ответа на данную терапию. Приведенный тип астмы классифицируется как неэозинофильная астма. В зависимости от доли инфильтрирующих клеток неэозинофильную астму можно подразделить на нейтрофильную астму (НА), смешанную гранулоцитарную астму и малогранулоцитарную астму. Нужно отметить, что критерии НА определены недостаточно четко. Например, по данным одного исследования, воспаление считается нейтрофильным при наличии в мокроте менее 2,5% эозинофилов и более 65% нейтрофилов, в то время как согласно результатам другого исследования – при 61% нейтрофилов и более. Роль нейтрофилов при астме изучена, однако возникают споры о наличии НА. В нескольких исследованиях приведены доказательства того, что нейтрофильное воспаление связано с тяжелой астмой и риском обострения астмы. В статье рассматриваются патогенез, определение, биомаркеры НА и потенциальная терапия НА.

        Ключевые слова: астма, нейтрофилы, эозинофилы, воспаление, биомаркеры, лечение, биологические препараты

        ________________________________________________

        Asthma, caused by eosinophilic inflammation of the airways, is caused by exposure to allergen, is well treated with glucocorticostroids or monoclonal antibodies to interleukin-4 and 5, but some patients do not develop an answer to this therapy. The given type of asthma is classified as non-eosinophilic asthma. Depending on the proportion of infiltrating cells, non-eosinophilic asthma can be divided into neutrophil asthma (NA), mixed granulocytic asthma, and small ranulocytic asthma. It should be noted that the NA criteria are not clearly defined. For example, in one study, inflammation is thought to be neutrophilic with less than 2.5% of eosinophils and more than 65% of neutrophils in the sputum, while in another study 61% of neutrophils and more are thought to be. The role of neutrophils in asthma has been studied, but there is debate about the presence of NA. Several studies have shown that neutrophilic inflammation is associated with severe asthma and the risk of increased asthma. The article considers pathogenesis, definition, biomarkers NA and potential therapy NA.

        Keywords: asthma, neutrophils, eosinophils, inflammation, biomarkers, treatment, biological preparations

        Полный текст

        Материалы доступны только для специалистов сферы здравоохранения.
        Чтобы посмотреть материал полностью Авторизуйтесь или зарегистрируйтесь.

        Список литературы
        1. Global Initiative for Asthma. 2023 GINA Report, Global Strategy for Asthma Management and Prevention. Available at: https://ginasthma.org/2023-gina-main-report. Accessed: 25.01.2024.
        2. Gao H, Ying S, Dai Y. Pathological Roles of Neutrophil-Mediated Inflammation in Asthma and Its Potential for Therapy as a Target. J Immunol Res. 2017;2017:3743048. DOI:10.1155/2017/3743048
        3. Ненашева Н.М. Т2-бронхиальная астма: характеристика эндотипа и биомаркеры. Пульмонология. 2019;29(2):216-28 [Nenasheva NM. Nenasheva N.M. T2-asthma, endotype characteristics and biomarkers. Pulmonologiya. 2019;29(2):216-28 (in Russian)]. DOI:10.18093/0869-0189-2019-29-2-216-228
        4. Liu W, Chen H, Zhang D, et al. A retrospective study of clinical features of cough variant asthma in Chinese adults. Allergy Asthma Clin Immunol. 2019;15:3.
        DOI:10.1186/s13223-019-0318-5
        5. Taylor SL, Leong LEX, Choo JM, et al. Inflammatory phenotypes in patients with severe asthma are associated with distinct airway microbiology. J Allergy Clin Immunol. 2018;141(1):94-103.e15. DOI:10.1016/j.jaci.2017.03.044
        6. Crisford H, Sapey E, Rogers GB, et al. Neutrophils in asthma: the good, the bad and the bacteria. Thorax. 2021;76(8):835-44. DOI:10.1136/thoraxjnl-2020-215986
        7. Saffar AS, Ashdown H, Gounni AS. The molecular mechanisms of glucocorticoids-mediated neutrophil survival. Curr Drug Targets. 2011;12(4):556-62. DOI:10.2174/138945011794751555
        8. Berry M, Morgan A, Shaw DE, et al. Pathological features and inhaled corticosteroid response of eosinophilic and non-eosinophilic asthma. Thorax. 2007;62(12):1043-9. DOI:10.1136/thx.2006.073429
        9. Mincham KT, Bruno N, Singanayagam A, Snelgrove RJ. Our evolving view of neutrophils in defining the pathology of chronic lung disease. Immunology. 2021;164(4):701-21. DOI:10.1111/imm.13419
        10. Schleich F, Brusselle G, Louis R, et al. Heterogeneity of phenotypes in severe asthmatics. The Belgian Severe Asthma Registry (BSAR). Respir Med. 2014;108(12):1723-32. DOI:10.1016/j.rmed.2014.10.007
        11. Grunwell JR, Stephenson ST, Tirouvanziam R, et al. Children with Neutrophil-Predominant Severe Asthma Have Proinflammatory Neutrophils With Enhanced Survival and Impaired Clearance. J Allergy Clin Immunol Pract. 2019;7(2):516-25.e6. DOI:10.1016/j.jaip.2018.08.024
        12. Kikuchi I, Kikuchi S, Kobayashi T, et al. Eosinophil trans-basement membrane migration induced by interleukin-8 and neutrophils. Am J Respir Cell Mol Biol. 2006;34(6):760-5. DOI:10.1165/rcmb.2005-0303OC
        13. Lavinskiene S, Bajoriuniene I, Malakauskas K, et al. Sputum neutrophil count after bronchial allergen challenge is related to peripheral blood neutrophil chemotaxis in asthma patients. Inflamm Res. 2014;63(11):951-9. DOI:10.1007/s00011-014-0770-0
        14. Gauvreau GM, Sehmi R, Ambrose CS, Griffiths JM. Thymic stromal lymphopoietin: its role and potential as a therapeutic target in asthma. Expert Opin Ther Targets.
        2020;24(8):777-92. DOI:10.1080/14728222.2020.1783242
        15. Tanaka J, Watanabe N, Kido M, et al. Human TSLP and TLR3 ligands promote differentiation of Th17 cells with a central memory phenotype under Th2-polarizing conditions. Clin Exp Allergy. 2009;39(1):89-100. DOI:10.1111/j.1365-2222.2008.03151.x
        16. Al-Ramli W, Préfontaine D, Chouiali F, et al. T(H)17-associated cytokines (IL-17A and IL-17F) in severe asthma. J Allergy Clin Immunol. 2009;123(5):1185-7. DOI:10.1016/j.jaci.2009.02.024
        17. Bullens DM, Truyen E, Coteur L, et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir Res. 2006;7(1):135. DOI:10.1186/1465-9921-7-135
        18. Yang X, Li H, Ma Q, et al. Neutrophilic Asthma Is Associated with Increased Airway Bacterial Burden and Disordered Community Composition. Biomed Res Int. 2018;2018:9230234. DOI:10.1155/2018/9230234
        19. Kozik AJ, Huang YJ. The microbiome in asthma: Role in pathogenesis, phenotype, and response to treatment. Ann Allergy Asthma Immunol. 2019;122(3):270-5. DOI:10.1016/j.anai.2018.12.005
        20. Simpson JL, Daly J, Baines KJ, et al. Airway dysbiosis: Haemophilus influenzae and Tropheryma in poorly controlled asthma. Eur Respir J. 2016;47(3):792-800. DOI:10.1183/13993003.00405-2015
        21. Miethe S, Guarino M, Alhamdan F, et al. Effects of obesity on asthma: immunometabolic links. Pol Arch Intern Med. 2018;128(7-8):469-77. DOI:10.20452/pamw.4304
        22. Lindén A. Role of interleukin-17 and the neutrophil in asthma. Int Arch Allergy Immunol. 2001;126(3):179-84. DOI:10.1159/000049511
        23. Cardet JC, Ash S, Kusa T, et al. Insulin resistance modifies the association between obesity and current asthma in adults. Eur Respir J. 2016;48(2):403-10. DOI:10.1183/13993003.00246-2016
        24. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532-5. DOI:10.1126/science.1092385
        25. Krishnamoorthy N, Douda DN, Brüggemann TR, et al. Neutrophil cytoplasts induce T(H)17 differentiation and skew inflammation toward neutrophilia in severe asthma. Sci Immunol. 2018;3(26):eaao4747. DOI:10.1126/sciimmunol.aao4747
        26. Lin J, Huang N, Li J, et al. Cross-reactive antibodies against dust mite-derived enolase induce neutrophilic airway inflammation. Eur Respir J. 2021;57(1) :1902375. DOI:10.1183/13993003.02375-2019
        27. Wu Q, Jiang D, Minor M, Chu HW. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells. PLoS One. 2014;9(9):e108342. DOI:10.1371/journal.pone.0108342
        28. Guarnieri M, Balmes JR. Outdoor air pollution and asthma. Lancet. 2014;383(9928):1581-92. DOI:10.1016/S0140-6736(14)60617-6
        29. Горбань В.В., Ковригина И.В., Горбань Е.В., и др. Синтропия бронхиальной астмы и гастро- эзофагеальной рефлюксной болезни: патогенетические особенности и возможности малоинвазивной диагностики на амбулаторном этапе. Южно-Российский журнал терапевтической практики. 2023;4(2):25-34 [Gorban VV, Kovrigina IV, Gorban EV, et al. Syntropy of bronchial asthma and gastroesophageal reflux disease: pathogenetic features and possibilities of minimally invasive diagnostics at the outpatient stage. South Russian Journal of Therapeutic Practice. 2023;4(2):25-34 (in Russian)]. DOI:10.21886/2712-8156-2023-4-2-25-34
        30. Simpson JL, Baines KJ, Ryan N, Gibson PG. Neutrophilic asthma is characterised by increased rhinosinusitis with sleep disturbance and GERD. Asian Pac J Allergy Immunol. 2014;32(1):66-74. DOI:10.12932/AP0322.32.1.2014
        31. James AJ, Reinius LE, Verhoek M, et al. Increased YKL-40 and Chitotriosidase in Asthma and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med.
        2016;193(2):131-42. DOI:10.1164/rccm.201504-0760OC
        32. Liu L, Zhang X, Liu Y, et al. Chitinase-like protein YKL-40 correlates with inflammatory phenotypes, anti-asthma responsiveness and future exacerbations. Respir Res. 2019;20(1):95. DOI:10.1186/s12931-019-1051-9
        33. Suzuki Y, Saito J, Munakata M, Shibata Y. Hydrogen sulfide as a novel biomarker of asthma and chronic obstructive pulmonary disease. Allergol Int. 2021;70(2):181-9. DOI:10.1016/j.alit.2020.10.003
        34. Hinks TSC, Brown T, Lau LCK, et al. Multidimensional endotyping in patients with severe asthma reveals inflammatory heterogeneity in matrix metalloproteinases and chitinase 3-like protein 1. J Allergy Clin Immunol. 2016;138(1):61-75. DOI:10.1016/j.jaci.2015.11.020
        35. Zhang XY, Simpson JL, Powell H, et al. Full blood count parameters for the detection of asthma inflammatory phenotypes. Clin Exp Allergy. 2014;44(9):1137-45. DOI:10.1111/cea.12345
        36. Backman H, Lindberg A, Hedman L, et al. FEV(1) decline in relation to blood eosinophils and neutrophils in a population-based asthma cohort. World Allergy Organ J. 2020;13(3):100110. DOI:10.1016/j.waojou.2020.100110
        37. Panganiban RP, Pinkerton MH, Maru SY, et al. Differential microRNA epression in asthma and the role of miR-1248 in regulation of IL-5. Am J Clin Exp Immunol. 2012;1(2):154-65.
        38. Cañas JA, Rodrigo-Muñoz JM, Sastre B, et al. MicroRNAs as Potential Regulators of Immune Response Networks in Asthma and Chronic Obstructive Pulmonary Disease. Front Immunol. 2020;11:608666. DOI:10.3389/fimmu.2020.608666
        39. Gibson PG, Yang IA, Upham JW, et al. Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma (AMAZES): a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10095):659-68. DOI:10.1016/S0140-6736(17)31281-3
        40. Brusselle GG, Vanderstichele C, Jordens P, et al. Azithromycin for prevention of exacerbations in severe asthma (AZISAST): a multicentre randomised double-blind placebo-controlled trial. Thorax. 2013;68(4):322-9. DOI:10.1136/thoraxjnl-2012-202698
        41. Bateman ED, Goehring UM, Richard F, Watz H. Roflumilast combined with montelukast versus montelukast alone as add-on treatment in patients with moderate-to-severe asthma. J Allergy Clin Immunol. 2016;138(1):142-9.e8. DOI:10.1016/j.jaci.2015.11.035
        42. Luo J, Yang L, Yang J, et al. Efficacy and safety of phosphodiesterase 4 inhibitors in patients with asthma: A systematic review and meta-analysis. Respirology. 2018;23(5):467-77. DOI:10.1111/resp.13276
        43. Toumpanakis D, Loverdos K, Tzouda V, et al. Tiotropium bromide exerts anti-inflammatory effects during resistive breathing, an experimental model of severe airway obstruction. Int J Chron Obstruct Pulmon Dis. 2017;12:2207-20. DOI:10.2147/COPD.S137587
        44. Iwamoto H, Yokoyama A, Shiota N, et al. Tiotropium bromide is effective for severe asthma with noneosinophilic phenotype. Eur Respir J. 2008;31(6):1379-80. DOI:10.1183/09031936.00014108
        45. Nair P, Gaga M, Zervas E, et al. Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: a randomized, placebo-controlled clinical trial. Clin Exp Allergy. 2012;42(7):1097-103. DOI:10.1111/j.1365-2222.2012.04014.x
        46. Aвдеев С.Н., Ненашева Н.М., Жуденков К.В., и др. Распространенность, заболеваемость, фенотипы и другие характеристики тяжелой бронхиальной астмы в Российской Федерации. Пульмонология. 2018;28(3):341-58 [Avdeev SN, Nenasheva NM, Zhudenkov KV, et al. Prevalence, morbidity, phenotypes and other characteristics of severe bronchial asthma in Russian Federation. Pulmonologiya. 2018;28(3):341-58 (in Russian)]. DOI:10.18093/0869-0189-2018-28-3-341-358
        47. Venkataramani S, Low S, Weigle B, et al. Design and characterization of Zweimab and Doppelmab, high affinity dual antagonistic anti-TSLP/IL13 bispecific antibodies. Biochem Biophys Res Commun. 2018;504(1):19-24. DOI:10.1016/j.bbrc.2018.08.064
        48. Revez JA, Bain LM, Watson RM, et al. Effects of interleukin-6 receptor blockade on allergen-induced airway responses in mild asthmatics. Clin Transl Immunology. 2019;8(6):e1044. DOI:10.1002/cti2.1044
        49. Berry MA, Hargadon B, Shelley M, et al. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med. 2006;354(7):697-708. DOI:10.1056/NEJMoa050580
        50. Brightling CE, Nair P, Cousins DJ, et al. Risankizumab in Severe Asthma – A Phase 2a, Placebo-Controlled Trial. N Engl J Med. 2021;385(18):1669-79. DOI:10.1056/NEJMoa2030880

        ________________________________________________

        1. Global Initiative for Asthma. 2023 GINA Report, Global Strategy for Asthma Management and Prevention. Available at: https://ginasthma.org/2023-gina-main-report. Accessed: 25.01.2024.
        2. Gao H, Ying S, Dai Y. Pathological Roles of Neutrophil-Mediated Inflammation in Asthma and Its Potential for Therapy as a Target. J Immunol Res. 2017;2017:3743048. DOI:10.1155/2017/3743048
        3. Nenasheva NM. Nenasheva N.M. T2-asthma, endotype characteristics and biomarkers. Pulmonologiya. 2019;29(2):216-28 (in Russian). DOI:10.18093/0869-0189-2019-29-2-216-228
        4. Liu W, Chen H, Zhang D, et al. A retrospective study of clinical features of cough variant asthma in Chinese adults. Allergy Asthma Clin Immunol. 2019;15:3.
        DOI:10.1186/s13223-019-0318-5
        5. Taylor SL, Leong LEX, Choo JM, et al. Inflammatory phenotypes in patients with severe asthma are associated with distinct airway microbiology. J Allergy Clin Immunol. 2018;141(1):94-103.e15. DOI:10.1016/j.jaci.2017.03.044
        6. Crisford H, Sapey E, Rogers GB, et al. Neutrophils in asthma: the good, the bad and the bacteria. Thorax. 2021;76(8):835-44. DOI:10.1136/thoraxjnl-2020-215986
        7. Saffar AS, Ashdown H, Gounni AS. The molecular mechanisms of glucocorticoids-mediated neutrophil survival. Curr Drug Targets. 2011;12(4):556-62. DOI:10.2174/138945011794751555
        8. Berry M, Morgan A, Shaw DE, et al. Pathological features and inhaled corticosteroid response of eosinophilic and non-eosinophilic asthma. Thorax. 2007;62(12):1043-9. DOI:10.1136/thx.2006.073429
        9. Mincham KT, Bruno N, Singanayagam A, Snelgrove RJ. Our evolving view of neutrophils in defining the pathology of chronic lung disease. Immunology. 2021;164(4):701-21. DOI:10.1111/imm.13419
        10. Schleich F, Brusselle G, Louis R, et al. Heterogeneity of phenotypes in severe asthmatics. The Belgian Severe Asthma Registry (BSAR). Respir Med. 2014;108(12):1723-32. DOI:10.1016/j.rmed.2014.10.007
        11. Grunwell JR, Stephenson ST, Tirouvanziam R, et al. Children with Neutrophil-Predominant Severe Asthma Have Proinflammatory Neutrophils With Enhanced Survival and Impaired Clearance. J Allergy Clin Immunol Pract. 2019;7(2):516-25.e6. DOI:10.1016/j.jaip.2018.08.024
        12. Kikuchi I, Kikuchi S, Kobayashi T, et al. Eosinophil trans-basement membrane migration induced by interleukin-8 and neutrophils. Am J Respir Cell Mol Biol. 2006;34(6):760-5. DOI:10.1165/rcmb.2005-0303OC
        13. Lavinskiene S, Bajoriuniene I, Malakauskas K, et al. Sputum neutrophil count after bronchial allergen challenge is related to peripheral blood neutrophil chemotaxis in asthma patients. Inflamm Res. 2014;63(11):951-9. DOI:10.1007/s00011-014-0770-0
        14. Gauvreau GM, Sehmi R, Ambrose CS, Griffiths JM. Thymic stromal lymphopoietin: its role and potential as a therapeutic target in asthma. Expert Opin Ther Targets.
        2020;24(8):777-92. DOI:10.1080/14728222.2020.1783242
        15. Tanaka J, Watanabe N, Kido M, et al. Human TSLP and TLR3 ligands promote differentiation of Th17 cells with a central memory phenotype under Th2-polarizing conditions. Clin Exp Allergy. 2009;39(1):89-100. DOI:10.1111/j.1365-2222.2008.03151.x
        16. Al-Ramli W, Préfontaine D, Chouiali F, et al. T(H)17-associated cytokines (IL-17A and IL-17F) in severe asthma. J Allergy Clin Immunol. 2009;123(5):1185-7. DOI:10.1016/j.jaci.2009.02.024
        17. Bullens DM, Truyen E, Coteur L, et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir Res. 2006;7(1):135. DOI:10.1186/1465-9921-7-135
        18. Yang X, Li H, Ma Q, et al. Neutrophilic Asthma Is Associated with Increased Airway Bacterial Burden and Disordered Community Composition. Biomed Res Int. 2018;2018:9230234. DOI:10.1155/2018/9230234
        19. Kozik AJ, Huang YJ. The microbiome in asthma: Role in pathogenesis, phenotype, and response to treatment. Ann Allergy Asthma Immunol. 2019;122(3):270-5. DOI:10.1016/j.anai.2018.12.005
        20. Simpson JL, Daly J, Baines KJ, et al. Airway dysbiosis: Haemophilus influenzae and Tropheryma in poorly controlled asthma. Eur Respir J. 2016;47(3):792-800. DOI:10.1183/13993003.00405-2015
        21. Miethe S, Guarino M, Alhamdan F, et al. Effects of obesity on asthma: immunometabolic links. Pol Arch Intern Med. 2018;128(7-8):469-77. DOI:10.20452/pamw.4304
        22. Lindén A. Role of interleukin-17 and the neutrophil in asthma. Int Arch Allergy Immunol. 2001;126(3):179-84. DOI:10.1159/000049511
        23. Cardet JC, Ash S, Kusa T, et al. Insulin resistance modifies the association between obesity and current asthma in adults. Eur Respir J. 2016;48(2):403-10. DOI:10.1183/13993003.00246-2016
        24. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532-5. DOI:10.1126/science.1092385
        25. Krishnamoorthy N, Douda DN, Brüggemann TR, et al. Neutrophil cytoplasts induce T(H)17 differentiation and skew inflammation toward neutrophilia in severe asthma. Sci Immunol. 2018;3(26):eaao4747. DOI:10.1126/sciimmunol.aao4747
        26. Lin J, Huang N, Li J, et al. Cross-reactive antibodies against dust mite-derived enolase induce neutrophilic airway inflammation. Eur Respir J. 2021;57(1) :1902375. DOI:10.1183/13993003.02375-2019
        27. Wu Q, Jiang D, Minor M, Chu HW. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells. PLoS One. 2014;9(9):e108342. DOI:10.1371/journal.pone.0108342
        28. Guarnieri M, Balmes JR. Outdoor air pollution and asthma. Lancet. 2014;383(9928):1581-92. DOI:10.1016/S0140-6736(14)60617-6
        29. Gorban VV, Kovrigina IV, Gorban EV, et al. Syntropy of bronchial asthma and gastroesophageal reflux disease: pathogenetic features and possibilities of minimally invasive diagnostics at the outpatient stage. South Russian Journal of Therapeutic Practice. 2023;4(2):25-34 (in Russian). DOI:10.21886/2712-8156-2023-4-2-25-34
        30. Simpson JL, Baines KJ, Ryan N, Gibson PG. Neutrophilic asthma is characterised by increased rhinosinusitis with sleep disturbance and GERD. Asian Pac J Allergy Immunol. 2014;32(1):66-74. DOI:10.12932/AP0322.32.1.2014
        31. James AJ, Reinius LE, Verhoek M, et al. Increased YKL-40 and Chitotriosidase in Asthma and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med.
        2016;193(2):131-42. DOI:10.1164/rccm.201504-0760OC
        32. Liu L, Zhang X, Liu Y, et al. Chitinase-like protein YKL-40 correlates with inflammatory phenotypes, anti-asthma responsiveness and future exacerbations. Respir Res. 2019;20(1):95. DOI:10.1186/s12931-019-1051-9
        33. Suzuki Y, Saito J, Munakata M, Shibata Y. Hydrogen sulfide as a novel biomarker of asthma and chronic obstructive pulmonary disease. Allergol Int. 2021;70(2):181-9. DOI:10.1016/j.alit.2020.10.003
        34. Hinks TSC, Brown T, Lau LCK, et al. Multidimensional endotyping in patients with severe asthma reveals inflammatory heterogeneity in matrix metalloproteinases and chitinase 3-like protein 1. J Allergy Clin Immunol. 2016;138(1):61-75. DOI:10.1016/j.jaci.2015.11.020
        35. Zhang XY, Simpson JL, Powell H, et al. Full blood count parameters for the detection of asthma inflammatory phenotypes. Clin Exp Allergy. 2014;44(9):1137-45. DOI:10.1111/cea.12345
        36. Backman H, Lindberg A, Hedman L, et al. FEV(1) decline in relation to blood eosinophils and neutrophils in a population-based asthma cohort. World Allergy Organ J. 2020;13(3):100110. DOI:10.1016/j.waojou.2020.100110
        37. Panganiban RP, Pinkerton MH, Maru SY, et al. Differential microRNA epression in asthma and the role of miR-1248 in regulation of IL-5. Am J Clin Exp Immunol. 2012;1(2):154-65.
        38. Cañas JA, Rodrigo-Muñoz JM, Sastre B, et al. MicroRNAs as Potential Regulators of Immune Response Networks in Asthma and Chronic Obstructive Pulmonary Disease. Front Immunol. 2020;11:608666. DOI:10.3389/fimmu.2020.608666
        39. Gibson PG, Yang IA, Upham JW, et al. Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma (AMAZES): a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10095):659-68. DOI:10.1016/S0140-6736(17)31281-3
        40. Brusselle GG, Vanderstichele C, Jordens P, et al. Azithromycin for prevention of exacerbations in severe asthma (AZISAST): a multicentre randomised double-blind placebo-controlled trial. Thorax. 2013;68(4):322-9. DOI:10.1136/thoraxjnl-2012-202698
        41. Bateman ED, Goehring UM, Richard F, Watz H. Roflumilast combined with montelukast versus montelukast alone as add-on treatment in patients with moderate-to-severe asthma. J Allergy Clin Immunol. 2016;138(1):142-9.e8. DOI:10.1016/j.jaci.2015.11.035
        42. Luo J, Yang L, Yang J, et al. Efficacy and safety of phosphodiesterase 4 inhibitors in patients with asthma: A systematic review and meta-analysis. Respirology. 2018;23(5):467-77. DOI:10.1111/resp.13276
        43. Toumpanakis D, Loverdos K, Tzouda V, et al. Tiotropium bromide exerts anti-inflammatory effects during resistive breathing, an experimental model of severe airway obstruction. Int J Chron Obstruct Pulmon Dis. 2017;12:2207-20. DOI:10.2147/COPD.S137587
        44. Iwamoto H, Yokoyama A, Shiota N, et al. Tiotropium bromide is effective for severe asthma with noneosinophilic phenotype. Eur Respir J. 2008;31(6):1379-80. DOI:10.1183/09031936.00014108
        45. Nair P, Gaga M, Zervas E, et al. Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: a randomized, placebo-controlled clinical trial. Clin Exp Allergy. 2012;42(7):1097-103. DOI:10.1111/j.1365-2222.2012.04014.x
        46. Avdeev SN, Nenasheva NM, Zhudenkov KV, et al. Prevalence, morbidity, phenotypes and other characteristics of severe bronchial asthma in Russian Federation. Pulmonologiya. 2018;28(3):341-58 (in Russian). DOI:10.18093/0869-0189-2018-28-3-341-358
        47. Venkataramani S, Low S, Weigle B, et al. Design and characterization of Zweimab and Doppelmab, high affinity dual antagonistic anti-TSLP/IL13 bispecific antibodies. Biochem Biophys Res Commun. 2018;504(1):19-24. DOI:10.1016/j.bbrc.2018.08.064
        48. Revez JA, Bain LM, Watson RM, et al. Effects of interleukin-6 receptor blockade on allergen-induced airway responses in mild asthmatics. Clin Transl Immunology. 2019;8(6):e1044. DOI:10.1002/cti2.1044
        49. Berry MA, Hargadon B, Shelley M, et al. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med. 2006;354(7):697-708. DOI:10.1056/NEJMoa050580
        50. Brightling CE, Nair P, Cousins DJ, et al. Risankizumab in Severe Asthma – A Phase 2a, Placebo-Controlled Trial. N Engl J Med. 2021;385(18):1669-79. DOI:10.1056/NEJMoa2030880

        Авторы
        В.В. Гайнитдинова*1, З.М. Мержоева1, А.А. Александрова2

        1ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия;
        2ФГБУ «Центральная клиническая больница с поликлиникой» Управления делами Президента РФ, Москва, Россия
        *ivv_08@mail.ru

        ________________________________________________

        Viliya V. Gaynitdinova*1, Zamira M. Merzhoeva1, Alena A. Aleksandrova2

        1Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia;
        2Central Clinical Hospital with a Polyclinic, Moscow, Russia
        *ivv_08@mail.ru


        Поделиться
        Назад к списку
        Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.

        Ключевые слова

        артериальная гипертензия дети артериальная гипертония лечение сахарный диабет COVID-19 ишемическая болезнь сердца диагностика беременность ожирение сердечно-сосудистые заболевания хроническая сердечная недостаточность рак молочной железы факторы риска метаболический синдром хроническая болезнь почек хроническая обструктивная болезнь легких качество жизни профилактика сахарный диабет 2-го типа фибрилляция предсердий инфаркт миокарда бесплодие антигипертензивная терапия прогноз сердечная недостаточность химиотерапия атеросклероз бронхиальная астма неалкогольная жировая болезнь печени таргетная терапия эффективность амлодипин нестероидные противовоспалительные препараты витамин D бактериальный вагиноз ревматоидный артрит гастроэзофагеальная рефлюксная болезнь реабилитация вирус папилломы человека безопасность коморбидность болезнь Крона атопический дерматит эндометриоз пробиотики эндотелиальная дисфункция язвенный колит инсулинорезистентность инсульт
        Узнавайте первым
        Подпишитесь, чтобы получать информацию о самых интересных событиях, последних новостях.
        Рассылка
        Новости
        Мероприятия
        Актуальные вебинары, конференции, семинары и т.д.
        Медиатека
        Записи вебинаров, подкасты, статьи и интервью.
        Библиотека
        Материалы для врачей-клиницистов:
        — Электронная...
        Наши контакты
        +7 (495) 098-03-59
        Заказать звонок
        Москва 125252, ул. Алабяна 13, корпус 1
        info@omnidoctor.ru
        Портал
        О портале
        История
        Лицензии
        Партнеры
        Реквизиты
        Об издательстве "Консилиум Медикум"
        Политика обработки ПД
        Пресс-центр
        Медиатека
        Библиотека
        Издания для врачей
        Издания для провизоров и фармацевтов
        Online-издания
        Мероприятия
        © 2025 Все права защищены.
        Подождите секунду, мы ищем Расширенный поиск
        Мы используем инструмент веб-аналитики Яндекс Метрика, который посредством обработки файлов «cookie» позволяет анализировать данные о посещаемости сайта, что помогает нам улучшить работу сайта, повысить его удобство и производительность. Соответственно, продолжая пользоваться сайтом, вы соглашаетесь на использование файлов «cookie» и их дальнейшую обработку сервисом Яндекс Метрика. Вы можете блокировать и (или) удалять файлы «cookie» в настройках своего веб-браузера.
        Я согласен(-на)