Роль генов и миокинов в прогнозировании риска развития саркопении
Роль генов и миокинов в прогнозировании риска развития саркопении
Валеева Ф.В., Родыгина Ж.А., Йылмаз Т.С. Роль генов и миокинов в прогнозировании риска развития саркопении. Consilium Medicum. 2024;26(4):219–224. DOI: 10.26442/20751753.2024.4.202735
Valeeva FV, Rodygina ZhA, Yilmaz TS. The role of genes and myokines of developing sarcopenia: A review. Consilium Medicum. 2024;26(4):219–224. DOI: 10.26442/20751753.2024.4.202735
Роль генов и миокинов в прогнозировании риска развития саркопении
Валеева Ф.В., Родыгина Ж.А., Йылмаз Т.С. Роль генов и миокинов в прогнозировании риска развития саркопении. Consilium Medicum. 2024;26(4):219–224. DOI: 10.26442/20751753.2024.4.202735
Valeeva FV, Rodygina ZhA, Yilmaz TS. The role of genes and myokines of developing sarcopenia: A review. Consilium Medicum. 2024;26(4):219–224. DOI: 10.26442/20751753.2024.4.202735
Саркопения связана с прогрессирующей генерализованной слабостью скелетных мышц, со стойким снижением мышечной силы, функции и качества жизни у пожилых людей. Наличие данного заболевания ухудшает прогноз возрастных пациентов. Соответственно, в настоящее время изучение этиологии и патогенеза саркопении, а также выявление ранних маркеров диагностики данного заболевания являются актуальным направлением. Известно, что миокины, секретируемые скелетными мышцами, играют значительную роль в регуляции мышечной массы и функции, метаболическом гомеостазе. Нарушение синтеза миокинов может способствовать развитию саркопении. В статье показана ассоциация полиморфизма различных генов с развитием заболевания. Объединены современные знания о миокинах и генетических факторах как потенциальных биомаркерах для ранней диагностики саркопении.
Sarcopenia is associated with progressive generalized skeletal muscle weakness, persistent decline in muscle strength, function, and quality of life in the elderly population. The presence of sarcopenia worsens the prognosis of older patients. In this regard, the study of the etiology and pathogenesis of sarcopenia, the identification of early markers for the diagnosis of this disease are relevant areas today. Myokines are secreted by skeletal muscle and play a important role in the regulation of muscle mass and function, metabolic homeostasis. Myokine synthesis disruption may contribute to the development of sarcopenia. In addition, we can see the polymorphism association of various genes with the development of the disease. This review brings together current knowledge about myokines and genetic factors as potential biomarkers for the early diagnosis of sarcopenia.
1. Yuan S, Larsson SC. Epidemiology of sarcopenia: prevalence, risk factors, and consequences. Metabolism. 2023;144:155533. DOI:10.1016/j.metabol.2023.155533
2. Бочарова К.А., Рукавишникова С.А., Осипов К.В., и др. Саркопения в системе долговременного ухода. Современные проблемы здравоохранения и медицинской статистики. 2021;2:12-26 [Bocharova KA, Rukavishnikova SA, Osipov KV, et al. Sarcopenia in the long-term care system. Current Problems of Health Care and Medical Statistics. 2021;2:12-26 (in Russian)]. DOI:10.24412/2312-2935-2021-2-12-26
3. Mesinovic J, Zengin A, De Courten B, et al. Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes Metab Syndr Obes. 2019;12:1057-72. DOI:10.2147/DMSO.S186600
4. Veronese N, Pizzol D, Demurtas J, et al. Association between sarcopenia and diabetes: a systematic review and meta-analysis of observational studies. Eur Geriatr Med. 2019;10(5):685-96. DOI:10.1007/s41999-019-00216-x
5. Izzo A, Massimino E, Riccardi G, Della Pepa G. A Narrative Review on Sarcopenia in Type 2 Diabetes Mellitus: Prevalence and Associated Factors. Nutrients. 2021;13(1). DOI:10.3390/nu13010183
6. Trierweiler H, Kisielewicz G, Hoffmann Jonasson T, et al. Sarcopenia: a chronic complication of type 2 diabetes mellitus. Diabetol Metab Syndr. 2018;10:25.
DOI:10.1186/s13098-018-0326-5
7. Ai Y, Xu R, Liu L. The prevalence and risk factors of sarcopenia in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr. 2021;13(1):93. DOI:10.1186/s13098-021-00707-7
8. Feng L, Gao Q, Hu K, et al. Prevalence and Risk Factors of Sarcopenia in Patients With Diabetes: A Meta-analysis. J Clin Endocrinol Metab. 2022;107(5):1470-83. DOI:10.1210/clinem/dgab884
9. Qiao YS, Chai YH, Gong HJ, et al. The Association Between Diabetes Mellitus and Risk of Sarcopenia: Accumulated Evidences From Observational Studies. Front Endocrinol (Lausanne). 2021;12:782391. DOI:10.3389/fendo.2021.782391
10. Jang HC. Sarcopenia, Frailty, and Diabetes in Older Adults. Diabetes Metab J. 2016;40(3):182-9. DOI:10.4093/dmj.2016.40.3.182
11. Umegaki H. Sarcopenia and diabetes: Hyperglycemia is a risk factor for age-associated muscle mass and functional reduction. J Diabetes Investig. 2015;6(6):623-4. DOI:10.1111/jdi.12365
12. Mori H, Kuroda A, Matsuhisa M. Clinical impact of sarcopenia and dynapenia on diabetes. Diabetol Int. 2019;10(3):183-7. DOI:10.1007/s13340-019-00400-1
13. Khanal P, Williams AG, He L, et al. Sarcopenia, Obesity, and Sarcopenic Obesity: Relationship with Skeletal Muscle Phenotypes and Single Nucleotide Polymorphisms. J Clin Med. 2021;10(21). DOI:10.3390/jcm10214933
14. Cho HY, Marzec J, Kleeberger SR. Functional polymorphisms in Nrf2: implications for human disease. Free Radic Biol Med. 2015;88(Pt. B):362-72. DOI:10.1016/j.freeradbiomed.2015.06.012
15. Yan X, Shen Z, Yu D, et al. Nrf2 contributes to the benefits of exercise interventions on age-related skeletal muscle disorder via regulating Drp1 stability and mitochondrial fission. Free Radic Biol Med. 2022;178:59-75. DOI:10.1016/j.freeradbiomed.2021.11.030
16. Ahn B, Pharaoh G, Premkumar P, et al. Nrf2 deficiency exacerbates age-related contractile dysfunction and loss of skeletal muscle mass. Redox Biol. 2018;17:47-58. DOI:10.1016/j.redox.2018.04.004
17. Kitaoka Y, Tamura Y, Takahashi K, et al. Effects of Nrf2 deficiency on mitochondrial oxidative stress in aged skeletal muscle. Physiol Rep. 2019;7(3):e13998. DOI:10.14814/phy2.13998
18. Fu J, Hou Y, Xue P, et al. Nrf2 in Type 2 diabetes and diabetic complications: Yin and Yang. Current Opinion in Toxicology. 2016;1:9-19. DOI:10.1016/j.cotox.2016.08.001
19. Jiménez-Osorio AS, Picazo A, González-Reyes S, et al. Nrf2 and redox status in prediabetic and diabetic patients. Int J Mol Sci. 2014;15(11):20290-305. DOI:10.3390/ijms151120290
20. De Giuseppe R, Tomasinelli CE, Vincenti A, et al. Sarcopenia and homocysteine: is there a possible association in the elderly? A narrative review. Nutr Res Rev.
2022;35(1):98-111. DOI:10.1017/S095442242100010X
21. Urzi F, Pokorny B, Buzan E. Pilot Study on Genetic Associations With Age-Related Sarcopenia. Front Genet. 2021;11:615238. DOI:10.3389/fgene.2020.615238
22. Cho J, Lee I, Kang H. ACTN3 Gene and Susceptibility to Sarcopenia and Osteoporotic Status in Older Korean Adults. Biomed Res Int. 2017;2017:4239648. DOI:10.1155/2017/4239648
23. Kiuchi Y, Makizako H, Nakai Y, et al. Associations of alpha-actinin-3 genotype with thigh muscle volume and physical performance in older adults with sarcopenia or pre-sarcopenia. Exp Gerontol. 2021;154:111525. DOI:10.1016/j.exger.2021.111525
24. Fernández-Araque A, Giaquinta-Aranda A, Rodríguez-Díez JA, et al. Muscular Strength and Quality of Life in Older Adults: The Role of ACTN3 R577X Polymorphism. Int J Environ Res Public Health. 2021;18(3). DOI:10.3390/ijerph18031055
25. Taniguchi Y, Makizako H, Nakai Y, et al. Associations of the Alpha-Actinin Three Genotype with Bone and Muscle Mass Loss among Middle-Aged and Older Adults. J Clin Med. 2022;11(20). DOI:10.3390/jcm11206172
26. Kahraman M, Ozulu Turkmen B, Bahat-Ozturk G, et al. Is there a relationship between ACTN3 R577X gene polymorphism and sarcopenia? Aging Clin Exp Res.
2022;34(4):757-65. DOI:10.1007/s40520-021-01996-8
27. Boshnjaku A, Krasniqi E, Tschan H, Wessner B. ACTN3 Genotypes and Their Relationship with Muscle Mass and Function of Kosovan Adults. Int J Environ Res Public Health. 2021;18(17). DOI:10.3390/ijerph18179135
28. Romero-Blanco C, Artiga González MJ, Gómez-Cabello A, et al. ACTN3 R577X polymorphism related to sarcopenia and physical fitness in active older women. Climacteric. 2021;24(1):89-94. DOI:10.1080/13697137.2020.1776248
29. Jin H, Yoo HJ, Kim YA, et al. Unveiling genetic variants for age-related sarcopenia by conducting a genome-wide association study on Korean cohorts. Sci Rep. 2022;12(1):3501. DOI:10.1038/s41598-022-07567-9
30. Kang YJ, Yoo JI, Baek KW. Differential gene expression profile by RNA sequencing study of elderly osteoporotic hip fracture patients with sarcopenia. J Orthop Translat.
2021;29:10-8. DOI:10.1016/j.jot.2021.04.009
31. Attaway AH, Bellar A, Welch N, et al. Gene polymorphisms associated with heterogeneity and senescence characteristics of sarcopenia in chronic obstructive pulmonary disease. J Cachexia Sarcopenia Muscle. 2023;14(2):1083-95. DOI:10.1002/jcsm.13198
32. Khanal P, He L, Stebbings G, et al. Prevalence and association of single nucleotide polymorphisms with sarcopenia in older women depends on definition. Sci Rep. 2020;10(1):2913. DOI:10.1038/s41598-020-59722-9
33. Zhang X, Ye L, Li X, et al. The association between sarcopenia susceptibility and polymorphisms of FTO, ACVR2B, and IRS1 in Tibetans. Mol Genet Genomic Med. 2021;9(8):e1747. DOI:10.1002/mgg3.1747
34. Perna S. Are the genes CA6, TAS2R38, TCF7L2, FTO, TAS1R2, TAS1R3, GNAT3 receptor polymorphisms involved on exceptional longevity and risk of sarcopenia? A cross sectional study in Italian aging population. Genetika. 2020;52(1):177-86. DOI:10.2298/GENSR2001177P
35. He L, Khanal P, Morse CI, et al. Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. J Cachexia Sarcopenia Muscle. 2019;10(6):1295-306. DOI:10.1002/jcsm.12478
36. Chen J, Xu Q, Wang X, et al. Cullin-3 intervenes in muscle atrophy in the elderly by mediating the degradation of nAchRs ubiquitination. Exp Gerontol. 2023;183:112318. DOI:10.1016/j.exger.2023.112318
37. Xu Q, Li J, Yang J, Xu Z. CUL3 and COPS5 Related to the Ubiquitin-Proteasome Pathway Are Potential Genes for Muscle Atrophy in Mice. Evid Based Complement Alternat Med. 2022;2022:1488905. DOI:10.1155/2022/1488905
38. Liu L, Koike H, Ono T, et al. Identification of a KLF5-dependent program and drug development for skeletal muscle atrophy. Proc Natl Acad Sci U S A. 2021;118(35). DOI:10.1073/pnas.2102895118
39. Zhang XX, Lian T, Ran JS, et al. KLF5 functions in proliferation, differentiation, and apoptosis of chicken satellite cells. 3 Biotech. 2019;9(6):222. DOI:10.1007/s13205-019-1752-2
40. Schluessel S, Zhang W, Nowotny H, et al. 11-beta-hydroxysteroid dehydrogenase type 1 (HSD11B1) gene expression in muscle is linked to reduced skeletal muscle index in sarcopenic patients. Aging Clin Exp Res. 2023;35(12):3073-83. DOI:10.1007/s40520-023-02574-w
41. Chen Y, Zhang Y, Zhang S, Ren H. Molecular insights into sarcopenia: ferroptosis-related genes as diagnostic and therapeutic targets. J Biomol Struct Dyn. 2024;1-19. DOI:10.1080/07391102.2023.2298390
42. Rom O, Reznick AZ. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radic Biol Med. 2016;98:218-30. DOI:10.1016/j.freeradbiomed.2015.12.031
43. Lee JH, Jun HS. Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front Physiol. 2019;10:42. DOI:10.3389/fphys.2019.00042
44. Гасанов М.З. Саркопения у пациентов с хронической болезнью почек: распространенность, особенности патогенеза и клиническое значение. Нефрология. 2021;25(1):47-58 [Gasanov MZ. Sarcopenia in patients with chronic kidney disease: prevalence, pathogenesis and clinical significance. Nephrology (Saint-Petersburg). 2021;25(1):47-58 (in Russian)]. DOI:10.36485/1561-6274-2021-25-1-47-58
45. Капилевич Л.В., Кабачкова А.В., Кироненко Т.А. Миокины-белки, продуцируемые мышечными клетками: общая характеристика и функциональное значение. Олимпийский спорт и спорт для всех: материалы XIX Международного научного конгресса. Ереван. 2015 [Kapilevich LV, Kabachkova AV, Kironenko TA. Miokiny-belki, produtsiruemye myshechnymi kletkami: obshchaia kharakteristika i funktsional’noe znachenie. Olimpiiskii sport i sport dlia vsekh: materialy XIX Mezhdunarodnogo nauchnogo kongressa. Erevan. 2015 (in Russian)].
46. Пальцын А.А. Миокины. Патологическая физиология и экспериментальная терапия. 2020;64(1):135-41 [Paltsyn AA. Myokines. Patologicheskaya Fiziologiya i Eksperimental`naya Terapiya = Pathological Physiology and Experimental Therapy, Russian Journal. 2020;64(1):135-41 (in Russian)]. DOI:10.25557/0031-2991.2020.01.135-141
47. Антюх К.Ю., Григоренко Е.А., Шептулина А.Ф., и др. Остеосаркопеническое ожирение у пациентов с болезнями системы кровообращения: эпидемиология, клиническое значение, современные подходы к диагностике. Кардиология в Беларуси. 2023;15(4):511-24 [Antyukh KYu, Grigorenko EA, Sheptulina AF, et al. Osteosarcopenic obesity in patients with diseases of the circulatory system: epidemiology, clinical significance, modern approaches to diagnosis. Cardiology in Belarus. 2023;15(4):511-24 (in Russian)]. DOI:10.34883/PI.2023.15.4.007
48. Васина А.Ю., Дидур М.Д., Иыги А.А., и др. Мышечная ткань как эндокринный регулятор и проблема гиподинамии. Вестник Санкт-Петербургского университета. 2014;11(2):5-15 [Vasina AYu, Didur MD, Iygi AA, et al. Muscle tissue as an endocrine regulator and the problem of physical inactivity. Bulletin of St. Petersburg University. 2014;11(2):5-15 (in Russian)].
49. Barbalho SM, Flato UAP, Tofano RJ, et al. Physical Exercise and Myokines: Relationships with Sarcopenia and Cardiovascular Complications. Int J Mol Sci. 2020;21(10). DOI:10.3390/ijms21103607
50. Bilski J, Pierzchalski P, Szczepanik M, et al. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells. 2022;11(1). DOI:10.3390/cells11010160
51. White TA, LeBrasseur NK. Myostatin and sarcopenia: opportunities and challenges – a mini-review. Gerontology. 2014;60(4):289-93. DOI:10.1159/000356740
52. Belizário JE, Fontes-Oliveira CC, Borges JP, et al. Skeletal muscle wasting and renewal: a pivotal role of myokine IL-6. Springerplus. 2016;5:619. DOI:10.1186/s40064-016-2197-2
53. Aryana IG, Hapsari AA, Kuswardhan RA. Myokine Regulation as Marker of Sarcopenia in Elderly. Mol Cell Biomed Sci. 2018;2(2):38-47. DOI:10.21705/mcbs.v2i2.32
54. Васюкова О.В., Касьянова Ю.В., Окороков П.Л., и др. Миокины и адипомиокины: медиаторы воспаления или уникальные молекулы таргетной терапии ожирения? Проблемы эндокринологии. 2021;67(4):36-45 [Vasyukova OV, Kasyanova YuV, Okorokov PL, et al. Myokines and adipomyokines: inflammatory mediators or unique molecules for targeted therapy of obesity? Problems of Endocrinology. 2021;67(4):36-45 (in Russian)]. DOI:10.14341/probl12779
55. Владимиров Н.М., Доровских И.Г. Миокины, их роль в мышечном сокращении. Научный медицинский вестник Югры. 2021;1(27):4-11 [Vladimirov NM, Dorovskikh IG. Myokines, their role in muscle contraction. Scientific Medical Bulletin of Ugra. 2021;1(27):4-11 (in Russian)]. DOI:10.25017/2306-1367-2021-27-1-4-11
56. Милованова К.Г., Капилевич Л.В., Захарова А.Н., и др. Физическая активность как основной фактор продукции миокинов. Инновационные преобразования в сфере физической культуры, спорта и туризма: сборник материалов XXII Всероссийской научно-практической конференции. Ростов н/Д: РГЭУ (РИНХ), 2019 [Milovanova KG, Kapilevich LV, Zakharova AN, et al. Fizicheskaia aktivnost’ kak osnovnoi faktor produktsii miokinov. Innovatsionnye preobrazovaniia v sfere fizicheskoi kul’tury, sporta i turizma: sbornik materialov XXII Vserossiiskoi nauchno-prakticheskoi konferentsii. Rostov-on-Don: RGEU (RINKh), 2019 (in Russian)].
57. Радугин Ф.М., Тимкина Н.В., Каронова Т.Л. Метаболические свойства ирисина в норме и при сахарном диабете. Ожирение и метаболизм. 2022;19(3):332-9 [Radugin FM, Timkina NV, Karonova TL. Metabolic properties of irisin in health and in diabetes mellitus. Obesity and Metabolism. 2022;19(3):332-9 (in Russian)]. DOI:10.14341/omet12899
________________________________________________
1. Yuan S, Larsson SC. Epidemiology of sarcopenia: prevalence, risk factors, and consequences. Metabolism. 2023;144:155533. DOI:10.1016/j.metabol.2023.155533
2. Bocharova KA, Rukavishnikova SA, Osipov KV, et al. Sarcopenia in the long-term care system. Current Problems of Health Care and Medical Statistics. 2021;2:12-26 (in Russian). DOI:10.24412/2312-2935-2021-2-12-26
3. Mesinovic J, Zengin A, De Courten B, et al. Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes Metab Syndr Obes. 2019;12:1057-72. DOI:10.2147/DMSO.S186600
4. Veronese N, Pizzol D, Demurtas J, et al. Association between sarcopenia and diabetes: a systematic review and meta-analysis of observational studies. Eur Geriatr Med. 2019;10(5):685-96. DOI:10.1007/s41999-019-00216-x
5. Izzo A, Massimino E, Riccardi G, Della Pepa G. A Narrative Review on Sarcopenia in Type 2 Diabetes Mellitus: Prevalence and Associated Factors. Nutrients. 2021;13(1). DOI:10.3390/nu13010183
6. Trierweiler H, Kisielewicz G, Hoffmann Jonasson T, et al. Sarcopenia: a chronic complication of type 2 diabetes mellitus. Diabetol Metab Syndr. 2018;10:25.
DOI:10.1186/s13098-018-0326-5
7. Ai Y, Xu R, Liu L. The prevalence and risk factors of sarcopenia in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr. 2021;13(1):93. DOI:10.1186/s13098-021-00707-7
8. Feng L, Gao Q, Hu K, et al. Prevalence and Risk Factors of Sarcopenia in Patients With Diabetes: A Meta-analysis. J Clin Endocrinol Metab. 2022;107(5):1470-83. DOI:10.1210/clinem/dgab884
9. Qiao YS, Chai YH, Gong HJ, et al. The Association Between Diabetes Mellitus and Risk of Sarcopenia: Accumulated Evidences From Observational Studies. Front Endocrinol (Lausanne). 2021;12:782391. DOI:10.3389/fendo.2021.782391
10. Jang HC. Sarcopenia, Frailty, and Diabetes in Older Adults. Diabetes Metab J. 2016;40(3):182-9. DOI:10.4093/dmj.2016.40.3.182
11. Umegaki H. Sarcopenia and diabetes: Hyperglycemia is a risk factor for age-associated muscle mass and functional reduction. J Diabetes Investig. 2015;6(6):623-4. DOI:10.1111/jdi.12365
12. Mori H, Kuroda A, Matsuhisa M. Clinical impact of sarcopenia and dynapenia on diabetes. Diabetol Int. 2019;10(3):183-7. DOI:10.1007/s13340-019-00400-1
13. Khanal P, Williams AG, He L, et al. Sarcopenia, Obesity, and Sarcopenic Obesity: Relationship with Skeletal Muscle Phenotypes and Single Nucleotide Polymorphisms. J Clin Med. 2021;10(21). DOI:10.3390/jcm10214933
14. Cho HY, Marzec J, Kleeberger SR. Functional polymorphisms in Nrf2: implications for human disease. Free Radic Biol Med. 2015;88(Pt. B):362-72. DOI:10.1016/j.freeradbiomed.2015.06.012
15. Yan X, Shen Z, Yu D, et al. Nrf2 contributes to the benefits of exercise interventions on age-related skeletal muscle disorder via regulating Drp1 stability and mitochondrial fission. Free Radic Biol Med. 2022;178:59-75. DOI:10.1016/j.freeradbiomed.2021.11.030
16. Ahn B, Pharaoh G, Premkumar P, et al. Nrf2 deficiency exacerbates age-related contractile dysfunction and loss of skeletal muscle mass. Redox Biol. 2018;17:47-58. DOI:10.1016/j.redox.2018.04.004
17. Kitaoka Y, Tamura Y, Takahashi K, et al. Effects of Nrf2 deficiency on mitochondrial oxidative stress in aged skeletal muscle. Physiol Rep. 2019;7(3):e13998. DOI:10.14814/phy2.13998
18. Fu J, Hou Y, Xue P, et al. Nrf2 in Type 2 diabetes and diabetic complications: Yin and Yang. Current Opinion in Toxicology. 2016;1:9-19. DOI:10.1016/j.cotox.2016.08.001
19. Jiménez-Osorio AS, Picazo A, González-Reyes S, et al. Nrf2 and redox status in prediabetic and diabetic patients. Int J Mol Sci. 2014;15(11):20290-305. DOI:10.3390/ijms151120290
20. De Giuseppe R, Tomasinelli CE, Vincenti A, et al. Sarcopenia and homocysteine: is there a possible association in the elderly? A narrative review. Nutr Res Rev.
2022;35(1):98-111. DOI:10.1017/S095442242100010X
21. Urzi F, Pokorny B, Buzan E. Pilot Study on Genetic Associations With Age-Related Sarcopenia. Front Genet. 2021;11:615238. DOI:10.3389/fgene.2020.615238
22. Cho J, Lee I, Kang H. ACTN3 Gene and Susceptibility to Sarcopenia and Osteoporotic Status in Older Korean Adults. Biomed Res Int. 2017;2017:4239648. DOI:10.1155/2017/4239648
23. Kiuchi Y, Makizako H, Nakai Y, et al. Associations of alpha-actinin-3 genotype with thigh muscle volume and physical performance in older adults with sarcopenia or pre-sarcopenia. Exp Gerontol. 2021;154:111525. DOI:10.1016/j.exger.2021.111525
24. Fernández-Araque A, Giaquinta-Aranda A, Rodríguez-Díez JA, et al. Muscular Strength and Quality of Life in Older Adults: The Role of ACTN3 R577X Polymorphism. Int J Environ Res Public Health. 2021;18(3). DOI:10.3390/ijerph18031055
25. Taniguchi Y, Makizako H, Nakai Y, et al. Associations of the Alpha-Actinin Three Genotype with Bone and Muscle Mass Loss among Middle-Aged and Older Adults. J Clin Med. 2022;11(20). DOI:10.3390/jcm11206172
26. Kahraman M, Ozulu Turkmen B, Bahat-Ozturk G, et al. Is there a relationship between ACTN3 R577X gene polymorphism and sarcopenia? Aging Clin Exp Res.
2022;34(4):757-65. DOI:10.1007/s40520-021-01996-8
27. Boshnjaku A, Krasniqi E, Tschan H, Wessner B. ACTN3 Genotypes and Their Relationship with Muscle Mass and Function of Kosovan Adults. Int J Environ Res Public Health. 2021;18(17). DOI:10.3390/ijerph18179135
28. Romero-Blanco C, Artiga González MJ, Gómez-Cabello A, et al. ACTN3 R577X polymorphism related to sarcopenia and physical fitness in active older women. Climacteric. 2021;24(1):89-94. DOI:10.1080/13697137.2020.1776248
29. Jin H, Yoo HJ, Kim YA, et al. Unveiling genetic variants for age-related sarcopenia by conducting a genome-wide association study on Korean cohorts. Sci Rep. 2022;12(1):3501. DOI:10.1038/s41598-022-07567-9
30. Kang YJ, Yoo JI, Baek KW. Differential gene expression profile by RNA sequencing study of elderly osteoporotic hip fracture patients with sarcopenia. J Orthop Translat.
2021;29:10-8. DOI:10.1016/j.jot.2021.04.009
31. Attaway AH, Bellar A, Welch N, et al. Gene polymorphisms associated with heterogeneity and senescence characteristics of sarcopenia in chronic obstructive pulmonary disease. J Cachexia Sarcopenia Muscle. 2023;14(2):1083-95. DOI:10.1002/jcsm.13198
32. Khanal P, He L, Stebbings G, et al. Prevalence and association of single nucleotide polymorphisms with sarcopenia in older women depends on definition. Sci Rep. 2020;10(1):2913. DOI:10.1038/s41598-020-59722-9
33. Zhang X, Ye L, Li X, et al. The association between sarcopenia susceptibility and polymorphisms of FTO, ACVR2B, and IRS1 in Tibetans. Mol Genet Genomic Med. 2021;9(8):e1747. DOI:10.1002/mgg3.1747
34. Perna S. Are the genes CA6, TAS2R38, TCF7L2, FTO, TAS1R2, TAS1R3, GNAT3 receptor polymorphisms involved on exceptional longevity and risk of sarcopenia? A cross sectional study in Italian aging population. Genetika. 2020;52(1):177-86. DOI:10.2298/GENSR2001177P
35. He L, Khanal P, Morse CI, et al. Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. J Cachexia Sarcopenia Muscle. 2019;10(6):1295-306. DOI:10.1002/jcsm.12478
36. Chen J, Xu Q, Wang X, et al. Cullin-3 intervenes in muscle atrophy in the elderly by mediating the degradation of nAchRs ubiquitination. Exp Gerontol. 2023;183:112318. DOI:10.1016/j.exger.2023.112318
37. Xu Q, Li J, Yang J, Xu Z. CUL3 and COPS5 Related to the Ubiquitin-Proteasome Pathway Are Potential Genes for Muscle Atrophy in Mice. Evid Based Complement Alternat Med. 2022;2022:1488905. DOI:10.1155/2022/1488905
38. Liu L, Koike H, Ono T, et al. Identification of a KLF5-dependent program and drug development for skeletal muscle atrophy. Proc Natl Acad Sci U S A. 2021;118(35). DOI:10.1073/pnas.2102895118
39. Zhang XX, Lian T, Ran JS, et al. KLF5 functions in proliferation, differentiation, and apoptosis of chicken satellite cells. 3 Biotech. 2019;9(6):222. DOI:10.1007/s13205-019-1752-2
40. Schluessel S, Zhang W, Nowotny H, et al. 11-beta-hydroxysteroid dehydrogenase type 1 (HSD11B1) gene expression in muscle is linked to reduced skeletal muscle index in sarcopenic patients. Aging Clin Exp Res. 2023;35(12):3073-83. DOI:10.1007/s40520-023-02574-w
41. Chen Y, Zhang Y, Zhang S, Ren H. Molecular insights into sarcopenia: ferroptosis-related genes as diagnostic and therapeutic targets. J Biomol Struct Dyn. 2024;1-19. DOI:10.1080/07391102.2023.2298390
42. Rom O, Reznick AZ. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radic Biol Med. 2016;98:218-30. DOI:10.1016/j.freeradbiomed.2015.12.031
43. Lee JH, Jun HS. Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front Physiol. 2019;10:42. DOI:10.3389/fphys.2019.00042
44. Gasanov MZ. Sarcopenia in patients with chronic kidney disease: prevalence, pathogenesis and clinical significance. Nephrology (Saint-Petersburg). 2021;25(1):47-58 (in Russian). DOI:10.36485/1561-6274-2021-25-1-47-58
45. Kapilevich LV, Kabachkova AV, Kironenko TA. Miokiny-belki, produtsiruemye myshechnymi kletkami: obshchaia kharakteristika i funktsional’noe znachenie. Olimpiiskii sport i sport dlia vsekh: materialy XIX Mezhdunarodnogo nauchnogo kongressa. Erevan. 2015 (in Russian).
46. Paltsyn AA. Myokines. Patologicheskaya Fiziologiya i Eksperimental`naya Terapiya = Pathological Physiology and Experimental Therapy, Russian Journal. 2020;64(1):135-41 (in Russian). DOI:10.25557/0031-2991.2020.01.135-141
47. Antyukh KYu, Grigorenko EA, Sheptulina AF, et al. Osteosarcopenic obesity in patients with diseases of the circulatory system: epidemiology, clinical significance, modern approaches to diagnosis. Cardiology in Belarus. 2023;15(4):511-24 (in Russian). DOI:10.34883/PI.2023.15.4.007
48. Vasina AYu, Didur MD, Iygi AA, et al. Muscle tissue as an endocrine regulator and the problem of physical inactivity. Bulletin of St. Petersburg University. 2014;11(2):5-15 (in Russian).
49. Barbalho SM, Flato UAP, Tofano RJ, et al. Physical Exercise and Myokines: Relationships with Sarcopenia and Cardiovascular Complications. Int J Mol Sci. 2020;21(10). DOI:10.3390/ijms21103607
50. Bilski J, Pierzchalski P, Szczepanik M, et al. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells. 2022;11(1). DOI:10.3390/cells11010160
51. White TA, LeBrasseur NK. Myostatin and sarcopenia: opportunities and challenges – a mini-review. Gerontology. 2014;60(4):289-93. DOI:10.1159/000356740
52. Belizário JE, Fontes-Oliveira CC, Borges JP, et al. Skeletal muscle wasting and renewal: a pivotal role of myokine IL-6. Springerplus. 2016;5:619. DOI:10.1186/s40064-016-2197-2
53. Aryana IG, Hapsari AA, Kuswardhan RA. Myokine Regulation as Marker of Sarcopenia in Elderly. Mol Cell Biomed Sci. 2018;2(2):38-47. DOI:10.21705/mcbs.v2i2.32
54. Vasyukova OV, Kasyanova YuV, Okorokov PL, et al. Myokines and adipomyokines: inflammatory mediators or unique molecules for targeted therapy of obesity? Problems of Endocrinology. 2021;67(4):36-45 (in Russian). DOI:10.14341/probl12779
55. Vladimirov NM, Dorovskikh IG. Myokines, their role in muscle contraction. Scientific Medical Bulletin of Ugra. 2021;1(27):4-11 (in Russian). DOI:10.25017/2306-1367-2021-27-1-4-11
56. Milovanova KG, Kapilevich LV, Zakharova AN, et al. Fizicheskaia aktivnost’ kak osnovnoi faktor produktsii miokinov. Innovatsionnye preobrazovaniia v sfere fizicheskoi kul’tury, sporta i turizma: sbornik materialov XXII Vserossiiskoi nauchno-prakticheskoi konferentsii. Rostov-on-Don: RGEU (RINKh), 2019 (in Russian).
57. Radugin FM, Timkina NV, Karonova TL. Metabolic properties of irisin in health and in diabetes mellitus. Obesity and Metabolism. 2022;19(3):332-9 (in Russian). DOI:10.14341/omet12899
Авторы
Ф.В. Валеева, Ж.А. Родыгина*, Т.С. Йылмаз
ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России, Казань, Россия
*zhanna.rodygina.99@mail.ru
________________________________________________
Farida V. Valeeva, Zhanna A. Rodygina*, Tatyana S. Yilmaz