Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Роль генов и миокинов в прогнозировании риска развития саркопении
Роль генов и миокинов в прогнозировании риска развития саркопении
Валеева Ф.В., Родыгина Ж.А., Йылмаз Т.С. Роль генов и миокинов в прогнозировании риска развития саркопении. Consilium Medicum. 2024;26(4):219–224. DOI: 10.26442/20751753.2024.4.202735
© ООО «КОНСИЛИУМ МЕДИКУМ», 2024 г.
© ООО «КОНСИЛИУМ МЕДИКУМ», 2024 г.
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Саркопения связана с прогрессирующей генерализованной слабостью скелетных мышц, со стойким снижением мышечной силы, функции и качества жизни у пожилых людей. Наличие данного заболевания ухудшает прогноз возрастных пациентов. Соответственно, в настоящее время изучение этиологии и патогенеза саркопении, а также выявление ранних маркеров диагностики данного заболевания являются актуальным направлением. Известно, что миокины, секретируемые скелетными мышцами, играют значительную роль в регуляции мышечной массы и функции, метаболическом гомеостазе. Нарушение синтеза миокинов может способствовать развитию саркопении. В статье показана ассоциация полиморфизма различных генов с развитием заболевания. Объединены современные знания о миокинах и генетических факторах как потенциальных биомаркерах для ранней диагностики саркопении.
Ключевые слова: саркопения, миокины, гены, NRF2, MTHFR, ACTN3, FTO, KLF5, миостатин, ИЛ-6, декорин, ирисин
Keywords: sarcopenia, myokines, genes, NRF2, MTHFR, ACTN3, FTO, KLF5, myostatin, IL-6, decorin, irisin
Ключевые слова: саркопения, миокины, гены, NRF2, MTHFR, ACTN3, FTO, KLF5, миостатин, ИЛ-6, декорин, ирисин
________________________________________________
Keywords: sarcopenia, myokines, genes, NRF2, MTHFR, ACTN3, FTO, KLF5, myostatin, IL-6, decorin, irisin
Полный текст
Список литературы
1. Yuan S, Larsson SC. Epidemiology of sarcopenia: prevalence, risk factors, and consequences. Metabolism. 2023;144:155533. DOI:10.1016/j.metabol.2023.155533
2. Бочарова К.А., Рукавишникова С.А., Осипов К.В., и др. Саркопения в системе долговременного ухода. Современные проблемы здравоохранения и медицинской статистики. 2021;2:12-26 [Bocharova KA, Rukavishnikova SA, Osipov KV, et al. Sarcopenia in the long-term care system. Current Problems of Health Care and Medical Statistics. 2021;2:12-26 (in Russian)]. DOI:10.24412/2312-2935-2021-2-12-26
3. Mesinovic J, Zengin A, De Courten B, et al. Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes Metab Syndr Obes. 2019;12:1057-72. DOI:10.2147/DMSO.S186600
4. Veronese N, Pizzol D, Demurtas J, et al. Association between sarcopenia and diabetes: a systematic review and meta-analysis of observational studies. Eur Geriatr Med. 2019;10(5):685-96. DOI:10.1007/s41999-019-00216-x
5. Izzo A, Massimino E, Riccardi G, Della Pepa G. A Narrative Review on Sarcopenia in Type 2 Diabetes Mellitus: Prevalence and Associated Factors. Nutrients. 2021;13(1). DOI:10.3390/nu13010183
6. Trierweiler H, Kisielewicz G, Hoffmann Jonasson T, et al. Sarcopenia: a chronic complication of type 2 diabetes mellitus. Diabetol Metab Syndr. 2018;10:25.
DOI:10.1186/s13098-018-0326-5
7. Ai Y, Xu R, Liu L. The prevalence and risk factors of sarcopenia in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr. 2021;13(1):93. DOI:10.1186/s13098-021-00707-7
8. Feng L, Gao Q, Hu K, et al. Prevalence and Risk Factors of Sarcopenia in Patients With Diabetes: A Meta-analysis. J Clin Endocrinol Metab. 2022;107(5):1470-83. DOI:10.1210/clinem/dgab884
9. Qiao YS, Chai YH, Gong HJ, et al. The Association Between Diabetes Mellitus and Risk of Sarcopenia: Accumulated Evidences From Observational Studies. Front Endocrinol (Lausanne). 2021;12:782391. DOI:10.3389/fendo.2021.782391
10. Jang HC. Sarcopenia, Frailty, and Diabetes in Older Adults. Diabetes Metab J. 2016;40(3):182-9. DOI:10.4093/dmj.2016.40.3.182
11. Umegaki H. Sarcopenia and diabetes: Hyperglycemia is a risk factor for age-associated muscle mass and functional reduction. J Diabetes Investig. 2015;6(6):623-4. DOI:10.1111/jdi.12365
12. Mori H, Kuroda A, Matsuhisa M. Clinical impact of sarcopenia and dynapenia on diabetes. Diabetol Int. 2019;10(3):183-7. DOI:10.1007/s13340-019-00400-1
13. Khanal P, Williams AG, He L, et al. Sarcopenia, Obesity, and Sarcopenic Obesity: Relationship with Skeletal Muscle Phenotypes and Single Nucleotide Polymorphisms. J Clin Med. 2021;10(21). DOI:10.3390/jcm10214933
14. Cho HY, Marzec J, Kleeberger SR. Functional polymorphisms in Nrf2: implications for human disease. Free Radic Biol Med. 2015;88(Pt. B):362-72. DOI:10.1016/j.freeradbiomed.2015.06.012
15. Yan X, Shen Z, Yu D, et al. Nrf2 contributes to the benefits of exercise interventions on age-related skeletal muscle disorder via regulating Drp1 stability and mitochondrial fission. Free Radic Biol Med. 2022;178:59-75. DOI:10.1016/j.freeradbiomed.2021.11.030
16. Ahn B, Pharaoh G, Premkumar P, et al. Nrf2 deficiency exacerbates age-related contractile dysfunction and loss of skeletal muscle mass. Redox Biol. 2018;17:47-58. DOI:10.1016/j.redox.2018.04.004
17. Kitaoka Y, Tamura Y, Takahashi K, et al. Effects of Nrf2 deficiency on mitochondrial oxidative stress in aged skeletal muscle. Physiol Rep. 2019;7(3):e13998. DOI:10.14814/phy2.13998
18. Fu J, Hou Y, Xue P, et al. Nrf2 in Type 2 diabetes and diabetic complications: Yin and Yang. Current Opinion in Toxicology. 2016;1:9-19. DOI:10.1016/j.cotox.2016.08.001
19. Jiménez-Osorio AS, Picazo A, González-Reyes S, et al. Nrf2 and redox status in prediabetic and diabetic patients. Int J Mol Sci. 2014;15(11):20290-305. DOI:10.3390/ijms151120290
20. De Giuseppe R, Tomasinelli CE, Vincenti A, et al. Sarcopenia and homocysteine: is there a possible association in the elderly? A narrative review. Nutr Res Rev.
2022;35(1):98-111. DOI:10.1017/S095442242100010X
21. Urzi F, Pokorny B, Buzan E. Pilot Study on Genetic Associations With Age-Related Sarcopenia. Front Genet. 2021;11:615238. DOI:10.3389/fgene.2020.615238
22. Cho J, Lee I, Kang H. ACTN3 Gene and Susceptibility to Sarcopenia and Osteoporotic Status in Older Korean Adults. Biomed Res Int. 2017;2017:4239648. DOI:10.1155/2017/4239648
23. Kiuchi Y, Makizako H, Nakai Y, et al. Associations of alpha-actinin-3 genotype with thigh muscle volume and physical performance in older adults with sarcopenia or pre-sarcopenia. Exp Gerontol. 2021;154:111525. DOI:10.1016/j.exger.2021.111525
24. Fernández-Araque A, Giaquinta-Aranda A, Rodríguez-Díez JA, et al. Muscular Strength and Quality of Life in Older Adults: The Role of ACTN3 R577X Polymorphism. Int J Environ Res Public Health. 2021;18(3). DOI:10.3390/ijerph18031055
25. Taniguchi Y, Makizako H, Nakai Y, et al. Associations of the Alpha-Actinin Three Genotype with Bone and Muscle Mass Loss among Middle-Aged and Older Adults. J Clin Med. 2022;11(20). DOI:10.3390/jcm11206172
26. Kahraman M, Ozulu Turkmen B, Bahat-Ozturk G, et al. Is there a relationship between ACTN3 R577X gene polymorphism and sarcopenia? Aging Clin Exp Res.
2022;34(4):757-65. DOI:10.1007/s40520-021-01996-8
27. Boshnjaku A, Krasniqi E, Tschan H, Wessner B. ACTN3 Genotypes and Their Relationship with Muscle Mass and Function of Kosovan Adults. Int J Environ Res Public Health. 2021;18(17). DOI:10.3390/ijerph18179135
28. Romero-Blanco C, Artiga González MJ, Gómez-Cabello A, et al. ACTN3 R577X polymorphism related to sarcopenia and physical fitness in active older women. Climacteric. 2021;24(1):89-94. DOI:10.1080/13697137.2020.1776248
29. Jin H, Yoo HJ, Kim YA, et al. Unveiling genetic variants for age-related sarcopenia by conducting a genome-wide association study on Korean cohorts. Sci Rep. 2022;12(1):3501. DOI:10.1038/s41598-022-07567-9
30. Kang YJ, Yoo JI, Baek KW. Differential gene expression profile by RNA sequencing study of elderly osteoporotic hip fracture patients with sarcopenia. J Orthop Translat.
2021;29:10-8. DOI:10.1016/j.jot.2021.04.009
31. Attaway AH, Bellar A, Welch N, et al. Gene polymorphisms associated with heterogeneity and senescence characteristics of sarcopenia in chronic obstructive pulmonary disease. J Cachexia Sarcopenia Muscle. 2023;14(2):1083-95. DOI:10.1002/jcsm.13198
32. Khanal P, He L, Stebbings G, et al. Prevalence and association of single nucleotide polymorphisms with sarcopenia in older women depends on definition. Sci Rep. 2020;10(1):2913. DOI:10.1038/s41598-020-59722-9
33. Zhang X, Ye L, Li X, et al. The association between sarcopenia susceptibility and polymorphisms of FTO, ACVR2B, and IRS1 in Tibetans. Mol Genet Genomic Med. 2021;9(8):e1747. DOI:10.1002/mgg3.1747
34. Perna S. Are the genes CA6, TAS2R38, TCF7L2, FTO, TAS1R2, TAS1R3, GNAT3 receptor polymorphisms involved on exceptional longevity and risk of sarcopenia? A cross sectional study in Italian aging population. Genetika. 2020;52(1):177-86. DOI:10.2298/GENSR2001177P
35. He L, Khanal P, Morse CI, et al. Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. J Cachexia Sarcopenia Muscle. 2019;10(6):1295-306. DOI:10.1002/jcsm.12478
36. Chen J, Xu Q, Wang X, et al. Cullin-3 intervenes in muscle atrophy in the elderly by mediating the degradation of nAchRs ubiquitination. Exp Gerontol. 2023;183:112318. DOI:10.1016/j.exger.2023.112318
37. Xu Q, Li J, Yang J, Xu Z. CUL3 and COPS5 Related to the Ubiquitin-Proteasome Pathway Are Potential Genes for Muscle Atrophy in Mice. Evid Based Complement Alternat Med. 2022;2022:1488905. DOI:10.1155/2022/1488905
38. Liu L, Koike H, Ono T, et al. Identification of a KLF5-dependent program and drug development for skeletal muscle atrophy. Proc Natl Acad Sci U S A. 2021;118(35). DOI:10.1073/pnas.2102895118
39. Zhang XX, Lian T, Ran JS, et al. KLF5 functions in proliferation, differentiation, and apoptosis of chicken satellite cells. 3 Biotech. 2019;9(6):222. DOI:10.1007/s13205-019-1752-2
40. Schluessel S, Zhang W, Nowotny H, et al. 11-beta-hydroxysteroid dehydrogenase type 1 (HSD11B1) gene expression in muscle is linked to reduced skeletal muscle index in sarcopenic patients. Aging Clin Exp Res. 2023;35(12):3073-83. DOI:10.1007/s40520-023-02574-w
41. Chen Y, Zhang Y, Zhang S, Ren H. Molecular insights into sarcopenia: ferroptosis-related genes as diagnostic and therapeutic targets. J Biomol Struct Dyn. 2024;1-19. DOI:10.1080/07391102.2023.2298390
42. Rom O, Reznick AZ. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radic Biol Med. 2016;98:218-30. DOI:10.1016/j.freeradbiomed.2015.12.031
43. Lee JH, Jun HS. Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front Physiol. 2019;10:42. DOI:10.3389/fphys.2019.00042
44. Гасанов М.З. Саркопения у пациентов с хронической болезнью почек: распространенность, особенности патогенеза и клиническое значение. Нефрология. 2021;25(1):47-58 [Gasanov MZ. Sarcopenia in patients with chronic kidney disease: prevalence, pathogenesis and clinical significance. Nephrology (Saint-Petersburg). 2021;25(1):47-58 (in Russian)]. DOI:10.36485/1561-6274-2021-25-1-47-58
45. Капилевич Л.В., Кабачкова А.В., Кироненко Т.А. Миокины-белки, продуцируемые мышечными клетками: общая характеристика и функциональное значение. Олимпийский спорт и спорт для всех: материалы XIX Международного научного конгресса. Ереван. 2015 [Kapilevich LV, Kabachkova AV, Kironenko TA. Miokiny-belki, produtsiruemye myshechnymi kletkami: obshchaia kharakteristika i funktsional’noe znachenie. Olimpiiskii sport i sport dlia vsekh: materialy XIX Mezhdunarodnogo nauchnogo kongressa. Erevan. 2015 (in Russian)].
46. Пальцын А.А. Миокины. Патологическая физиология и экспериментальная терапия. 2020;64(1):135-41 [Paltsyn AA. Myokines. Patologicheskaya Fiziologiya i Eksperimental`naya Terapiya = Pathological Physiology and Experimental Therapy, Russian Journal. 2020;64(1):135-41 (in Russian)]. DOI:10.25557/0031-2991.2020.01.135-141
47. Антюх К.Ю., Григоренко Е.А., Шептулина А.Ф., и др. Остеосаркопеническое ожирение у пациентов с болезнями системы кровообращения: эпидемиология, клиническое значение, современные подходы к диагностике. Кардиология в Беларуси. 2023;15(4):511-24 [Antyukh KYu, Grigorenko EA, Sheptulina AF, et al. Osteosarcopenic obesity in patients with diseases of the circulatory system: epidemiology, clinical significance, modern approaches to diagnosis. Cardiology in Belarus. 2023;15(4):511-24 (in Russian)]. DOI:10.34883/PI.2023.15.4.007
48. Васина А.Ю., Дидур М.Д., Иыги А.А., и др. Мышечная ткань как эндокринный регулятор и проблема гиподинамии. Вестник Санкт-Петербургского университета. 2014;11(2):5-15 [Vasina AYu, Didur MD, Iygi AA, et al. Muscle tissue as an endocrine regulator and the problem of physical inactivity. Bulletin of St. Petersburg University. 2014;11(2):5-15 (in Russian)].
49. Barbalho SM, Flato UAP, Tofano RJ, et al. Physical Exercise and Myokines: Relationships with Sarcopenia and Cardiovascular Complications. Int J Mol Sci. 2020;21(10). DOI:10.3390/ijms21103607
50. Bilski J, Pierzchalski P, Szczepanik M, et al. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells. 2022;11(1). DOI:10.3390/cells11010160
51. White TA, LeBrasseur NK. Myostatin and sarcopenia: opportunities and challenges – a mini-review. Gerontology. 2014;60(4):289-93. DOI:10.1159/000356740
52. Belizário JE, Fontes-Oliveira CC, Borges JP, et al. Skeletal muscle wasting and renewal: a pivotal role of myokine IL-6. Springerplus. 2016;5:619. DOI:10.1186/s40064-016-2197-2
53. Aryana IG, Hapsari AA, Kuswardhan RA. Myokine Regulation as Marker of Sarcopenia in Elderly. Mol Cell Biomed Sci. 2018;2(2):38-47. DOI:10.21705/mcbs.v2i2.32
54. Васюкова О.В., Касьянова Ю.В., Окороков П.Л., и др. Миокины и адипомиокины: медиаторы воспаления или уникальные молекулы таргетной терапии ожирения? Проблемы эндокринологии. 2021;67(4):36-45 [Vasyukova OV, Kasyanova YuV, Okorokov PL, et al. Myokines and adipomyokines: inflammatory mediators or unique molecules for targeted therapy of obesity? Problems of Endocrinology. 2021;67(4):36-45 (in Russian)]. DOI:10.14341/probl12779
55. Владимиров Н.М., Доровских И.Г. Миокины, их роль в мышечном сокращении. Научный медицинский вестник Югры. 2021;1(27):4-11 [Vladimirov NM, Dorovskikh IG. Myokines, their role in muscle contraction. Scientific Medical Bulletin of Ugra. 2021;1(27):4-11 (in Russian)]. DOI:10.25017/2306-1367-2021-27-1-4-11
56. Милованова К.Г., Капилевич Л.В., Захарова А.Н., и др. Физическая активность как основной фактор продукции миокинов. Инновационные преобразования в сфере физической культуры, спорта и туризма: сборник материалов XXII Всероссийской научно-практической конференции. Ростов н/Д: РГЭУ (РИНХ), 2019 [Milovanova KG, Kapilevich LV, Zakharova AN, et al. Fizicheskaia aktivnost’ kak osnovnoi faktor produktsii miokinov. Innovatsionnye preobrazovaniia v sfere fizicheskoi kul’tury, sporta i turizma: sbornik materialov XXII Vserossiiskoi nauchno-prakticheskoi konferentsii. Rostov-on-Don: RGEU (RINKh), 2019 (in Russian)].
57. Радугин Ф.М., Тимкина Н.В., Каронова Т.Л. Метаболические свойства ирисина в норме и при сахарном диабете. Ожирение и метаболизм. 2022;19(3):332-9 [Radugin FM, Timkina NV, Karonova TL. Metabolic properties of irisin in health and in diabetes mellitus. Obesity and Metabolism. 2022;19(3):332-9 (in Russian)]. DOI:10.14341/omet12899
2. Bocharova KA, Rukavishnikova SA, Osipov KV, et al. Sarcopenia in the long-term care system. Current Problems of Health Care and Medical Statistics. 2021;2:12-26 (in Russian). DOI:10.24412/2312-2935-2021-2-12-26
3. Mesinovic J, Zengin A, De Courten B, et al. Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes Metab Syndr Obes. 2019;12:1057-72. DOI:10.2147/DMSO.S186600
4. Veronese N, Pizzol D, Demurtas J, et al. Association between sarcopenia and diabetes: a systematic review and meta-analysis of observational studies. Eur Geriatr Med. 2019;10(5):685-96. DOI:10.1007/s41999-019-00216-x
5. Izzo A, Massimino E, Riccardi G, Della Pepa G. A Narrative Review on Sarcopenia in Type 2 Diabetes Mellitus: Prevalence and Associated Factors. Nutrients. 2021;13(1). DOI:10.3390/nu13010183
6. Trierweiler H, Kisielewicz G, Hoffmann Jonasson T, et al. Sarcopenia: a chronic complication of type 2 diabetes mellitus. Diabetol Metab Syndr. 2018;10:25.
DOI:10.1186/s13098-018-0326-5
7. Ai Y, Xu R, Liu L. The prevalence and risk factors of sarcopenia in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr. 2021;13(1):93. DOI:10.1186/s13098-021-00707-7
8. Feng L, Gao Q, Hu K, et al. Prevalence and Risk Factors of Sarcopenia in Patients With Diabetes: A Meta-analysis. J Clin Endocrinol Metab. 2022;107(5):1470-83. DOI:10.1210/clinem/dgab884
9. Qiao YS, Chai YH, Gong HJ, et al. The Association Between Diabetes Mellitus and Risk of Sarcopenia: Accumulated Evidences From Observational Studies. Front Endocrinol (Lausanne). 2021;12:782391. DOI:10.3389/fendo.2021.782391
10. Jang HC. Sarcopenia, Frailty, and Diabetes in Older Adults. Diabetes Metab J. 2016;40(3):182-9. DOI:10.4093/dmj.2016.40.3.182
11. Umegaki H. Sarcopenia and diabetes: Hyperglycemia is a risk factor for age-associated muscle mass and functional reduction. J Diabetes Investig. 2015;6(6):623-4. DOI:10.1111/jdi.12365
12. Mori H, Kuroda A, Matsuhisa M. Clinical impact of sarcopenia and dynapenia on diabetes. Diabetol Int. 2019;10(3):183-7. DOI:10.1007/s13340-019-00400-1
13. Khanal P, Williams AG, He L, et al. Sarcopenia, Obesity, and Sarcopenic Obesity: Relationship with Skeletal Muscle Phenotypes and Single Nucleotide Polymorphisms. J Clin Med. 2021;10(21). DOI:10.3390/jcm10214933
14. Cho HY, Marzec J, Kleeberger SR. Functional polymorphisms in Nrf2: implications for human disease. Free Radic Biol Med. 2015;88(Pt. B):362-72. DOI:10.1016/j.freeradbiomed.2015.06.012
15. Yan X, Shen Z, Yu D, et al. Nrf2 contributes to the benefits of exercise interventions on age-related skeletal muscle disorder via regulating Drp1 stability and mitochondrial fission. Free Radic Biol Med. 2022;178:59-75. DOI:10.1016/j.freeradbiomed.2021.11.030
16. Ahn B, Pharaoh G, Premkumar P, et al. Nrf2 deficiency exacerbates age-related contractile dysfunction and loss of skeletal muscle mass. Redox Biol. 2018;17:47-58. DOI:10.1016/j.redox.2018.04.004
17. Kitaoka Y, Tamura Y, Takahashi K, et al. Effects of Nrf2 deficiency on mitochondrial oxidative stress in aged skeletal muscle. Physiol Rep. 2019;7(3):e13998. DOI:10.14814/phy2.13998
18. Fu J, Hou Y, Xue P, et al. Nrf2 in Type 2 diabetes and diabetic complications: Yin and Yang. Current Opinion in Toxicology. 2016;1:9-19. DOI:10.1016/j.cotox.2016.08.001
19. Jiménez-Osorio AS, Picazo A, González-Reyes S, et al. Nrf2 and redox status in prediabetic and diabetic patients. Int J Mol Sci. 2014;15(11):20290-305. DOI:10.3390/ijms151120290
20. De Giuseppe R, Tomasinelli CE, Vincenti A, et al. Sarcopenia and homocysteine: is there a possible association in the elderly? A narrative review. Nutr Res Rev.
2022;35(1):98-111. DOI:10.1017/S095442242100010X
21. Urzi F, Pokorny B, Buzan E. Pilot Study on Genetic Associations With Age-Related Sarcopenia. Front Genet. 2021;11:615238. DOI:10.3389/fgene.2020.615238
22. Cho J, Lee I, Kang H. ACTN3 Gene and Susceptibility to Sarcopenia and Osteoporotic Status in Older Korean Adults. Biomed Res Int. 2017;2017:4239648. DOI:10.1155/2017/4239648
23. Kiuchi Y, Makizako H, Nakai Y, et al. Associations of alpha-actinin-3 genotype with thigh muscle volume and physical performance in older adults with sarcopenia or pre-sarcopenia. Exp Gerontol. 2021;154:111525. DOI:10.1016/j.exger.2021.111525
24. Fernández-Araque A, Giaquinta-Aranda A, Rodríguez-Díez JA, et al. Muscular Strength and Quality of Life in Older Adults: The Role of ACTN3 R577X Polymorphism. Int J Environ Res Public Health. 2021;18(3). DOI:10.3390/ijerph18031055
25. Taniguchi Y, Makizako H, Nakai Y, et al. Associations of the Alpha-Actinin Three Genotype with Bone and Muscle Mass Loss among Middle-Aged and Older Adults. J Clin Med. 2022;11(20). DOI:10.3390/jcm11206172
26. Kahraman M, Ozulu Turkmen B, Bahat-Ozturk G, et al. Is there a relationship between ACTN3 R577X gene polymorphism and sarcopenia? Aging Clin Exp Res.
2022;34(4):757-65. DOI:10.1007/s40520-021-01996-8
27. Boshnjaku A, Krasniqi E, Tschan H, Wessner B. ACTN3 Genotypes and Their Relationship with Muscle Mass and Function of Kosovan Adults. Int J Environ Res Public Health. 2021;18(17). DOI:10.3390/ijerph18179135
28. Romero-Blanco C, Artiga González MJ, Gómez-Cabello A, et al. ACTN3 R577X polymorphism related to sarcopenia and physical fitness in active older women. Climacteric. 2021;24(1):89-94. DOI:10.1080/13697137.2020.1776248
29. Jin H, Yoo HJ, Kim YA, et al. Unveiling genetic variants for age-related sarcopenia by conducting a genome-wide association study on Korean cohorts. Sci Rep. 2022;12(1):3501. DOI:10.1038/s41598-022-07567-9
30. Kang YJ, Yoo JI, Baek KW. Differential gene expression profile by RNA sequencing study of elderly osteoporotic hip fracture patients with sarcopenia. J Orthop Translat.
2021;29:10-8. DOI:10.1016/j.jot.2021.04.009
31. Attaway AH, Bellar A, Welch N, et al. Gene polymorphisms associated with heterogeneity and senescence characteristics of sarcopenia in chronic obstructive pulmonary disease. J Cachexia Sarcopenia Muscle. 2023;14(2):1083-95. DOI:10.1002/jcsm.13198
32. Khanal P, He L, Stebbings G, et al. Prevalence and association of single nucleotide polymorphisms with sarcopenia in older women depends on definition. Sci Rep. 2020;10(1):2913. DOI:10.1038/s41598-020-59722-9
33. Zhang X, Ye L, Li X, et al. The association between sarcopenia susceptibility and polymorphisms of FTO, ACVR2B, and IRS1 in Tibetans. Mol Genet Genomic Med. 2021;9(8):e1747. DOI:10.1002/mgg3.1747
34. Perna S. Are the genes CA6, TAS2R38, TCF7L2, FTO, TAS1R2, TAS1R3, GNAT3 receptor polymorphisms involved on exceptional longevity and risk of sarcopenia? A cross sectional study in Italian aging population. Genetika. 2020;52(1):177-86. DOI:10.2298/GENSR2001177P
35. He L, Khanal P, Morse CI, et al. Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. J Cachexia Sarcopenia Muscle. 2019;10(6):1295-306. DOI:10.1002/jcsm.12478
36. Chen J, Xu Q, Wang X, et al. Cullin-3 intervenes in muscle atrophy in the elderly by mediating the degradation of nAchRs ubiquitination. Exp Gerontol. 2023;183:112318. DOI:10.1016/j.exger.2023.112318
37. Xu Q, Li J, Yang J, Xu Z. CUL3 and COPS5 Related to the Ubiquitin-Proteasome Pathway Are Potential Genes for Muscle Atrophy in Mice. Evid Based Complement Alternat Med. 2022;2022:1488905. DOI:10.1155/2022/1488905
38. Liu L, Koike H, Ono T, et al. Identification of a KLF5-dependent program and drug development for skeletal muscle atrophy. Proc Natl Acad Sci U S A. 2021;118(35). DOI:10.1073/pnas.2102895118
39. Zhang XX, Lian T, Ran JS, et al. KLF5 functions in proliferation, differentiation, and apoptosis of chicken satellite cells. 3 Biotech. 2019;9(6):222. DOI:10.1007/s13205-019-1752-2
40. Schluessel S, Zhang W, Nowotny H, et al. 11-beta-hydroxysteroid dehydrogenase type 1 (HSD11B1) gene expression in muscle is linked to reduced skeletal muscle index in sarcopenic patients. Aging Clin Exp Res. 2023;35(12):3073-83. DOI:10.1007/s40520-023-02574-w
41. Chen Y, Zhang Y, Zhang S, Ren H. Molecular insights into sarcopenia: ferroptosis-related genes as diagnostic and therapeutic targets. J Biomol Struct Dyn. 2024;1-19. DOI:10.1080/07391102.2023.2298390
42. Rom O, Reznick AZ. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radic Biol Med. 2016;98:218-30. DOI:10.1016/j.freeradbiomed.2015.12.031
43. Lee JH, Jun HS. Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front Physiol. 2019;10:42. DOI:10.3389/fphys.2019.00042
44. Gasanov MZ. Sarcopenia in patients with chronic kidney disease: prevalence, pathogenesis and clinical significance. Nephrology (Saint-Petersburg). 2021;25(1):47-58 (in Russian). DOI:10.36485/1561-6274-2021-25-1-47-58
45. Kapilevich LV, Kabachkova AV, Kironenko TA. Miokiny-belki, produtsiruemye myshechnymi kletkami: obshchaia kharakteristika i funktsional’noe znachenie. Olimpiiskii sport i sport dlia vsekh: materialy XIX Mezhdunarodnogo nauchnogo kongressa. Erevan. 2015 (in Russian).
46. Paltsyn AA. Myokines. Patologicheskaya Fiziologiya i Eksperimental`naya Terapiya = Pathological Physiology and Experimental Therapy, Russian Journal. 2020;64(1):135-41 (in Russian). DOI:10.25557/0031-2991.2020.01.135-141
47. Antyukh KYu, Grigorenko EA, Sheptulina AF, et al. Osteosarcopenic obesity in patients with diseases of the circulatory system: epidemiology, clinical significance, modern approaches to diagnosis. Cardiology in Belarus. 2023;15(4):511-24 (in Russian). DOI:10.34883/PI.2023.15.4.007
48. Vasina AYu, Didur MD, Iygi AA, et al. Muscle tissue as an endocrine regulator and the problem of physical inactivity. Bulletin of St. Petersburg University. 2014;11(2):5-15 (in Russian).
49. Barbalho SM, Flato UAP, Tofano RJ, et al. Physical Exercise and Myokines: Relationships with Sarcopenia and Cardiovascular Complications. Int J Mol Sci. 2020;21(10). DOI:10.3390/ijms21103607
50. Bilski J, Pierzchalski P, Szczepanik M, et al. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells. 2022;11(1). DOI:10.3390/cells11010160
51. White TA, LeBrasseur NK. Myostatin and sarcopenia: opportunities and challenges – a mini-review. Gerontology. 2014;60(4):289-93. DOI:10.1159/000356740
52. Belizário JE, Fontes-Oliveira CC, Borges JP, et al. Skeletal muscle wasting and renewal: a pivotal role of myokine IL-6. Springerplus. 2016;5:619. DOI:10.1186/s40064-016-2197-2
53. Aryana IG, Hapsari AA, Kuswardhan RA. Myokine Regulation as Marker of Sarcopenia in Elderly. Mol Cell Biomed Sci. 2018;2(2):38-47. DOI:10.21705/mcbs.v2i2.32
54. Vasyukova OV, Kasyanova YuV, Okorokov PL, et al. Myokines and adipomyokines: inflammatory mediators or unique molecules for targeted therapy of obesity? Problems of Endocrinology. 2021;67(4):36-45 (in Russian). DOI:10.14341/probl12779
55. Vladimirov NM, Dorovskikh IG. Myokines, their role in muscle contraction. Scientific Medical Bulletin of Ugra. 2021;1(27):4-11 (in Russian). DOI:10.25017/2306-1367-2021-27-1-4-11
56. Milovanova KG, Kapilevich LV, Zakharova AN, et al. Fizicheskaia aktivnost’ kak osnovnoi faktor produktsii miokinov. Innovatsionnye preobrazovaniia v sfere fizicheskoi kul’tury, sporta i turizma: sbornik materialov XXII Vserossiiskoi nauchno-prakticheskoi konferentsii. Rostov-on-Don: RGEU (RINKh), 2019 (in Russian).
57. Radugin FM, Timkina NV, Karonova TL. Metabolic properties of irisin in health and in diabetes mellitus. Obesity and Metabolism. 2022;19(3):332-9 (in Russian). DOI:10.14341/omet12899
2. Бочарова К.А., Рукавишникова С.А., Осипов К.В., и др. Саркопения в системе долговременного ухода. Современные проблемы здравоохранения и медицинской статистики. 2021;2:12-26 [Bocharova KA, Rukavishnikova SA, Osipov KV, et al. Sarcopenia in the long-term care system. Current Problems of Health Care and Medical Statistics. 2021;2:12-26 (in Russian)]. DOI:10.24412/2312-2935-2021-2-12-26
3. Mesinovic J, Zengin A, De Courten B, et al. Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes Metab Syndr Obes. 2019;12:1057-72. DOI:10.2147/DMSO.S186600
4. Veronese N, Pizzol D, Demurtas J, et al. Association between sarcopenia and diabetes: a systematic review and meta-analysis of observational studies. Eur Geriatr Med. 2019;10(5):685-96. DOI:10.1007/s41999-019-00216-x
5. Izzo A, Massimino E, Riccardi G, Della Pepa G. A Narrative Review on Sarcopenia in Type 2 Diabetes Mellitus: Prevalence and Associated Factors. Nutrients. 2021;13(1). DOI:10.3390/nu13010183
6. Trierweiler H, Kisielewicz G, Hoffmann Jonasson T, et al. Sarcopenia: a chronic complication of type 2 diabetes mellitus. Diabetol Metab Syndr. 2018;10:25.
DOI:10.1186/s13098-018-0326-5
7. Ai Y, Xu R, Liu L. The prevalence and risk factors of sarcopenia in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr. 2021;13(1):93. DOI:10.1186/s13098-021-00707-7
8. Feng L, Gao Q, Hu K, et al. Prevalence and Risk Factors of Sarcopenia in Patients With Diabetes: A Meta-analysis. J Clin Endocrinol Metab. 2022;107(5):1470-83. DOI:10.1210/clinem/dgab884
9. Qiao YS, Chai YH, Gong HJ, et al. The Association Between Diabetes Mellitus and Risk of Sarcopenia: Accumulated Evidences From Observational Studies. Front Endocrinol (Lausanne). 2021;12:782391. DOI:10.3389/fendo.2021.782391
10. Jang HC. Sarcopenia, Frailty, and Diabetes in Older Adults. Diabetes Metab J. 2016;40(3):182-9. DOI:10.4093/dmj.2016.40.3.182
11. Umegaki H. Sarcopenia and diabetes: Hyperglycemia is a risk factor for age-associated muscle mass and functional reduction. J Diabetes Investig. 2015;6(6):623-4. DOI:10.1111/jdi.12365
12. Mori H, Kuroda A, Matsuhisa M. Clinical impact of sarcopenia and dynapenia on diabetes. Diabetol Int. 2019;10(3):183-7. DOI:10.1007/s13340-019-00400-1
13. Khanal P, Williams AG, He L, et al. Sarcopenia, Obesity, and Sarcopenic Obesity: Relationship with Skeletal Muscle Phenotypes and Single Nucleotide Polymorphisms. J Clin Med. 2021;10(21). DOI:10.3390/jcm10214933
14. Cho HY, Marzec J, Kleeberger SR. Functional polymorphisms in Nrf2: implications for human disease. Free Radic Biol Med. 2015;88(Pt. B):362-72. DOI:10.1016/j.freeradbiomed.2015.06.012
15. Yan X, Shen Z, Yu D, et al. Nrf2 contributes to the benefits of exercise interventions on age-related skeletal muscle disorder via regulating Drp1 stability and mitochondrial fission. Free Radic Biol Med. 2022;178:59-75. DOI:10.1016/j.freeradbiomed.2021.11.030
16. Ahn B, Pharaoh G, Premkumar P, et al. Nrf2 deficiency exacerbates age-related contractile dysfunction and loss of skeletal muscle mass. Redox Biol. 2018;17:47-58. DOI:10.1016/j.redox.2018.04.004
17. Kitaoka Y, Tamura Y, Takahashi K, et al. Effects of Nrf2 deficiency on mitochondrial oxidative stress in aged skeletal muscle. Physiol Rep. 2019;7(3):e13998. DOI:10.14814/phy2.13998
18. Fu J, Hou Y, Xue P, et al. Nrf2 in Type 2 diabetes and diabetic complications: Yin and Yang. Current Opinion in Toxicology. 2016;1:9-19. DOI:10.1016/j.cotox.2016.08.001
19. Jiménez-Osorio AS, Picazo A, González-Reyes S, et al. Nrf2 and redox status in prediabetic and diabetic patients. Int J Mol Sci. 2014;15(11):20290-305. DOI:10.3390/ijms151120290
20. De Giuseppe R, Tomasinelli CE, Vincenti A, et al. Sarcopenia and homocysteine: is there a possible association in the elderly? A narrative review. Nutr Res Rev.
2022;35(1):98-111. DOI:10.1017/S095442242100010X
21. Urzi F, Pokorny B, Buzan E. Pilot Study on Genetic Associations With Age-Related Sarcopenia. Front Genet. 2021;11:615238. DOI:10.3389/fgene.2020.615238
22. Cho J, Lee I, Kang H. ACTN3 Gene and Susceptibility to Sarcopenia and Osteoporotic Status in Older Korean Adults. Biomed Res Int. 2017;2017:4239648. DOI:10.1155/2017/4239648
23. Kiuchi Y, Makizako H, Nakai Y, et al. Associations of alpha-actinin-3 genotype with thigh muscle volume and physical performance in older adults with sarcopenia or pre-sarcopenia. Exp Gerontol. 2021;154:111525. DOI:10.1016/j.exger.2021.111525
24. Fernández-Araque A, Giaquinta-Aranda A, Rodríguez-Díez JA, et al. Muscular Strength and Quality of Life in Older Adults: The Role of ACTN3 R577X Polymorphism. Int J Environ Res Public Health. 2021;18(3). DOI:10.3390/ijerph18031055
25. Taniguchi Y, Makizako H, Nakai Y, et al. Associations of the Alpha-Actinin Three Genotype with Bone and Muscle Mass Loss among Middle-Aged and Older Adults. J Clin Med. 2022;11(20). DOI:10.3390/jcm11206172
26. Kahraman M, Ozulu Turkmen B, Bahat-Ozturk G, et al. Is there a relationship between ACTN3 R577X gene polymorphism and sarcopenia? Aging Clin Exp Res.
2022;34(4):757-65. DOI:10.1007/s40520-021-01996-8
27. Boshnjaku A, Krasniqi E, Tschan H, Wessner B. ACTN3 Genotypes and Their Relationship with Muscle Mass and Function of Kosovan Adults. Int J Environ Res Public Health. 2021;18(17). DOI:10.3390/ijerph18179135
28. Romero-Blanco C, Artiga González MJ, Gómez-Cabello A, et al. ACTN3 R577X polymorphism related to sarcopenia and physical fitness in active older women. Climacteric. 2021;24(1):89-94. DOI:10.1080/13697137.2020.1776248
29. Jin H, Yoo HJ, Kim YA, et al. Unveiling genetic variants for age-related sarcopenia by conducting a genome-wide association study on Korean cohorts. Sci Rep. 2022;12(1):3501. DOI:10.1038/s41598-022-07567-9
30. Kang YJ, Yoo JI, Baek KW. Differential gene expression profile by RNA sequencing study of elderly osteoporotic hip fracture patients with sarcopenia. J Orthop Translat.
2021;29:10-8. DOI:10.1016/j.jot.2021.04.009
31. Attaway AH, Bellar A, Welch N, et al. Gene polymorphisms associated with heterogeneity and senescence characteristics of sarcopenia in chronic obstructive pulmonary disease. J Cachexia Sarcopenia Muscle. 2023;14(2):1083-95. DOI:10.1002/jcsm.13198
32. Khanal P, He L, Stebbings G, et al. Prevalence and association of single nucleotide polymorphisms with sarcopenia in older women depends on definition. Sci Rep. 2020;10(1):2913. DOI:10.1038/s41598-020-59722-9
33. Zhang X, Ye L, Li X, et al. The association between sarcopenia susceptibility and polymorphisms of FTO, ACVR2B, and IRS1 in Tibetans. Mol Genet Genomic Med. 2021;9(8):e1747. DOI:10.1002/mgg3.1747
34. Perna S. Are the genes CA6, TAS2R38, TCF7L2, FTO, TAS1R2, TAS1R3, GNAT3 receptor polymorphisms involved on exceptional longevity and risk of sarcopenia? A cross sectional study in Italian aging population. Genetika. 2020;52(1):177-86. DOI:10.2298/GENSR2001177P
35. He L, Khanal P, Morse CI, et al. Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. J Cachexia Sarcopenia Muscle. 2019;10(6):1295-306. DOI:10.1002/jcsm.12478
36. Chen J, Xu Q, Wang X, et al. Cullin-3 intervenes in muscle atrophy in the elderly by mediating the degradation of nAchRs ubiquitination. Exp Gerontol. 2023;183:112318. DOI:10.1016/j.exger.2023.112318
37. Xu Q, Li J, Yang J, Xu Z. CUL3 and COPS5 Related to the Ubiquitin-Proteasome Pathway Are Potential Genes for Muscle Atrophy in Mice. Evid Based Complement Alternat Med. 2022;2022:1488905. DOI:10.1155/2022/1488905
38. Liu L, Koike H, Ono T, et al. Identification of a KLF5-dependent program and drug development for skeletal muscle atrophy. Proc Natl Acad Sci U S A. 2021;118(35). DOI:10.1073/pnas.2102895118
39. Zhang XX, Lian T, Ran JS, et al. KLF5 functions in proliferation, differentiation, and apoptosis of chicken satellite cells. 3 Biotech. 2019;9(6):222. DOI:10.1007/s13205-019-1752-2
40. Schluessel S, Zhang W, Nowotny H, et al. 11-beta-hydroxysteroid dehydrogenase type 1 (HSD11B1) gene expression in muscle is linked to reduced skeletal muscle index in sarcopenic patients. Aging Clin Exp Res. 2023;35(12):3073-83. DOI:10.1007/s40520-023-02574-w
41. Chen Y, Zhang Y, Zhang S, Ren H. Molecular insights into sarcopenia: ferroptosis-related genes as diagnostic and therapeutic targets. J Biomol Struct Dyn. 2024;1-19. DOI:10.1080/07391102.2023.2298390
42. Rom O, Reznick AZ. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radic Biol Med. 2016;98:218-30. DOI:10.1016/j.freeradbiomed.2015.12.031
43. Lee JH, Jun HS. Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front Physiol. 2019;10:42. DOI:10.3389/fphys.2019.00042
44. Гасанов М.З. Саркопения у пациентов с хронической болезнью почек: распространенность, особенности патогенеза и клиническое значение. Нефрология. 2021;25(1):47-58 [Gasanov MZ. Sarcopenia in patients with chronic kidney disease: prevalence, pathogenesis and clinical significance. Nephrology (Saint-Petersburg). 2021;25(1):47-58 (in Russian)]. DOI:10.36485/1561-6274-2021-25-1-47-58
45. Капилевич Л.В., Кабачкова А.В., Кироненко Т.А. Миокины-белки, продуцируемые мышечными клетками: общая характеристика и функциональное значение. Олимпийский спорт и спорт для всех: материалы XIX Международного научного конгресса. Ереван. 2015 [Kapilevich LV, Kabachkova AV, Kironenko TA. Miokiny-belki, produtsiruemye myshechnymi kletkami: obshchaia kharakteristika i funktsional’noe znachenie. Olimpiiskii sport i sport dlia vsekh: materialy XIX Mezhdunarodnogo nauchnogo kongressa. Erevan. 2015 (in Russian)].
46. Пальцын А.А. Миокины. Патологическая физиология и экспериментальная терапия. 2020;64(1):135-41 [Paltsyn AA. Myokines. Patologicheskaya Fiziologiya i Eksperimental`naya Terapiya = Pathological Physiology and Experimental Therapy, Russian Journal. 2020;64(1):135-41 (in Russian)]. DOI:10.25557/0031-2991.2020.01.135-141
47. Антюх К.Ю., Григоренко Е.А., Шептулина А.Ф., и др. Остеосаркопеническое ожирение у пациентов с болезнями системы кровообращения: эпидемиология, клиническое значение, современные подходы к диагностике. Кардиология в Беларуси. 2023;15(4):511-24 [Antyukh KYu, Grigorenko EA, Sheptulina AF, et al. Osteosarcopenic obesity in patients with diseases of the circulatory system: epidemiology, clinical significance, modern approaches to diagnosis. Cardiology in Belarus. 2023;15(4):511-24 (in Russian)]. DOI:10.34883/PI.2023.15.4.007
48. Васина А.Ю., Дидур М.Д., Иыги А.А., и др. Мышечная ткань как эндокринный регулятор и проблема гиподинамии. Вестник Санкт-Петербургского университета. 2014;11(2):5-15 [Vasina AYu, Didur MD, Iygi AA, et al. Muscle tissue as an endocrine regulator and the problem of physical inactivity. Bulletin of St. Petersburg University. 2014;11(2):5-15 (in Russian)].
49. Barbalho SM, Flato UAP, Tofano RJ, et al. Physical Exercise and Myokines: Relationships with Sarcopenia and Cardiovascular Complications. Int J Mol Sci. 2020;21(10). DOI:10.3390/ijms21103607
50. Bilski J, Pierzchalski P, Szczepanik M, et al. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells. 2022;11(1). DOI:10.3390/cells11010160
51. White TA, LeBrasseur NK. Myostatin and sarcopenia: opportunities and challenges – a mini-review. Gerontology. 2014;60(4):289-93. DOI:10.1159/000356740
52. Belizário JE, Fontes-Oliveira CC, Borges JP, et al. Skeletal muscle wasting and renewal: a pivotal role of myokine IL-6. Springerplus. 2016;5:619. DOI:10.1186/s40064-016-2197-2
53. Aryana IG, Hapsari AA, Kuswardhan RA. Myokine Regulation as Marker of Sarcopenia in Elderly. Mol Cell Biomed Sci. 2018;2(2):38-47. DOI:10.21705/mcbs.v2i2.32
54. Васюкова О.В., Касьянова Ю.В., Окороков П.Л., и др. Миокины и адипомиокины: медиаторы воспаления или уникальные молекулы таргетной терапии ожирения? Проблемы эндокринологии. 2021;67(4):36-45 [Vasyukova OV, Kasyanova YuV, Okorokov PL, et al. Myokines and adipomyokines: inflammatory mediators or unique molecules for targeted therapy of obesity? Problems of Endocrinology. 2021;67(4):36-45 (in Russian)]. DOI:10.14341/probl12779
55. Владимиров Н.М., Доровских И.Г. Миокины, их роль в мышечном сокращении. Научный медицинский вестник Югры. 2021;1(27):4-11 [Vladimirov NM, Dorovskikh IG. Myokines, their role in muscle contraction. Scientific Medical Bulletin of Ugra. 2021;1(27):4-11 (in Russian)]. DOI:10.25017/2306-1367-2021-27-1-4-11
56. Милованова К.Г., Капилевич Л.В., Захарова А.Н., и др. Физическая активность как основной фактор продукции миокинов. Инновационные преобразования в сфере физической культуры, спорта и туризма: сборник материалов XXII Всероссийской научно-практической конференции. Ростов н/Д: РГЭУ (РИНХ), 2019 [Milovanova KG, Kapilevich LV, Zakharova AN, et al. Fizicheskaia aktivnost’ kak osnovnoi faktor produktsii miokinov. Innovatsionnye preobrazovaniia v sfere fizicheskoi kul’tury, sporta i turizma: sbornik materialov XXII Vserossiiskoi nauchno-prakticheskoi konferentsii. Rostov-on-Don: RGEU (RINKh), 2019 (in Russian)].
57. Радугин Ф.М., Тимкина Н.В., Каронова Т.Л. Метаболические свойства ирисина в норме и при сахарном диабете. Ожирение и метаболизм. 2022;19(3):332-9 [Radugin FM, Timkina NV, Karonova TL. Metabolic properties of irisin in health and in diabetes mellitus. Obesity and Metabolism. 2022;19(3):332-9 (in Russian)]. DOI:10.14341/omet12899
________________________________________________
2. Bocharova KA, Rukavishnikova SA, Osipov KV, et al. Sarcopenia in the long-term care system. Current Problems of Health Care and Medical Statistics. 2021;2:12-26 (in Russian). DOI:10.24412/2312-2935-2021-2-12-26
3. Mesinovic J, Zengin A, De Courten B, et al. Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes Metab Syndr Obes. 2019;12:1057-72. DOI:10.2147/DMSO.S186600
4. Veronese N, Pizzol D, Demurtas J, et al. Association between sarcopenia and diabetes: a systematic review and meta-analysis of observational studies. Eur Geriatr Med. 2019;10(5):685-96. DOI:10.1007/s41999-019-00216-x
5. Izzo A, Massimino E, Riccardi G, Della Pepa G. A Narrative Review on Sarcopenia in Type 2 Diabetes Mellitus: Prevalence and Associated Factors. Nutrients. 2021;13(1). DOI:10.3390/nu13010183
6. Trierweiler H, Kisielewicz G, Hoffmann Jonasson T, et al. Sarcopenia: a chronic complication of type 2 diabetes mellitus. Diabetol Metab Syndr. 2018;10:25.
DOI:10.1186/s13098-018-0326-5
7. Ai Y, Xu R, Liu L. The prevalence and risk factors of sarcopenia in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr. 2021;13(1):93. DOI:10.1186/s13098-021-00707-7
8. Feng L, Gao Q, Hu K, et al. Prevalence and Risk Factors of Sarcopenia in Patients With Diabetes: A Meta-analysis. J Clin Endocrinol Metab. 2022;107(5):1470-83. DOI:10.1210/clinem/dgab884
9. Qiao YS, Chai YH, Gong HJ, et al. The Association Between Diabetes Mellitus and Risk of Sarcopenia: Accumulated Evidences From Observational Studies. Front Endocrinol (Lausanne). 2021;12:782391. DOI:10.3389/fendo.2021.782391
10. Jang HC. Sarcopenia, Frailty, and Diabetes in Older Adults. Diabetes Metab J. 2016;40(3):182-9. DOI:10.4093/dmj.2016.40.3.182
11. Umegaki H. Sarcopenia and diabetes: Hyperglycemia is a risk factor for age-associated muscle mass and functional reduction. J Diabetes Investig. 2015;6(6):623-4. DOI:10.1111/jdi.12365
12. Mori H, Kuroda A, Matsuhisa M. Clinical impact of sarcopenia and dynapenia on diabetes. Diabetol Int. 2019;10(3):183-7. DOI:10.1007/s13340-019-00400-1
13. Khanal P, Williams AG, He L, et al. Sarcopenia, Obesity, and Sarcopenic Obesity: Relationship with Skeletal Muscle Phenotypes and Single Nucleotide Polymorphisms. J Clin Med. 2021;10(21). DOI:10.3390/jcm10214933
14. Cho HY, Marzec J, Kleeberger SR. Functional polymorphisms in Nrf2: implications for human disease. Free Radic Biol Med. 2015;88(Pt. B):362-72. DOI:10.1016/j.freeradbiomed.2015.06.012
15. Yan X, Shen Z, Yu D, et al. Nrf2 contributes to the benefits of exercise interventions on age-related skeletal muscle disorder via regulating Drp1 stability and mitochondrial fission. Free Radic Biol Med. 2022;178:59-75. DOI:10.1016/j.freeradbiomed.2021.11.030
16. Ahn B, Pharaoh G, Premkumar P, et al. Nrf2 deficiency exacerbates age-related contractile dysfunction and loss of skeletal muscle mass. Redox Biol. 2018;17:47-58. DOI:10.1016/j.redox.2018.04.004
17. Kitaoka Y, Tamura Y, Takahashi K, et al. Effects of Nrf2 deficiency on mitochondrial oxidative stress in aged skeletal muscle. Physiol Rep. 2019;7(3):e13998. DOI:10.14814/phy2.13998
18. Fu J, Hou Y, Xue P, et al. Nrf2 in Type 2 diabetes and diabetic complications: Yin and Yang. Current Opinion in Toxicology. 2016;1:9-19. DOI:10.1016/j.cotox.2016.08.001
19. Jiménez-Osorio AS, Picazo A, González-Reyes S, et al. Nrf2 and redox status in prediabetic and diabetic patients. Int J Mol Sci. 2014;15(11):20290-305. DOI:10.3390/ijms151120290
20. De Giuseppe R, Tomasinelli CE, Vincenti A, et al. Sarcopenia and homocysteine: is there a possible association in the elderly? A narrative review. Nutr Res Rev.
2022;35(1):98-111. DOI:10.1017/S095442242100010X
21. Urzi F, Pokorny B, Buzan E. Pilot Study on Genetic Associations With Age-Related Sarcopenia. Front Genet. 2021;11:615238. DOI:10.3389/fgene.2020.615238
22. Cho J, Lee I, Kang H. ACTN3 Gene and Susceptibility to Sarcopenia and Osteoporotic Status in Older Korean Adults. Biomed Res Int. 2017;2017:4239648. DOI:10.1155/2017/4239648
23. Kiuchi Y, Makizako H, Nakai Y, et al. Associations of alpha-actinin-3 genotype with thigh muscle volume and physical performance in older adults with sarcopenia or pre-sarcopenia. Exp Gerontol. 2021;154:111525. DOI:10.1016/j.exger.2021.111525
24. Fernández-Araque A, Giaquinta-Aranda A, Rodríguez-Díez JA, et al. Muscular Strength and Quality of Life in Older Adults: The Role of ACTN3 R577X Polymorphism. Int J Environ Res Public Health. 2021;18(3). DOI:10.3390/ijerph18031055
25. Taniguchi Y, Makizako H, Nakai Y, et al. Associations of the Alpha-Actinin Three Genotype with Bone and Muscle Mass Loss among Middle-Aged and Older Adults. J Clin Med. 2022;11(20). DOI:10.3390/jcm11206172
26. Kahraman M, Ozulu Turkmen B, Bahat-Ozturk G, et al. Is there a relationship between ACTN3 R577X gene polymorphism and sarcopenia? Aging Clin Exp Res.
2022;34(4):757-65. DOI:10.1007/s40520-021-01996-8
27. Boshnjaku A, Krasniqi E, Tschan H, Wessner B. ACTN3 Genotypes and Their Relationship with Muscle Mass and Function of Kosovan Adults. Int J Environ Res Public Health. 2021;18(17). DOI:10.3390/ijerph18179135
28. Romero-Blanco C, Artiga González MJ, Gómez-Cabello A, et al. ACTN3 R577X polymorphism related to sarcopenia and physical fitness in active older women. Climacteric. 2021;24(1):89-94. DOI:10.1080/13697137.2020.1776248
29. Jin H, Yoo HJ, Kim YA, et al. Unveiling genetic variants for age-related sarcopenia by conducting a genome-wide association study on Korean cohorts. Sci Rep. 2022;12(1):3501. DOI:10.1038/s41598-022-07567-9
30. Kang YJ, Yoo JI, Baek KW. Differential gene expression profile by RNA sequencing study of elderly osteoporotic hip fracture patients with sarcopenia. J Orthop Translat.
2021;29:10-8. DOI:10.1016/j.jot.2021.04.009
31. Attaway AH, Bellar A, Welch N, et al. Gene polymorphisms associated with heterogeneity and senescence characteristics of sarcopenia in chronic obstructive pulmonary disease. J Cachexia Sarcopenia Muscle. 2023;14(2):1083-95. DOI:10.1002/jcsm.13198
32. Khanal P, He L, Stebbings G, et al. Prevalence and association of single nucleotide polymorphisms with sarcopenia in older women depends on definition. Sci Rep. 2020;10(1):2913. DOI:10.1038/s41598-020-59722-9
33. Zhang X, Ye L, Li X, et al. The association between sarcopenia susceptibility and polymorphisms of FTO, ACVR2B, and IRS1 in Tibetans. Mol Genet Genomic Med. 2021;9(8):e1747. DOI:10.1002/mgg3.1747
34. Perna S. Are the genes CA6, TAS2R38, TCF7L2, FTO, TAS1R2, TAS1R3, GNAT3 receptor polymorphisms involved on exceptional longevity and risk of sarcopenia? A cross sectional study in Italian aging population. Genetika. 2020;52(1):177-86. DOI:10.2298/GENSR2001177P
35. He L, Khanal P, Morse CI, et al. Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. J Cachexia Sarcopenia Muscle. 2019;10(6):1295-306. DOI:10.1002/jcsm.12478
36. Chen J, Xu Q, Wang X, et al. Cullin-3 intervenes in muscle atrophy in the elderly by mediating the degradation of nAchRs ubiquitination. Exp Gerontol. 2023;183:112318. DOI:10.1016/j.exger.2023.112318
37. Xu Q, Li J, Yang J, Xu Z. CUL3 and COPS5 Related to the Ubiquitin-Proteasome Pathway Are Potential Genes for Muscle Atrophy in Mice. Evid Based Complement Alternat Med. 2022;2022:1488905. DOI:10.1155/2022/1488905
38. Liu L, Koike H, Ono T, et al. Identification of a KLF5-dependent program and drug development for skeletal muscle atrophy. Proc Natl Acad Sci U S A. 2021;118(35). DOI:10.1073/pnas.2102895118
39. Zhang XX, Lian T, Ran JS, et al. KLF5 functions in proliferation, differentiation, and apoptosis of chicken satellite cells. 3 Biotech. 2019;9(6):222. DOI:10.1007/s13205-019-1752-2
40. Schluessel S, Zhang W, Nowotny H, et al. 11-beta-hydroxysteroid dehydrogenase type 1 (HSD11B1) gene expression in muscle is linked to reduced skeletal muscle index in sarcopenic patients. Aging Clin Exp Res. 2023;35(12):3073-83. DOI:10.1007/s40520-023-02574-w
41. Chen Y, Zhang Y, Zhang S, Ren H. Molecular insights into sarcopenia: ferroptosis-related genes as diagnostic and therapeutic targets. J Biomol Struct Dyn. 2024;1-19. DOI:10.1080/07391102.2023.2298390
42. Rom O, Reznick AZ. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radic Biol Med. 2016;98:218-30. DOI:10.1016/j.freeradbiomed.2015.12.031
43. Lee JH, Jun HS. Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front Physiol. 2019;10:42. DOI:10.3389/fphys.2019.00042
44. Gasanov MZ. Sarcopenia in patients with chronic kidney disease: prevalence, pathogenesis and clinical significance. Nephrology (Saint-Petersburg). 2021;25(1):47-58 (in Russian). DOI:10.36485/1561-6274-2021-25-1-47-58
45. Kapilevich LV, Kabachkova AV, Kironenko TA. Miokiny-belki, produtsiruemye myshechnymi kletkami: obshchaia kharakteristika i funktsional’noe znachenie. Olimpiiskii sport i sport dlia vsekh: materialy XIX Mezhdunarodnogo nauchnogo kongressa. Erevan. 2015 (in Russian).
46. Paltsyn AA. Myokines. Patologicheskaya Fiziologiya i Eksperimental`naya Terapiya = Pathological Physiology and Experimental Therapy, Russian Journal. 2020;64(1):135-41 (in Russian). DOI:10.25557/0031-2991.2020.01.135-141
47. Antyukh KYu, Grigorenko EA, Sheptulina AF, et al. Osteosarcopenic obesity in patients with diseases of the circulatory system: epidemiology, clinical significance, modern approaches to diagnosis. Cardiology in Belarus. 2023;15(4):511-24 (in Russian). DOI:10.34883/PI.2023.15.4.007
48. Vasina AYu, Didur MD, Iygi AA, et al. Muscle tissue as an endocrine regulator and the problem of physical inactivity. Bulletin of St. Petersburg University. 2014;11(2):5-15 (in Russian).
49. Barbalho SM, Flato UAP, Tofano RJ, et al. Physical Exercise and Myokines: Relationships with Sarcopenia and Cardiovascular Complications. Int J Mol Sci. 2020;21(10). DOI:10.3390/ijms21103607
50. Bilski J, Pierzchalski P, Szczepanik M, et al. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells. 2022;11(1). DOI:10.3390/cells11010160
51. White TA, LeBrasseur NK. Myostatin and sarcopenia: opportunities and challenges – a mini-review. Gerontology. 2014;60(4):289-93. DOI:10.1159/000356740
52. Belizário JE, Fontes-Oliveira CC, Borges JP, et al. Skeletal muscle wasting and renewal: a pivotal role of myokine IL-6. Springerplus. 2016;5:619. DOI:10.1186/s40064-016-2197-2
53. Aryana IG, Hapsari AA, Kuswardhan RA. Myokine Regulation as Marker of Sarcopenia in Elderly. Mol Cell Biomed Sci. 2018;2(2):38-47. DOI:10.21705/mcbs.v2i2.32
54. Vasyukova OV, Kasyanova YuV, Okorokov PL, et al. Myokines and adipomyokines: inflammatory mediators or unique molecules for targeted therapy of obesity? Problems of Endocrinology. 2021;67(4):36-45 (in Russian). DOI:10.14341/probl12779
55. Vladimirov NM, Dorovskikh IG. Myokines, their role in muscle contraction. Scientific Medical Bulletin of Ugra. 2021;1(27):4-11 (in Russian). DOI:10.25017/2306-1367-2021-27-1-4-11
56. Milovanova KG, Kapilevich LV, Zakharova AN, et al. Fizicheskaia aktivnost’ kak osnovnoi faktor produktsii miokinov. Innovatsionnye preobrazovaniia v sfere fizicheskoi kul’tury, sporta i turizma: sbornik materialov XXII Vserossiiskoi nauchno-prakticheskoi konferentsii. Rostov-on-Don: RGEU (RINKh), 2019 (in Russian).
57. Radugin FM, Timkina NV, Karonova TL. Metabolic properties of irisin in health and in diabetes mellitus. Obesity and Metabolism. 2022;19(3):332-9 (in Russian). DOI:10.14341/omet12899
Авторы
Ф.В. Валеева, Ж.А. Родыгина*, Т.С. Йылмаз
ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России, Казань, Россия
*zhanna.rodygina.99@mail.ru
Kazan State Medical University, Kazan, Russia
*zhanna.rodygina.99@mail.ru
ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России, Казань, Россия
*zhanna.rodygina.99@mail.ru
________________________________________________
Kazan State Medical University, Kazan, Russia
*zhanna.rodygina.99@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
