Гимекромон (4-MU) является признанным средством, применяемым в настоящее время в клинической практике. С 1960 г. гимекромон используют во многих странах как холеретик и холеспазмолитик, это одобренный для применения у людей при патологии билиарного тракта препарат. В обзоре представлены как традиционные европейские и отечественные исследования селективного спазмолитического и желчегонного свойств гимекромона, благодаря которым гимекромон является препаратором выбора для лечения заболеваний желчевыводящих путей, так и новые фундаментальные и клинические исследования многочисленных плейотропных эффектов 4-MU, связанных с ингибированием гиалуроновой кислоты и многими другими свойствами этой интересной молекулы. К ним относятся антибактериальные, противовирусные и неспецифические противовоспалительные эффекты. Продемонстрированы положительные результаты при нарушениях углеводного и липидного обменах, при аутоиммунных заболеваниях, болезнях печени, сердца, почек. Представлены многочисленные исследования in vitro и in vivo при раках поджелудочной железы, предстательной железы, кожи, пищевода, молочной железы, печени, яичников, костей, при метастатических поражениях, лейкемии, аутоиммунных и воспалительных заболеваниях. Показано назначение гимекромона не только в качестве холеретика и холеспазмолитика, но и как холесептика при холангитах, хронических холециститах, в том числе при описторхозе, что не противоречит его инструкции. На отечественном фармацевтическом рынке представлен препарат с гимекромоном – Одекромон® (таблетки 200 мг), который «пришел» на смену оригинальному препарату и является его полноценным генериком.
Hymecromone (4-MU) is a recognized agent currently used in clinical practice. Since 1960, hymecromone has been used in many countries as a choleretic and cholespasmolytic, a drug approved for use in humans with biliary tract disorders. The review presents both traditional European and Russian studies of the selective antispasmodic and choleretic properties of hymecromone, due to which hymecromone is the drug of choice for the treatment of biliary tract diseases, as well as new fundamental and clinical studies of numerous pleiotropic effects of 4-MU associated with inhibition of hyaluronic acid and many other properties of this exciting molecule. These include antibacterial, antiviral, and nonspecific anti-inflammatory effects. Positive results have been demonstrated in carbohydrate and lipid metabolism disorders, autoimmune diseases, as well as liver, heart, and kidney diseases. Numerous in vitro and in vivo studies have been presented in pancreatic, prostate, skin, esophagus, breast, liver, ovary, bone cancers, metastatic lesions, leukemia, autoimmune and inflammatory diseases. Hymecromone is indicated not only as a choleretic and cholespasmolytic but also as a choleseptic in cholangitis and chronic cholecystitis, including opisthorchiasis, which does not disagree with its label. Odecromone® (hymecromone, tablets 200 mg) is available on the Russian market; it replaced the originator drug and is its fully equivalent generic.
1. ChemBK. Available at: https://www.chembk.com/en/chem/7-Hydroxy-4-methyl-2H-1-benzopyran-2-one. Accessed: 26.06.24.
2. Garrett ER, Venitz J. Comparisons of detections, stabilities, and kinetics of degradation of hymecromone and its glucuronide and sulfate metabolites. J Pharm Sci. 1994;83(1):115-6. DOI:10.1002/jps.2600830128
3. Garrett ER, Venitz J, Eberst K, Cerda JJ. Pharmacokinetics and bioavailabilities of hymecromone in human volunteers. Biopharm Drug Dispos. 1993;14(1):13-39. DOI:10.1002/bdd.2510140103
4. Nagy N, Kuipers HF, Frymoyer AR, et al. 4-methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer. Front Immunol. 2015;6:123. DOI:10.3389/fimmu.2015.00123
5. Hoffmann RM, Schwarz G, Pohl C, et al. Gallensäure-unabhängige Wirkung von Hymecromon auf die Gallesekretion und die Motilität der Gallenwege [Bile acid-independent effect of hymecromone on bile secretion and common bile duct motility]. Dtsch Med Wochenschr. 2005;130(34–35):1938-43 [Article in German]. DOI:10.1055/s-2005-872606
6. Минушкин О.Н. Одестон в лечении больных билиарной дисфункцией. Фарматека. 2010;(2):61-5 [Minushkin ON. Odeston v lechenii bol'nykh biliarnoi disfunktsiei. Farmateka. 2010;(2):61-5 (in Russian)].
7. Яковенко Э.П., Агафонова Н.А., Кальнова С.Б. Одестон в терапии заболеваний билиарного тракта. Практикующий врач. 2001;19(1):30-2 [Iakovenko EP, Agafonova NA, Kal'nova SB. Odeston v terapii zabolevanii biliarnogo trakta. Praktikuiushchii Vrach. 2001;19(1):30-2 (in Russian)].
8. Максимов В.А., Бунтин С.Е., Бунтина В.Г., и др. О влиянии гимекромона на моторную функцию билиарного тракта у больных с постхолецистэктомическим синдромом. Лечащий врач. 2008;(2):76-7 [Maksimov VA, Buntin SE, Buntina VG, et al. O vliianii gimekromona na motornuiu funktsiiu biliarnogo trakta u bol'nykh s postkholetsistektomicheskim sindromom. Lechashchii Vrach. 2008;(2):76-7 (in Russian)].
9. Барышникова Н.B., Соусова Я.В. Эффективность монотерапии Гимекромоном-СЗ в лечении пациентов с различной патологией билиарного тракта. Медицинский алфавит. 2021;(40):14-20 [Baryshnikova NV, Sousova YaV. Effectiveness of Hymecromone monotherapy in treatment of patients with various pathologies of biliary tract. Medical Alphabet. 2021;(40):14-20 (in Russian)]. DOI:10.33667/2078-5631-2021-40-14-20
10. Никитин И.Г., Саликов А.В., Федоров И.Г., Ильченко Л.Ю. Монотерапия гимекромоном пациентов с патологией билиарного тракта: клиническая эффективность и профиль безопасности. Лечебное дело. 2023;(3):34-40 [Nikitin IG, Salikov AV, Fedorov IG, Ilchenko LYu. Hymecromone Monotherapy in Patients with Biliary Tract Disorders: Clinical Efficacy and Safety Profile. Lechebnoe Delo. 2023;(3):34-40 (in Russian)].
11. Бордин Д.С., Дубцова Е.А., Селезнева Э.Я., и др. Эффективность и безопасность различных доз гимекромона у больных, перенесших холецистэктомию. Эффективная фармакотерапия. 2021;17(39):34-8 [Bordin DS, Dubtsova EA, Selezneva EYa, et al. Efficacy and Safety of Hymecromone Various Doses in Patients Who Have Undergone Cholecystectomy. Effektivnaia Farmakoterapiia. 2021;17(39):34-8 (in Russian)]. DOI:10.33978/2307-3586-2021-17-39-34-38
12. Поленов А.М., Погромов А.П. Гимекромон (одестон) в терапии больных с постхолецистэктомической дисфункцией сфинктера Одди. Экспериментальная и клиническая гастроэнтерология. 2003;(5):163-4 [Polenov AM, Pogromov AP. Gimekromon (odeston) v terapii bol'nykh s postkholetsistektomicheskoi disfunktsiei sfinktera Oddi. Eksperimental'naia i Klinicheskaia Gastroenterologiia. 2003;(5):163-4 (in Russian)].
13. Охлобыстин А.В., Татаркина М.А., Охлобыстина О.З., и др. Эффективность применения препарата гимекромон при билиарном панкреатите. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2019;29(5):26-35 [Okhlobystin AV, Tatarkina MA, Okhlobystina OZ, et al. Hymecromone Efficacy in the Treatment of Biliary Pancreatitis. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2019;29(5):26-35 (in Russian)]. DOI:10.22416/1382-4376-2019-29-5-26-35
14. Максимов В.А., Бунтин С.Е., Бунтина В.Г. Эффективность Одестона в лечении больных хроническим панкреатитом. Фарматека. 2009;13:72-4 [Maksimov VA, Buntin SE, Buntina VG. Effektivnost' Odestona v lechenii bol'nykh khronicheskim pankreatitom. Farmateka. 2009;13:72-4 (in Russian)].
15. Goth A. The antibacterial properties of dicumarol. Science. 1945;101(2624):383. DOI:10.1126/science.101.2624.383
16. Melliou E, Magiatis P, Mitaku S, et al. Natural and synthetic 2,2-dimethylpyranocoumarins with antibacterial activity. J Nat Prod. 2005;68(1):78-82. DOI:10.1021/np0497447
17. Kawase M, Varu B, Shah A, et al. Antimicrobial activity of new coumarin derivatives. Arzneimittelforschung. 2001;51(1):67-71. DOI:10.1055/s-0031-1300004
18. El-Attar MS, Sadeek SA, Abd El-Hamid SM, Elshafie HS. Spectroscopic Analyses and Antimicrobial Activity of Novel Ciprofloxacin and 7-Hydroxy-4-methylcoumarin, the Plant-Based Natural Benzopyrone Derivative. Int J Mol Sci. 2022;23(14):8019. DOI:10.3390/ijms23148019
19. Singh LK, Priyanka, Singh V, Katiyar D. Design, synthesis and biological evaluation of some new coumarin derivatives as potential antimicrobial agents. Med Chem.
2015;11(2):128-34. DOI:10.2174/1573406410666140902110452
20. McKallip RJ, Ban H, Uchakina ON. Treatment with the hyaluronic Acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation. Inflammation. 2015;38(3):1250-9. DOI:10.1007/s10753-014-0092-y
21. Barnes HW, Demirdjian S, Haddock NL, et al. Hyaluronan in the pathogenesis of acute and post-acute COVID-19 infection. Matrix Biol. 2023;116:49-66. DOI:10.1016/j.matbio.2023.02.001
22. McKallip RJ, Hagele HF, Uchakina ON. Treatment with the hyaluronic acid synthesis inhibitor 4-methylumbelliferone suppresses SEB-induced lung inflammation. Toxins (Basel). 2013;5(10):1814-26. DOI:10.3390/toxins5101814
23. Arai E, Nishida Y, Wasa J, et al. Inhibition of hyaluronan retention by 4-methylumbelliferone suppresses osteosarcoma cells in vitro and lung metastasis in vivo. Br J Cancer. 2011;105(12):1839-49. DOI:10.1038/bjc.2011.459
24. Collum SD, Chen NY, Hernandez AM, et al. Inhibition of hyaluronan synthesis attenuates pulmonary hypertension associated with lung fibrosis. Br J Pharmacol.
2017;174(19):3284-301. DOI:10.1111/bph.13947
25. Collum SD, Molina JG, Hanmandlu A, et al. Adenosine and hyaluronan promote lung fibrosis and pulmonary hypertension in combined pulmonary fibrosis and emphysema. Dis Model Mech. 2019;12(5):dmm038711. DOI:10.1242/dmm.038711
26. Yang S, Ling Y, Zhao F, et al. Hymecromone: a clinical prescription hyaluronan inhibitor for efficiently blocking COVID-19 progression. Signal Transduct Target Ther. 2022;7(1):91. DOI:10.1038/s41392-022-00952-w
27. Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev. 2011;91(1):221-64. DOI:10.1152/physrev.00052.2009
28. Itano N, Atsumi F, Sawai T, et al. Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. Proc Natl Acad Sci U S A. 2002;99(6):3609-14. DOI:10.1073/pnas.052026799
29. Ruppert SM, Hawn TR, Arrigoni A, et al. Tissue integrity signals communicated by high-molecular weight hyaluronan and the resolution of inflammation. Immunol Res.
2014;58(2-3):186-92. DOI:10.1007/s12026-014-8495-2
30. Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol. 2006;85(8):699-715. DOI:10.1016/j.ejcb.2006.05.009
31. Laurent TC, Laurent UB, Fraser JR. The structure and function of hyaluronan: An overview. Immunol Cell Biol. 1996;74(2):A1-7. DOI:10.1038/icb.1996.32
32. Scott JE. Supramolecular organization of extracellular matrix glycosaminoglycans, in vitro and in the tissues. FASEB J. 1992;6(9):2639-45.
33. Tasanarong A, Khositseth S, Thitiarchakul S. The mechanism of increased vascular permeability in renal ischemic reperfusion injury: potential role of angiopoietin-1 and hyaluronan. J Med Assoc Thai. 2009;92(9):1150-8.
34. Khan AI, Kerfoot SM, Heit B, et al. Role of CD44 and hyaluronan in neutrophil recruitment. J Immunol. 2004;173(12):7594-601. DOI:10.4049/jimmunol.173.12.7594
35. Evanko SP, Potter-Perigo S, Bollyky PL, et al. Hyaluronan and versican in the control of human T-lymphocyte adhesion and migration. Matrix Biol. 2012;31(2):90-100. DOI:10.1016/j.matbio.2011.10.004
36. Powell JD, Horton MR. Threat matrix: low-molecular-weight hyaluronan (HA) as a danger signal. Immunol Res. 2005;31(3):207-18. DOI:10.1385/IR:31:3:207
37. Tesar BM, Jiang D, Liang J, et al. The role of hyaluronan degradation products as innate alloimmune agonists. Am J Transplant. 2006;6(11):2622-35.
DOI:10.1111/j.1600-6143.2006.01537.x
38. Termeer C, Benedix F, Sleeman J, et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med. 2002;195(1):99-111. DOI:10.1084/jem.20001858
39. Bollyky PL, Wu RP, Falk BA, et al. ECM components guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors. Proc Natl Acad Sci U S A. 2011;108(19):7938-43. DOI:10.1073/pnas.1017360108
40. Horton MR, Burdick MD, Strieter RM, et al. Regulation of hyaluronan-induced chemokine gene expression by IL-10 and IFN-gamma in mouse macrophages. J Immunol. 1998;160(6):3023-30.
41. Scheibner KA, Lutz MA, Boodoo S, et al. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol. 2006;177(2):1272-81. DOI:10.4049/jimmunol.177.2.1272
42. Zheng L, Riehl TE, Stenson WF. Regulation of colonic epithelial repair in mice by Toll-like receptors and hyaluronic acid. Gastroenterology. 2009;137(6):2041-51. DOI:10.1053/j.gastro.2009.08.055
43. Gao F, Liu Y, He Y, et al. Hyaluronan oligosaccharides promote excisional wound healing through enhanced angiogenesis. Matrix Biol. 2010;29(2):107-16. DOI:10.1016/j.matbio.2009.11.002
44. Gao F, Koenitzer JR, Tobolewski JM, et al. Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan. J Biol Chem. 2008;283(10):6058-66. DOI:10.1074/jbc
45. Rilla K, Pasonen-Seppänen S, Rieppo J, et al. The hyaluronan synthesis inhibitor 4-methylumbelliferone prevents keratinocyte activation and epidermal hyperproliferation induced by epidermal growth factor. J Invest Dermatol. 2004;123(4):708-14. DOI:10.1111/j.0022-202X.2004.23409.x
46. Kultti A, Pasonen-Seppänen S, Jauhiainen M, et al. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3. Exp Cell Res. 2009;315(11):1914-23. DOI:10.1016/j.yexcr.2009.03.002
47. Yoshihara S, Kon A, Kudo D, et al. A hyaluronan synthase suppressor, 4-methylumbelliferone, inhibits liver metastasis of melanoma cells. FEBS Lett. 2005;579(12):2722-6. DOI:10.1016/j.febslet.2005.03.079
48. Clarkin CE, Allen S, Wheeler-Jones CP, et al. Reduced chondrogenic matrix accumulation by 4-methylumbelliferone reveals the potential for selective targeting of UDP-glucose dehydrogenase. Matrix Biol. 2011;30(3):163-8. DOI:10.1016/j.matbio.2011.01.002
49. Nakazawa H, Yoshihara S, Kudo D, et al. 4-methylumbelliferone, a hyaluronan synthase suppressor, enhances the anticancer activity of gemcitabine in human pancreatic cancer cells. Cancer Chemother Pharmacol. 2006;57(2):165-70. DOI:10.1007/s00280-005-0016-5
50. Saito T, Tamura D, Nakamura T, et al. 4-methylumbelliferone leads to growth arrest and apoptosis in canine mammary tumor cells. Oncol Rep. 2013;29(1):335-42. DOI:10.3892/or.2012.2100
51. García-Vilas JA, Quesada AR, Medina MÁ. 4-methylumbelliferone inhibits angiogenesis in vitro and in vivo. J Agric Food Chem. 2013;61(17):4063-71. DOI:10.1021/jf303062h
52. Vigetti D, Rizzi M, Viola M, et al. The effects of 4-methylumbelliferone on hyaluronan synthesis, MMP2 activity, proliferation, and motility of human aortic smooth muscle cells. Glycobiology. 2009;19(5):537-46. DOI:10.1093/glycob/cwp022
53. Saga R, Matsuya Y, Takahashi R, et al. 4-Methylumbelliferone administration enhances radiosensitivity of human fibrosarcoma by intercellular communication. Sci Rep. 2021;11(1):8258. DOI:10.1038/s41598-021-87850-3
54. Díaz M, Pibuel M, Paglilla N, et al. 4-Methylumbelliferone induces antitumor effects independently of hyaluronan synthesis inhibition in human acute leukemia cell lines. Life Sci. 2021;287:120065. DOI:10.1016/j.lfs.2021.120065
55. Weiz G, Molejon MI, Malvicini M, et al. Glycosylated 4-methylumbelliferone as a targeted therapy for hepatocellular carcinoma. Liver Int. 2022;42(2):444-57. DOI:10.1111/liv.15084
56. Piccioni F, Fiore E, Bayo J, et al. 4-methylumbelliferone inhibits hepatocellular carcinoma growth by decreasing IL-6 production and angiogenesis. Glycobiology. 2015;25(8):825-35. DOI:10.1093/glycob/cwv023
57. Rodríguez MM, Onorato A, Cantero MJ, et al. 4-methylumbelliferone-mediated polarization of M1 macrophages correlate with decreased hepatocellular carcinoma aggressiveness in mice. Sci Rep. 2021;11(1):6310. DOI:10.1038/s41598-021-85491-0
58. Vitale DL, Icardi A, Rosales P, et al. Targeting the Tumor Extracellular Matrix by the Natural Molecule 4-Methylumbelliferone: A Complementary and Alternative Cancer Therapeutic Strategy. Front Oncol. 2021;11:710061. DOI:10.3389/fonc.2021.710061
59. Kakizaki I, Takagaki K, Endo Y, et al. Inhibition of hyaluronan synthesis in Streptococcus equi FM100 by 4-methylumbelliferone. Eur J Biochem. 2002;269(20):5066-75. DOI:10.1046/j.1432-1033.2002.03217.x
60. Jong A, Wu CH, Chen HM, et al. Identification and characterization of CPS1 as a hyaluronic acid synthase contributing to the pathogenesis of Cryptococcus neoformans infection. Eukaryot Cell. 2007;6(8):1486-96. DOI:10.1128/EC.00120-07
61. Yoshioka Y, Kozawa E, Urakawa H, et al. Suppression of hyaluronan synthesis alleviates inflammatory responses in murine arthritis and in human rheumatoid synovial fibroblasts. Arthritis Rheum. 2013;65(5):1160-70. DOI:10.1002/art.37861
62. Mueller AM, Yoon BH, Sadiq SA. Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS. J Biol Chem. 2014;289(33):22888-99. DOI:10.1074/jbc.M114.559583
63. Nagy N, Kaber G, Sunkari VG, et al. Inhibition of hyaluronan synthesis prevents β-cell loss in obesity-associated type 2 diabetes. Matrix Biol. 2023;123:34-47. DOI:10.1016/j.matbio.2023.09.003
64. Al-Majedy YK, Al-Amiery AA, Kadhum AA, Mohamad AB. Antioxidant Activities of 4-Methylumbelliferone Derivatives. PLoS One. 2016;11(5):e0156625. DOI:10.1371/journal.pone.0156625
65. Lin Z, Cheng X, Zheng H. Umbelliferon: a review of its pharmacology, toxicity and pharmacokinetics. Inflammopharmacology. 2023;31(4):1731-50. DOI:10.1007/s10787-023-01256-3
66. Tsitrina AA, Halimani N, Andreichenko IN, et al. 4-Methylumbelliferone Targets Revealed by Public Data Analysis and Liver Transcriptome Sequencing. Int J Mol Sci. 2023;24(3):2129. DOI:10.3390/ijms24032129
67. Li T, Francl JM, Boehme S, Chiang JY. Regulation of cholesterol and bile acid homeostasis by the cholesterol 7α-hydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice. Hepatology. 2013;58(3):1111-21. DOI:10.1002/hep.26427
68. Xing X, Burgermeister E, Geisler F, et al. Hematopoietically expressed homeobox is a target gene of farnesoid X receptor in chenodeoxycholic acid-induced liver hypertrophy. Hepatology. 2009;49(3):979-88. DOI:10.1002/hep.22712
69. Gupta S, Stravitz RT, Dent P, Hylemon PB. Down-regulation of cholesterol 7alpha-hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-Jun N-terminal kinase pathway. J Biol Chem. 2001;276(19):15816-22. DOI:10.1074/jbc.M010878200
70. Chiang JYL, Ferrell JM. Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis. Liver Res. 2020;4(2):47-63. DOI:10.1016/j.livres.2020.05.001
________________________________________________
1. ChemBK. Available at: https://www.chembk.com/en/chem/7-Hydroxy-4-methyl-2H-1-benzopyran-2-one. Accessed: 26.06.24.
2. Garrett ER, Venitz J. Comparisons of detections, stabilities, and kinetics of degradation of hymecromone and its glucuronide and sulfate metabolites. J Pharm Sci. 1994;83(1):115-6. DOI:10.1002/jps.2600830128
3. Garrett ER, Venitz J, Eberst K, Cerda JJ. Pharmacokinetics and bioavailabilities of hymecromone in human volunteers. Biopharm Drug Dispos. 1993;14(1):13-39. DOI:10.1002/bdd.2510140103
4. Nagy N, Kuipers HF, Frymoyer AR, et al. 4-methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer. Front Immunol. 2015;6:123. DOI:10.3389/fimmu.2015.00123
5. Hoffmann RM, Schwarz G, Pohl C, et al. Gallensäure-unabhängige Wirkung von Hymecromon auf die Gallesekretion und die Motilität der Gallenwege [Bile acid-independent effect of hymecromone on bile secretion and common bile duct motility]. Dtsch Med Wochenschr. 2005;130(34–35):1938-43 [Article in German]. DOI:10.1055/s-2005-872606
6. Minushkin ON. Odeston v lechenii bol'nykh biliarnoi disfunktsiei. Farmateka. 2010;(2):61-5 (in Russian).
7. Iakovenko EP, Agafonova NA, Kal'nova SB. Odeston v terapii zabolevanii biliarnogo trakta. Praktikuiushchii Vrach. 2001;19(1):30-2 (in Russian).
8. Maksimov VA, Buntin SE, Buntina VG, et al. O vliianii gimekromona na motornuiu funktsiiu biliarnogo trakta u bol'nykh s postkholetsistektomicheskim sindromom. Lechashchii Vrach. 2008;(2):76-7 (in Russian).
9. Baryshnikova NV, Sousova YaV. Effectiveness of Hymecromone monotherapy in treatment of patients with various pathologies of biliary tract. Medical Alphabet. 2021;(40):14-20 (in Russian). DOI:10.33667/2078-5631-2021-40-14-20
10. Nikitin IG, Salikov AV, Fedorov IG, Ilchenko LYu. Hymecromone Monotherapy in Patients with Biliary Tract Disorders: Clinical Efficacy and Safety Profile. Lechebnoe Delo.
2023;(3):34-40 (in Russian).
11. Bordin DS, Dubtsova EA, Selezneva EYa, et al. Efficacy and Safety of Hymecromone Various Doses in Patients Who Have Undergone Cholecystectomy. Effektivnaia Farmakoterapiia. 2021;17(39):34-8 (in Russian). DOI:10.33978/2307-3586-2021-17-39-34-38
12. Polenov AM, Pogromov AP. Gimekromon (odeston) v terapii bol'nykh s postkholetsistektomicheskoi disfunktsiei sfinktera Oddi. Eksperimental'naia i Klinicheskaia Gastroenterologiia. 2003;(5):163-4 (in Russian).
13. Okhlobystin AV, Tatarkina MA, Okhlobystina OZ, et al. Hymecromone Efficacy in the Treatment of Biliary Pancreatitis. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2019;29(5):26-35 (in Russian). DOI:10.22416/1382-4376-2019-29-5-26-35
14. Maksimov VA, Buntin SE, Buntina VG. Effektivnost' Odestona v lechenii bol'nykh khronicheskim pankreatitom. Farmateka. 2009;13:72-4 (in Russian).
15. Goth A. The antibacterial properties of dicumarol. Science. 1945;101(2624):383. DOI:10.1126/science.101.2624.383
16. Melliou E, Magiatis P, Mitaku S, et al. Natural and synthetic 2,2-dimethylpyranocoumarins with antibacterial activity. J Nat Prod. 2005;68(1):78-82. DOI:10.1021/np0497447
17. Kawase M, Varu B, Shah A, et al. Antimicrobial activity of new coumarin derivatives. Arzneimittelforschung. 2001;51(1):67-71. DOI:10.1055/s-0031-1300004
18. El-Attar MS, Sadeek SA, Abd El-Hamid SM, Elshafie HS. Spectroscopic Analyses and Antimicrobial Activity of Novel Ciprofloxacin and 7-Hydroxy-4-methylcoumarin, the Plant-Based Natural Benzopyrone Derivative. Int J Mol Sci. 2022;23(14):8019. DOI:10.3390/ijms23148019
19. Singh LK, Priyanka, Singh V, Katiyar D. Design, synthesis and biological evaluation of some new coumarin derivatives as potential antimicrobial agents. Med Chem.
2015;11(2):128-34. DOI:10.2174/1573406410666140902110452
20. McKallip RJ, Ban H, Uchakina ON. Treatment with the hyaluronic Acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation. Inflammation. 2015;38(3):1250-9. DOI:10.1007/s10753-014-0092-y
21. Barnes HW, Demirdjian S, Haddock NL, et al. Hyaluronan in the pathogenesis of acute and post-acute COVID-19 infection. Matrix Biol. 2023;116:49-66. DOI:10.1016/j.matbio.2023.02.001
22. McKallip RJ, Hagele HF, Uchakina ON. Treatment with the hyaluronic acid synthesis inhibitor 4-methylumbelliferone suppresses SEB-induced lung inflammation. Toxins (Basel). 2013;5(10):1814-26. DOI:10.3390/toxins5101814
23. Arai E, Nishida Y, Wasa J, et al. Inhibition of hyaluronan retention by 4-methylumbelliferone suppresses osteosarcoma cells in vitro and lung metastasis in vivo. Br J Cancer. 2011;105(12):1839-49. DOI:10.1038/bjc.2011.459
24. Collum SD, Chen NY, Hernandez AM, et al. Inhibition of hyaluronan synthesis attenuates pulmonary hypertension associated with lung fibrosis. Br J Pharmacol.
2017;174(19):3284-301. DOI:10.1111/bph.13947
25. Collum SD, Molina JG, Hanmandlu A, et al. Adenosine and hyaluronan promote lung fibrosis and pulmonary hypertension in combined pulmonary fibrosis and emphysema. Dis Model Mech. 2019;12(5):dmm038711. DOI:10.1242/dmm.038711
26. Yang S, Ling Y, Zhao F, et al. Hymecromone: a clinical prescription hyaluronan inhibitor for efficiently blocking COVID-19 progression. Signal Transduct Target Ther. 2022;7(1):91. DOI:10.1038/s41392-022-00952-w
27. Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev. 2011;91(1):221-64. DOI:10.1152/physrev.00052.2009
28. Itano N, Atsumi F, Sawai T, et al. Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. Proc Natl Acad Sci U S A. 2002;99(6):3609-14. DOI:10.1073/pnas.052026799
29. Ruppert SM, Hawn TR, Arrigoni A, et al. Tissue integrity signals communicated by high-molecular weight hyaluronan and the resolution of inflammation. Immunol Res.
2014;58(2-3):186-92. DOI:10.1007/s12026-014-8495-2
30. Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol. 2006;85(8):699-715. DOI:10.1016/j.ejcb.2006.05.009
31. Laurent TC, Laurent UB, Fraser JR. The structure and function of hyaluronan: An overview. Immunol Cell Biol. 1996;74(2):A1-7. DOI:10.1038/icb.1996.32
32. Scott JE. Supramolecular organization of extracellular matrix glycosaminoglycans, in vitro and in the tissues. FASEB J. 1992;6(9):2639-45.
33. Tasanarong A, Khositseth S, Thitiarchakul S. The mechanism of increased vascular permeability in renal ischemic reperfusion injury: potential role of angiopoietin-1 and hyaluronan. J Med Assoc Thai. 2009;92(9):1150-8.
34. Khan AI, Kerfoot SM, Heit B, et al. Role of CD44 and hyaluronan in neutrophil recruitment. J Immunol. 2004;173(12):7594-601. DOI:10.4049/jimmunol.173.12.7594
35. Evanko SP, Potter-Perigo S, Bollyky PL, et al. Hyaluronan and versican in the control of human T-lymphocyte adhesion and migration. Matrix Biol. 2012;31(2):90-100. DOI:10.1016/j.matbio.2011.10.004
36. Powell JD, Horton MR. Threat matrix: low-molecular-weight hyaluronan (HA) as a danger signal. Immunol Res. 2005;31(3):207-18. DOI:10.1385/IR:31:3:207
37. Tesar BM, Jiang D, Liang J, et al. The role of hyaluronan degradation products as innate alloimmune agonists. Am J Transplant. 2006;6(11):2622-35.
DOI:10.1111/j.1600-6143.2006.01537.x
38. Termeer C, Benedix F, Sleeman J, et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med. 2002;195(1):99-111. DOI:10.1084/jem.20001858
39. Bollyky PL, Wu RP, Falk BA, et al. ECM components guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors. Proc Natl Acad Sci U S A. 2011;108(19):7938-43. DOI:10.1073/pnas.1017360108
40. Horton MR, Burdick MD, Strieter RM, et al. Regulation of hyaluronan-induced chemokine gene expression by IL-10 and IFN-gamma in mouse macrophages. J Immunol. 1998;160(6):3023-30.
41. Scheibner KA, Lutz MA, Boodoo S, et al. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol. 2006;177(2):1272-81. DOI:10.4049/jimmunol.177.2.1272
42. Zheng L, Riehl TE, Stenson WF. Regulation of colonic epithelial repair in mice by Toll-like receptors and hyaluronic acid. Gastroenterology. 2009;137(6):2041-51. DOI:10.1053/j.gastro.2009.08.055
43. Gao F, Liu Y, He Y, et al. Hyaluronan oligosaccharides promote excisional wound healing through enhanced angiogenesis. Matrix Biol. 2010;29(2):107-16. DOI:10.1016/j.matbio.2009.11.002
44. Gao F, Koenitzer JR, Tobolewski JM, et al. Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan. J Biol Chem. 2008;283(10):6058-66. DOI:10.1074/jbc
45. Rilla K, Pasonen-Seppänen S, Rieppo J, et al. The hyaluronan synthesis inhibitor 4-methylumbelliferone prevents keratinocyte activation and epidermal hyperproliferation induced by epidermal growth factor. J Invest Dermatol. 2004;123(4):708-14. DOI:10.1111/j.0022-202X.2004.23409.x
46. Kultti A, Pasonen-Seppänen S, Jauhiainen M, et al. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3. Exp Cell Res. 2009;315(11):1914-23. DOI:10.1016/j.yexcr.2009.03.002
47. Yoshihara S, Kon A, Kudo D, et al. A hyaluronan synthase suppressor, 4-methylumbelliferone, inhibits liver metastasis of melanoma cells. FEBS Lett. 2005;579(12):2722-6. DOI:10.1016/j.febslet.2005.03.079
48. Clarkin CE, Allen S, Wheeler-Jones CP, et al. Reduced chondrogenic matrix accumulation by 4-methylumbelliferone reveals the potential for selective targeting of UDP-glucose dehydrogenase. Matrix Biol. 2011;30(3):163-8. DOI:10.1016/j.matbio.2011.01.002
49. Nakazawa H, Yoshihara S, Kudo D, et al. 4-methylumbelliferone, a hyaluronan synthase suppressor, enhances the anticancer activity of gemcitabine in human pancreatic cancer cells. Cancer Chemother Pharmacol. 2006;57(2):165-70. DOI:10.1007/s00280-005-0016-5
50. Saito T, Tamura D, Nakamura T, et al. 4-methylumbelliferone leads to growth arrest and apoptosis in canine mammary tumor cells. Oncol Rep. 2013;29(1):335-42. DOI:10.3892/or.2012.2100
51. García-Vilas JA, Quesada AR, Medina MÁ. 4-methylumbelliferone inhibits angiogenesis in vitro and in vivo. J Agric Food Chem. 2013;61(17):4063-71. DOI:10.1021/jf303062h
52. Vigetti D, Rizzi M, Viola M, et al. The effects of 4-methylumbelliferone on hyaluronan synthesis, MMP2 activity, proliferation, and motility of human aortic smooth muscle cells. Glycobiology. 2009;19(5):537-46. DOI:10.1093/glycob/cwp022
53. Saga R, Matsuya Y, Takahashi R, et al. 4-Methylumbelliferone administration enhances radiosensitivity of human fibrosarcoma by intercellular communication. Sci Rep. 2021;11(1):8258. DOI:10.1038/s41598-021-87850-3
54. Díaz M, Pibuel M, Paglilla N, et al. 4-Methylumbelliferone induces antitumor effects independently of hyaluronan synthesis inhibition in human acute leukemia cell lines. Life Sci. 2021;287:120065. DOI:10.1016/j.lfs.2021.120065
55. Weiz G, Molejon MI, Malvicini M, et al. Glycosylated 4-methylumbelliferone as a targeted therapy for hepatocellular carcinoma. Liver Int. 2022;42(2):444-57. DOI:10.1111/liv.15084
56. Piccioni F, Fiore E, Bayo J, et al. 4-methylumbelliferone inhibits hepatocellular carcinoma growth by decreasing IL-6 production and angiogenesis. Glycobiology. 2015;25(8):825-35. DOI:10.1093/glycob/cwv023
57. Rodríguez MM, Onorato A, Cantero MJ, et al. 4-methylumbelliferone-mediated polarization of M1 macrophages correlate with decreased hepatocellular carcinoma aggressiveness in mice. Sci Rep. 2021;11(1):6310. DOI:10.1038/s41598-021-85491-0
58. Vitale DL, Icardi A, Rosales P, et al. Targeting the Tumor Extracellular Matrix by the Natural Molecule 4-Methylumbelliferone: A Complementary and Alternative Cancer Therapeutic Strategy. Front Oncol. 2021;11:710061. DOI:10.3389/fonc.2021.710061
59. Kakizaki I, Takagaki K, Endo Y, et al. Inhibition of hyaluronan synthesis in Streptococcus equi FM100 by 4-methylumbelliferone. Eur J Biochem. 2002;269(20):5066-75. DOI:10.1046/j.1432-1033.2002.03217.x
60. Jong A, Wu CH, Chen HM, et al. Identification and characterization of CPS1 as a hyaluronic acid synthase contributing to the pathogenesis of Cryptococcus neoformans infection. Eukaryot Cell. 2007;6(8):1486-96. DOI:10.1128/EC.00120-07
61. Yoshioka Y, Kozawa E, Urakawa H, et al. Suppression of hyaluronan synthesis alleviates inflammatory responses in murine arthritis and in human rheumatoid synovial fibroblasts. Arthritis Rheum. 2013;65(5):1160-70. DOI:10.1002/art.37861
62. Mueller AM, Yoon BH, Sadiq SA. Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS. J Biol Chem. 2014;289(33):22888-99. DOI:10.1074/jbc.M114.559583
63. Nagy N, Kaber G, Sunkari VG, et al. Inhibition of hyaluronan synthesis prevents β-cell loss in obesity-associated type 2 diabetes. Matrix Biol. 2023;123:34-47. DOI:10.1016/j.matbio.2023.09.003
64. Al-Majedy YK, Al-Amiery AA, Kadhum AA, Mohamad AB. Antioxidant Activities of 4-Methylumbelliferone Derivatives. PLoS One. 2016;11(5):e0156625. DOI:10.1371/journal.pone.0156625
65. Lin Z, Cheng X, Zheng H. Umbelliferon: a review of its pharmacology, toxicity and pharmacokinetics. Inflammopharmacology. 2023;31(4):1731-50. DOI:10.1007/s10787-023-01256-3
66. Tsitrina AA, Halimani N, Andreichenko IN, et al. 4-Methylumbelliferone Targets Revealed by Public Data Analysis and Liver Transcriptome Sequencing. Int J Mol Sci. 2023;24(3):2129. DOI:10.3390/ijms24032129
67. Li T, Francl JM, Boehme S, Chiang JY. Regulation of cholesterol and bile acid homeostasis by the cholesterol 7α-hydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice. Hepatology. 2013;58(3):1111-21. DOI:10.1002/hep.26427
68. Xing X, Burgermeister E, Geisler F, et al. Hematopoietically expressed homeobox is a target gene of farnesoid X receptor in chenodeoxycholic acid-induced liver hypertrophy. Hepatology. 2009;49(3):979-88. DOI:10.1002/hep.22712
69. Gupta S, Stravitz RT, Dent P, Hylemon PB. Down-regulation of cholesterol 7alpha-hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-Jun N-terminal kinase pathway. J Biol Chem. 2001;276(19):15816-22. DOI:10.1074/jbc.M010878200
70. Chiang JYL, Ferrell JM. Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis. Liver Res. 2020;4(2):47-63. DOI:10.1016/j.livres.2020.05.001
Авторы
Е.Ю. Плотникова*
ФГБОУ ВО «Кемеровский государственный медицинский университет» Минздрава России, Кемерово, Россия
*eka-pl@rambler.ru
________________________________________________
Ekaterina Yu. Plotnikova*
Kemerovo State Medical University, Kemerovo, Russia
*eka-pl@rambler.ru