Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Известный и неизвестный гимекромон
Известный и неизвестный гимекромон
Плотникова Е.Ю. Известный и неизвестный гимекромон. Consilium Medicum. 2024;26(5):324–330.
DOI: 10.26442/20751753.2024.5.202877
© ООО «КОНСИЛИУМ МЕДИКУМ», 2024 г.
DOI: 10.26442/20751753.2024.5.202877
DOI: 10.26442/20751753.2024.5.202877
© ООО «КОНСИЛИУМ МЕДИКУМ», 2024 г.
________________________________________________
DOI: 10.26442/20751753.2024.5.202877
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Гимекромон (4-MU) является признанным средством, применяемым в настоящее время в клинической практике. С 1960 г. гимекромон используют во многих странах как холеретик и холеспазмолитик, это одобренный для применения у людей при патологии билиарного тракта препарат. В обзоре представлены как традиционные европейские и отечественные исследования селективного спазмолитического и желчегонного свойств гимекромона, благодаря которым гимекромон является препаратором выбора для лечения заболеваний желчевыводящих путей, так и новые фундаментальные и клинические исследования многочисленных плейотропных эффектов 4-MU, связанных с ингибированием гиалуроновой кислоты и многими другими свойствами этой интересной молекулы. К ним относятся антибактериальные, противовирусные и неспецифические противовоспалительные эффекты. Продемонстрированы положительные результаты при нарушениях углеводного и липидного обменах, при аутоиммунных заболеваниях, болезнях печени, сердца, почек. Представлены многочисленные исследования in vitro и in vivo при раках поджелудочной железы, предстательной железы, кожи, пищевода, молочной железы, печени, яичников, костей, при метастатических поражениях, лейкемии, аутоиммунных и воспалительных заболеваниях. Показано назначение гимекромона не только в качестве холеретика и холеспазмолитика, но и как холесептика при холангитах, хронических холециститах, в том числе при описторхозе, что не противоречит его инструкции. На отечественном фармацевтическом рынке представлен препарат с гимекромоном – Одекромон® (таблетки 200 мг), который «пришел» на смену оригинальному препарату и является его полноценным генериком.
Ключевые слова: гимекромон, холеретик, холеспазмолитик, дисфункция желчевыводящих путей, желчнокаменная болезнь, постхолецистэктомический синдром, гиалуроновая кислота
Keywords: hymecromone, choleretic, cholespasmolytic, biliary tract dysfunction, gallstone disease, postcholecystectomy syndrome, hyaluronic acid
Ключевые слова: гимекромон, холеретик, холеспазмолитик, дисфункция желчевыводящих путей, желчнокаменная болезнь, постхолецистэктомический синдром, гиалуроновая кислота
________________________________________________
Keywords: hymecromone, choleretic, cholespasmolytic, biliary tract dysfunction, gallstone disease, postcholecystectomy syndrome, hyaluronic acid
Полный текст
Список литературы
1. ChemBK. Available at: https://www.chembk.com/en/chem/7-Hydroxy-4-methyl-2H-1-benzopyran-2-one. Accessed: 26.06.24.
2. Garrett ER, Venitz J. Comparisons of detections, stabilities, and kinetics of degradation of hymecromone and its glucuronide and sulfate metabolites. J Pharm Sci. 1994;83(1):115-6. DOI:10.1002/jps.2600830128
3. Garrett ER, Venitz J, Eberst K, Cerda JJ. Pharmacokinetics and bioavailabilities of hymecromone in human volunteers. Biopharm Drug Dispos. 1993;14(1):13-39. DOI:10.1002/bdd.2510140103
4. Nagy N, Kuipers HF, Frymoyer AR, et al. 4-methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer. Front Immunol. 2015;6:123. DOI:10.3389/fimmu.2015.00123
5. Hoffmann RM, Schwarz G, Pohl C, et al. Gallensäure-unabhängige Wirkung von Hymecromon auf die Gallesekretion und die Motilität der Gallenwege [Bile acid-independent effect of hymecromone on bile secretion and common bile duct motility]. Dtsch Med Wochenschr. 2005;130(34–35):1938-43 [Article in German]. DOI:10.1055/s-2005-872606
6. Минушкин О.Н. Одестон в лечении больных билиарной дисфункцией. Фарматека. 2010;(2):61-5 [Minushkin ON. Odeston v lechenii bol'nykh biliarnoi disfunktsiei. Farmateka. 2010;(2):61-5 (in Russian)].
7. Яковенко Э.П., Агафонова Н.А., Кальнова С.Б. Одестон в терапии заболеваний билиарного тракта. Практикующий врач. 2001;19(1):30-2 [Iakovenko EP, Agafonova NA, Kal'nova SB. Odeston v terapii zabolevanii biliarnogo trakta. Praktikuiushchii Vrach. 2001;19(1):30-2 (in Russian)].
8. Максимов В.А., Бунтин С.Е., Бунтина В.Г., и др. О влиянии гимекромона на моторную функцию билиарного тракта у больных с постхолецистэктомическим синдромом. Лечащий врач. 2008;(2):76-7 [Maksimov VA, Buntin SE, Buntina VG, et al. O vliianii gimekromona na motornuiu funktsiiu biliarnogo trakta u bol'nykh s postkholetsistektomicheskim sindromom. Lechashchii Vrach. 2008;(2):76-7 (in Russian)].
9. Барышникова Н.B., Соусова Я.В. Эффективность монотерапии Гимекромоном-СЗ в лечении пациентов с различной патологией билиарного тракта. Медицинский алфавит. 2021;(40):14-20 [Baryshnikova NV, Sousova YaV. Effectiveness of Hymecromone monotherapy in treatment of patients with various pathologies of biliary tract. Medical Alphabet. 2021;(40):14-20 (in Russian)]. DOI:10.33667/2078-5631-2021-40-14-20
10. Никитин И.Г., Саликов А.В., Федоров И.Г., Ильченко Л.Ю. Монотерапия гимекромоном пациентов с патологией билиарного тракта: клиническая эффективность и профиль безопасности. Лечебное дело. 2023;(3):34-40 [Nikitin IG, Salikov AV, Fedorov IG, Ilchenko LYu. Hymecromone Monotherapy in Patients with Biliary Tract Disorders: Clinical Efficacy and Safety Profile. Lechebnoe Delo. 2023;(3):34-40 (in Russian)].
11. Бордин Д.С., Дубцова Е.А., Селезнева Э.Я., и др. Эффективность и безопасность различных доз гимекромона у больных, перенесших холецистэктомию. Эффективная фармакотерапия. 2021;17(39):34-8 [Bordin DS, Dubtsova EA, Selezneva EYa, et al. Efficacy and Safety of Hymecromone Various Doses in Patients Who Have Undergone Cholecystectomy. Effektivnaia Farmakoterapiia. 2021;17(39):34-8 (in Russian)]. DOI:10.33978/2307-3586-2021-17-39-34-38
12. Поленов А.М., Погромов А.П. Гимекромон (одестон) в терапии больных с постхолецистэктомической дисфункцией сфинктера Одди. Экспериментальная и клиническая гастроэнтерология. 2003;(5):163-4 [Polenov AM, Pogromov AP. Gimekromon (odeston) v terapii bol'nykh s postkholetsistektomicheskoi disfunktsiei sfinktera Oddi. Eksperimental'naia i Klinicheskaia Gastroenterologiia. 2003;(5):163-4 (in Russian)].
13. Охлобыстин А.В., Татаркина М.А., Охлобыстина О.З., и др. Эффективность применения препарата гимекромон при билиарном панкреатите. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2019;29(5):26-35 [Okhlobystin AV, Tatarkina MA, Okhlobystina OZ, et al. Hymecromone Efficacy in the Treatment of Biliary Pancreatitis. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2019;29(5):26-35 (in Russian)]. DOI:10.22416/1382-4376-2019-29-5-26-35
14. Максимов В.А., Бунтин С.Е., Бунтина В.Г. Эффективность Одестона в лечении больных хроническим панкреатитом. Фарматека. 2009;13:72-4 [Maksimov VA, Buntin SE, Buntina VG. Effektivnost' Odestona v lechenii bol'nykh khronicheskim pankreatitom. Farmateka. 2009;13:72-4 (in Russian)].
15. Goth A. The antibacterial properties of dicumarol. Science. 1945;101(2624):383. DOI:10.1126/science.101.2624.383
16. Melliou E, Magiatis P, Mitaku S, et al. Natural and synthetic 2,2-dimethylpyranocoumarins with antibacterial activity. J Nat Prod. 2005;68(1):78-82. DOI:10.1021/np0497447
17. Kawase M, Varu B, Shah A, et al. Antimicrobial activity of new coumarin derivatives. Arzneimittelforschung. 2001;51(1):67-71. DOI:10.1055/s-0031-1300004
18. El-Attar MS, Sadeek SA, Abd El-Hamid SM, Elshafie HS. Spectroscopic Analyses and Antimicrobial Activity of Novel Ciprofloxacin and 7-Hydroxy-4-methylcoumarin, the Plant-Based Natural Benzopyrone Derivative. Int J Mol Sci. 2022;23(14):8019. DOI:10.3390/ijms23148019
19. Singh LK, Priyanka, Singh V, Katiyar D. Design, synthesis and biological evaluation of some new coumarin derivatives as potential antimicrobial agents. Med Chem.
2015;11(2):128-34. DOI:10.2174/1573406410666140902110452
20. McKallip RJ, Ban H, Uchakina ON. Treatment with the hyaluronic Acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation. Inflammation. 2015;38(3):1250-9. DOI:10.1007/s10753-014-0092-y
21. Barnes HW, Demirdjian S, Haddock NL, et al. Hyaluronan in the pathogenesis of acute and post-acute COVID-19 infection. Matrix Biol. 2023;116:49-66. DOI:10.1016/j.matbio.2023.02.001
22. McKallip RJ, Hagele HF, Uchakina ON. Treatment with the hyaluronic acid synthesis inhibitor 4-methylumbelliferone suppresses SEB-induced lung inflammation. Toxins (Basel). 2013;5(10):1814-26. DOI:10.3390/toxins5101814
23. Arai E, Nishida Y, Wasa J, et al. Inhibition of hyaluronan retention by 4-methylumbelliferone suppresses osteosarcoma cells in vitro and lung metastasis in vivo. Br J Cancer. 2011;105(12):1839-49. DOI:10.1038/bjc.2011.459
24. Collum SD, Chen NY, Hernandez AM, et al. Inhibition of hyaluronan synthesis attenuates pulmonary hypertension associated with lung fibrosis. Br J Pharmacol.
2017;174(19):3284-301. DOI:10.1111/bph.13947
25. Collum SD, Molina JG, Hanmandlu A, et al. Adenosine and hyaluronan promote lung fibrosis and pulmonary hypertension in combined pulmonary fibrosis and emphysema. Dis Model Mech. 2019;12(5):dmm038711. DOI:10.1242/dmm.038711
26. Yang S, Ling Y, Zhao F, et al. Hymecromone: a clinical prescription hyaluronan inhibitor for efficiently blocking COVID-19 progression. Signal Transduct Target Ther. 2022;7(1):91. DOI:10.1038/s41392-022-00952-w
27. Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev. 2011;91(1):221-64. DOI:10.1152/physrev.00052.2009
28. Itano N, Atsumi F, Sawai T, et al. Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. Proc Natl Acad Sci U S A. 2002;99(6):3609-14. DOI:10.1073/pnas.052026799
29. Ruppert SM, Hawn TR, Arrigoni A, et al. Tissue integrity signals communicated by high-molecular weight hyaluronan and the resolution of inflammation. Immunol Res.
2014;58(2-3):186-92. DOI:10.1007/s12026-014-8495-2
30. Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol. 2006;85(8):699-715. DOI:10.1016/j.ejcb.2006.05.009
31. Laurent TC, Laurent UB, Fraser JR. The structure and function of hyaluronan: An overview. Immunol Cell Biol. 1996;74(2):A1-7. DOI:10.1038/icb.1996.32
32. Scott JE. Supramolecular organization of extracellular matrix glycosaminoglycans, in vitro and in the tissues. FASEB J. 1992;6(9):2639-45.
33. Tasanarong A, Khositseth S, Thitiarchakul S. The mechanism of increased vascular permeability in renal ischemic reperfusion injury: potential role of angiopoietin-1 and hyaluronan. J Med Assoc Thai. 2009;92(9):1150-8.
34. Khan AI, Kerfoot SM, Heit B, et al. Role of CD44 and hyaluronan in neutrophil recruitment. J Immunol. 2004;173(12):7594-601. DOI:10.4049/jimmunol.173.12.7594
35. Evanko SP, Potter-Perigo S, Bollyky PL, et al. Hyaluronan and versican in the control of human T-lymphocyte adhesion and migration. Matrix Biol. 2012;31(2):90-100. DOI:10.1016/j.matbio.2011.10.004
36. Powell JD, Horton MR. Threat matrix: low-molecular-weight hyaluronan (HA) as a danger signal. Immunol Res. 2005;31(3):207-18. DOI:10.1385/IR:31:3:207
37. Tesar BM, Jiang D, Liang J, et al. The role of hyaluronan degradation products as innate alloimmune agonists. Am J Transplant. 2006;6(11):2622-35.
DOI:10.1111/j.1600-6143.2006.01537.x
38. Termeer C, Benedix F, Sleeman J, et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med. 2002;195(1):99-111. DOI:10.1084/jem.20001858
39. Bollyky PL, Wu RP, Falk BA, et al. ECM components guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors. Proc Natl Acad Sci U S A. 2011;108(19):7938-43. DOI:10.1073/pnas.1017360108
40. Horton MR, Burdick MD, Strieter RM, et al. Regulation of hyaluronan-induced chemokine gene expression by IL-10 and IFN-gamma in mouse macrophages. J Immunol. 1998;160(6):3023-30.
41. Scheibner KA, Lutz MA, Boodoo S, et al. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol. 2006;177(2):1272-81. DOI:10.4049/jimmunol.177.2.1272
42. Zheng L, Riehl TE, Stenson WF. Regulation of colonic epithelial repair in mice by Toll-like receptors and hyaluronic acid. Gastroenterology. 2009;137(6):2041-51. DOI:10.1053/j.gastro.2009.08.055
43. Gao F, Liu Y, He Y, et al. Hyaluronan oligosaccharides promote excisional wound healing through enhanced angiogenesis. Matrix Biol. 2010;29(2):107-16. DOI:10.1016/j.matbio.2009.11.002
44. Gao F, Koenitzer JR, Tobolewski JM, et al. Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan. J Biol Chem. 2008;283(10):6058-66. DOI:10.1074/jbc
45. Rilla K, Pasonen-Seppänen S, Rieppo J, et al. The hyaluronan synthesis inhibitor 4-methylumbelliferone prevents keratinocyte activation and epidermal hyperproliferation induced by epidermal growth factor. J Invest Dermatol. 2004;123(4):708-14. DOI:10.1111/j.0022-202X.2004.23409.x
46. Kultti A, Pasonen-Seppänen S, Jauhiainen M, et al. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3. Exp Cell Res. 2009;315(11):1914-23. DOI:10.1016/j.yexcr.2009.03.002
47. Yoshihara S, Kon A, Kudo D, et al. A hyaluronan synthase suppressor, 4-methylumbelliferone, inhibits liver metastasis of melanoma cells. FEBS Lett. 2005;579(12):2722-6. DOI:10.1016/j.febslet.2005.03.079
48. Clarkin CE, Allen S, Wheeler-Jones CP, et al. Reduced chondrogenic matrix accumulation by 4-methylumbelliferone reveals the potential for selective targeting of UDP-glucose dehydrogenase. Matrix Biol. 2011;30(3):163-8. DOI:10.1016/j.matbio.2011.01.002
49. Nakazawa H, Yoshihara S, Kudo D, et al. 4-methylumbelliferone, a hyaluronan synthase suppressor, enhances the anticancer activity of gemcitabine in human pancreatic cancer cells. Cancer Chemother Pharmacol. 2006;57(2):165-70. DOI:10.1007/s00280-005-0016-5
50. Saito T, Tamura D, Nakamura T, et al. 4-methylumbelliferone leads to growth arrest and apoptosis in canine mammary tumor cells. Oncol Rep. 2013;29(1):335-42. DOI:10.3892/or.2012.2100
51. García-Vilas JA, Quesada AR, Medina MÁ. 4-methylumbelliferone inhibits angiogenesis in vitro and in vivo. J Agric Food Chem. 2013;61(17):4063-71. DOI:10.1021/jf303062h
52. Vigetti D, Rizzi M, Viola M, et al. The effects of 4-methylumbelliferone on hyaluronan synthesis, MMP2 activity, proliferation, and motility of human aortic smooth muscle cells. Glycobiology. 2009;19(5):537-46. DOI:10.1093/glycob/cwp022
53. Saga R, Matsuya Y, Takahashi R, et al. 4-Methylumbelliferone administration enhances radiosensitivity of human fibrosarcoma by intercellular communication. Sci Rep. 2021;11(1):8258. DOI:10.1038/s41598-021-87850-3
54. Díaz M, Pibuel M, Paglilla N, et al. 4-Methylumbelliferone induces antitumor effects independently of hyaluronan synthesis inhibition in human acute leukemia cell lines. Life Sci. 2021;287:120065. DOI:10.1016/j.lfs.2021.120065
55. Weiz G, Molejon MI, Malvicini M, et al. Glycosylated 4-methylumbelliferone as a targeted therapy for hepatocellular carcinoma. Liver Int. 2022;42(2):444-57. DOI:10.1111/liv.15084
56. Piccioni F, Fiore E, Bayo J, et al. 4-methylumbelliferone inhibits hepatocellular carcinoma growth by decreasing IL-6 production and angiogenesis. Glycobiology. 2015;25(8):825-35. DOI:10.1093/glycob/cwv023
57. Rodríguez MM, Onorato A, Cantero MJ, et al. 4-methylumbelliferone-mediated polarization of M1 macrophages correlate with decreased hepatocellular carcinoma aggressiveness in mice. Sci Rep. 2021;11(1):6310. DOI:10.1038/s41598-021-85491-0
58. Vitale DL, Icardi A, Rosales P, et al. Targeting the Tumor Extracellular Matrix by the Natural Molecule 4-Methylumbelliferone: A Complementary and Alternative Cancer Therapeutic Strategy. Front Oncol. 2021;11:710061. DOI:10.3389/fonc.2021.710061
59. Kakizaki I, Takagaki K, Endo Y, et al. Inhibition of hyaluronan synthesis in Streptococcus equi FM100 by 4-methylumbelliferone. Eur J Biochem. 2002;269(20):5066-75. DOI:10.1046/j.1432-1033.2002.03217.x
60. Jong A, Wu CH, Chen HM, et al. Identification and characterization of CPS1 as a hyaluronic acid synthase contributing to the pathogenesis of Cryptococcus neoformans infection. Eukaryot Cell. 2007;6(8):1486-96. DOI:10.1128/EC.00120-07
61. Yoshioka Y, Kozawa E, Urakawa H, et al. Suppression of hyaluronan synthesis alleviates inflammatory responses in murine arthritis and in human rheumatoid synovial fibroblasts. Arthritis Rheum. 2013;65(5):1160-70. DOI:10.1002/art.37861
62. Mueller AM, Yoon BH, Sadiq SA. Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS. J Biol Chem. 2014;289(33):22888-99. DOI:10.1074/jbc.M114.559583
63. Nagy N, Kaber G, Sunkari VG, et al. Inhibition of hyaluronan synthesis prevents β-cell loss in obesity-associated type 2 diabetes. Matrix Biol. 2023;123:34-47. DOI:10.1016/j.matbio.2023.09.003
64. Al-Majedy YK, Al-Amiery AA, Kadhum AA, Mohamad AB. Antioxidant Activities of 4-Methylumbelliferone Derivatives. PLoS One. 2016;11(5):e0156625. DOI:10.1371/journal.pone.0156625
65. Lin Z, Cheng X, Zheng H. Umbelliferon: a review of its pharmacology, toxicity and pharmacokinetics. Inflammopharmacology. 2023;31(4):1731-50. DOI:10.1007/s10787-023-01256-3
66. Tsitrina AA, Halimani N, Andreichenko IN, et al. 4-Methylumbelliferone Targets Revealed by Public Data Analysis and Liver Transcriptome Sequencing. Int J Mol Sci. 2023;24(3):2129. DOI:10.3390/ijms24032129
67. Li T, Francl JM, Boehme S, Chiang JY. Regulation of cholesterol and bile acid homeostasis by the cholesterol 7α-hydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice. Hepatology. 2013;58(3):1111-21. DOI:10.1002/hep.26427
68. Xing X, Burgermeister E, Geisler F, et al. Hematopoietically expressed homeobox is a target gene of farnesoid X receptor in chenodeoxycholic acid-induced liver hypertrophy. Hepatology. 2009;49(3):979-88. DOI:10.1002/hep.22712
69. Gupta S, Stravitz RT, Dent P, Hylemon PB. Down-regulation of cholesterol 7alpha-hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-Jun N-terminal kinase pathway. J Biol Chem. 2001;276(19):15816-22. DOI:10.1074/jbc.M010878200
70. Chiang JYL, Ferrell JM. Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis. Liver Res. 2020;4(2):47-63. DOI:10.1016/j.livres.2020.05.001
2. Garrett ER, Venitz J. Comparisons of detections, stabilities, and kinetics of degradation of hymecromone and its glucuronide and sulfate metabolites. J Pharm Sci. 1994;83(1):115-6. DOI:10.1002/jps.2600830128
3. Garrett ER, Venitz J, Eberst K, Cerda JJ. Pharmacokinetics and bioavailabilities of hymecromone in human volunteers. Biopharm Drug Dispos. 1993;14(1):13-39. DOI:10.1002/bdd.2510140103
4. Nagy N, Kuipers HF, Frymoyer AR, et al. 4-methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer. Front Immunol. 2015;6:123. DOI:10.3389/fimmu.2015.00123
5. Hoffmann RM, Schwarz G, Pohl C, et al. Gallensäure-unabhängige Wirkung von Hymecromon auf die Gallesekretion und die Motilität der Gallenwege [Bile acid-independent effect of hymecromone on bile secretion and common bile duct motility]. Dtsch Med Wochenschr. 2005;130(34–35):1938-43 [Article in German]. DOI:10.1055/s-2005-872606
6. Minushkin ON. Odeston v lechenii bol'nykh biliarnoi disfunktsiei. Farmateka. 2010;(2):61-5 (in Russian).
7. Iakovenko EP, Agafonova NA, Kal'nova SB. Odeston v terapii zabolevanii biliarnogo trakta. Praktikuiushchii Vrach. 2001;19(1):30-2 (in Russian).
8. Maksimov VA, Buntin SE, Buntina VG, et al. O vliianii gimekromona na motornuiu funktsiiu biliarnogo trakta u bol'nykh s postkholetsistektomicheskim sindromom. Lechashchii Vrach. 2008;(2):76-7 (in Russian).
9. Baryshnikova NV, Sousova YaV. Effectiveness of Hymecromone monotherapy in treatment of patients with various pathologies of biliary tract. Medical Alphabet. 2021;(40):14-20 (in Russian). DOI:10.33667/2078-5631-2021-40-14-20
10. Nikitin IG, Salikov AV, Fedorov IG, Ilchenko LYu. Hymecromone Monotherapy in Patients with Biliary Tract Disorders: Clinical Efficacy and Safety Profile. Lechebnoe Delo.
2023;(3):34-40 (in Russian).
11. Bordin DS, Dubtsova EA, Selezneva EYa, et al. Efficacy and Safety of Hymecromone Various Doses in Patients Who Have Undergone Cholecystectomy. Effektivnaia Farmakoterapiia. 2021;17(39):34-8 (in Russian). DOI:10.33978/2307-3586-2021-17-39-34-38
12. Polenov AM, Pogromov AP. Gimekromon (odeston) v terapii bol'nykh s postkholetsistektomicheskoi disfunktsiei sfinktera Oddi. Eksperimental'naia i Klinicheskaia Gastroenterologiia. 2003;(5):163-4 (in Russian).
13. Okhlobystin AV, Tatarkina MA, Okhlobystina OZ, et al. Hymecromone Efficacy in the Treatment of Biliary Pancreatitis. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2019;29(5):26-35 (in Russian). DOI:10.22416/1382-4376-2019-29-5-26-35
14. Maksimov VA, Buntin SE, Buntina VG. Effektivnost' Odestona v lechenii bol'nykh khronicheskim pankreatitom. Farmateka. 2009;13:72-4 (in Russian).
15. Goth A. The antibacterial properties of dicumarol. Science. 1945;101(2624):383. DOI:10.1126/science.101.2624.383
16. Melliou E, Magiatis P, Mitaku S, et al. Natural and synthetic 2,2-dimethylpyranocoumarins with antibacterial activity. J Nat Prod. 2005;68(1):78-82. DOI:10.1021/np0497447
17. Kawase M, Varu B, Shah A, et al. Antimicrobial activity of new coumarin derivatives. Arzneimittelforschung. 2001;51(1):67-71. DOI:10.1055/s-0031-1300004
18. El-Attar MS, Sadeek SA, Abd El-Hamid SM, Elshafie HS. Spectroscopic Analyses and Antimicrobial Activity of Novel Ciprofloxacin and 7-Hydroxy-4-methylcoumarin, the Plant-Based Natural Benzopyrone Derivative. Int J Mol Sci. 2022;23(14):8019. DOI:10.3390/ijms23148019
19. Singh LK, Priyanka, Singh V, Katiyar D. Design, synthesis and biological evaluation of some new coumarin derivatives as potential antimicrobial agents. Med Chem.
2015;11(2):128-34. DOI:10.2174/1573406410666140902110452
20. McKallip RJ, Ban H, Uchakina ON. Treatment with the hyaluronic Acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation. Inflammation. 2015;38(3):1250-9. DOI:10.1007/s10753-014-0092-y
21. Barnes HW, Demirdjian S, Haddock NL, et al. Hyaluronan in the pathogenesis of acute and post-acute COVID-19 infection. Matrix Biol. 2023;116:49-66. DOI:10.1016/j.matbio.2023.02.001
22. McKallip RJ, Hagele HF, Uchakina ON. Treatment with the hyaluronic acid synthesis inhibitor 4-methylumbelliferone suppresses SEB-induced lung inflammation. Toxins (Basel). 2013;5(10):1814-26. DOI:10.3390/toxins5101814
23. Arai E, Nishida Y, Wasa J, et al. Inhibition of hyaluronan retention by 4-methylumbelliferone suppresses osteosarcoma cells in vitro and lung metastasis in vivo. Br J Cancer. 2011;105(12):1839-49. DOI:10.1038/bjc.2011.459
24. Collum SD, Chen NY, Hernandez AM, et al. Inhibition of hyaluronan synthesis attenuates pulmonary hypertension associated with lung fibrosis. Br J Pharmacol.
2017;174(19):3284-301. DOI:10.1111/bph.13947
25. Collum SD, Molina JG, Hanmandlu A, et al. Adenosine and hyaluronan promote lung fibrosis and pulmonary hypertension in combined pulmonary fibrosis and emphysema. Dis Model Mech. 2019;12(5):dmm038711. DOI:10.1242/dmm.038711
26. Yang S, Ling Y, Zhao F, et al. Hymecromone: a clinical prescription hyaluronan inhibitor for efficiently blocking COVID-19 progression. Signal Transduct Target Ther. 2022;7(1):91. DOI:10.1038/s41392-022-00952-w
27. Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev. 2011;91(1):221-64. DOI:10.1152/physrev.00052.2009
28. Itano N, Atsumi F, Sawai T, et al. Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. Proc Natl Acad Sci U S A. 2002;99(6):3609-14. DOI:10.1073/pnas.052026799
29. Ruppert SM, Hawn TR, Arrigoni A, et al. Tissue integrity signals communicated by high-molecular weight hyaluronan and the resolution of inflammation. Immunol Res.
2014;58(2-3):186-92. DOI:10.1007/s12026-014-8495-2
30. Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol. 2006;85(8):699-715. DOI:10.1016/j.ejcb.2006.05.009
31. Laurent TC, Laurent UB, Fraser JR. The structure and function of hyaluronan: An overview. Immunol Cell Biol. 1996;74(2):A1-7. DOI:10.1038/icb.1996.32
32. Scott JE. Supramolecular organization of extracellular matrix glycosaminoglycans, in vitro and in the tissues. FASEB J. 1992;6(9):2639-45.
33. Tasanarong A, Khositseth S, Thitiarchakul S. The mechanism of increased vascular permeability in renal ischemic reperfusion injury: potential role of angiopoietin-1 and hyaluronan. J Med Assoc Thai. 2009;92(9):1150-8.
34. Khan AI, Kerfoot SM, Heit B, et al. Role of CD44 and hyaluronan in neutrophil recruitment. J Immunol. 2004;173(12):7594-601. DOI:10.4049/jimmunol.173.12.7594
35. Evanko SP, Potter-Perigo S, Bollyky PL, et al. Hyaluronan and versican in the control of human T-lymphocyte adhesion and migration. Matrix Biol. 2012;31(2):90-100. DOI:10.1016/j.matbio.2011.10.004
36. Powell JD, Horton MR. Threat matrix: low-molecular-weight hyaluronan (HA) as a danger signal. Immunol Res. 2005;31(3):207-18. DOI:10.1385/IR:31:3:207
37. Tesar BM, Jiang D, Liang J, et al. The role of hyaluronan degradation products as innate alloimmune agonists. Am J Transplant. 2006;6(11):2622-35.
DOI:10.1111/j.1600-6143.2006.01537.x
38. Termeer C, Benedix F, Sleeman J, et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med. 2002;195(1):99-111. DOI:10.1084/jem.20001858
39. Bollyky PL, Wu RP, Falk BA, et al. ECM components guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors. Proc Natl Acad Sci U S A. 2011;108(19):7938-43. DOI:10.1073/pnas.1017360108
40. Horton MR, Burdick MD, Strieter RM, et al. Regulation of hyaluronan-induced chemokine gene expression by IL-10 and IFN-gamma in mouse macrophages. J Immunol. 1998;160(6):3023-30.
41. Scheibner KA, Lutz MA, Boodoo S, et al. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol. 2006;177(2):1272-81. DOI:10.4049/jimmunol.177.2.1272
42. Zheng L, Riehl TE, Stenson WF. Regulation of colonic epithelial repair in mice by Toll-like receptors and hyaluronic acid. Gastroenterology. 2009;137(6):2041-51. DOI:10.1053/j.gastro.2009.08.055
43. Gao F, Liu Y, He Y, et al. Hyaluronan oligosaccharides promote excisional wound healing through enhanced angiogenesis. Matrix Biol. 2010;29(2):107-16. DOI:10.1016/j.matbio.2009.11.002
44. Gao F, Koenitzer JR, Tobolewski JM, et al. Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan. J Biol Chem. 2008;283(10):6058-66. DOI:10.1074/jbc
45. Rilla K, Pasonen-Seppänen S, Rieppo J, et al. The hyaluronan synthesis inhibitor 4-methylumbelliferone prevents keratinocyte activation and epidermal hyperproliferation induced by epidermal growth factor. J Invest Dermatol. 2004;123(4):708-14. DOI:10.1111/j.0022-202X.2004.23409.x
46. Kultti A, Pasonen-Seppänen S, Jauhiainen M, et al. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3. Exp Cell Res. 2009;315(11):1914-23. DOI:10.1016/j.yexcr.2009.03.002
47. Yoshihara S, Kon A, Kudo D, et al. A hyaluronan synthase suppressor, 4-methylumbelliferone, inhibits liver metastasis of melanoma cells. FEBS Lett. 2005;579(12):2722-6. DOI:10.1016/j.febslet.2005.03.079
48. Clarkin CE, Allen S, Wheeler-Jones CP, et al. Reduced chondrogenic matrix accumulation by 4-methylumbelliferone reveals the potential for selective targeting of UDP-glucose dehydrogenase. Matrix Biol. 2011;30(3):163-8. DOI:10.1016/j.matbio.2011.01.002
49. Nakazawa H, Yoshihara S, Kudo D, et al. 4-methylumbelliferone, a hyaluronan synthase suppressor, enhances the anticancer activity of gemcitabine in human pancreatic cancer cells. Cancer Chemother Pharmacol. 2006;57(2):165-70. DOI:10.1007/s00280-005-0016-5
50. Saito T, Tamura D, Nakamura T, et al. 4-methylumbelliferone leads to growth arrest and apoptosis in canine mammary tumor cells. Oncol Rep. 2013;29(1):335-42. DOI:10.3892/or.2012.2100
51. García-Vilas JA, Quesada AR, Medina MÁ. 4-methylumbelliferone inhibits angiogenesis in vitro and in vivo. J Agric Food Chem. 2013;61(17):4063-71. DOI:10.1021/jf303062h
52. Vigetti D, Rizzi M, Viola M, et al. The effects of 4-methylumbelliferone on hyaluronan synthesis, MMP2 activity, proliferation, and motility of human aortic smooth muscle cells. Glycobiology. 2009;19(5):537-46. DOI:10.1093/glycob/cwp022
53. Saga R, Matsuya Y, Takahashi R, et al. 4-Methylumbelliferone administration enhances radiosensitivity of human fibrosarcoma by intercellular communication. Sci Rep. 2021;11(1):8258. DOI:10.1038/s41598-021-87850-3
54. Díaz M, Pibuel M, Paglilla N, et al. 4-Methylumbelliferone induces antitumor effects independently of hyaluronan synthesis inhibition in human acute leukemia cell lines. Life Sci. 2021;287:120065. DOI:10.1016/j.lfs.2021.120065
55. Weiz G, Molejon MI, Malvicini M, et al. Glycosylated 4-methylumbelliferone as a targeted therapy for hepatocellular carcinoma. Liver Int. 2022;42(2):444-57. DOI:10.1111/liv.15084
56. Piccioni F, Fiore E, Bayo J, et al. 4-methylumbelliferone inhibits hepatocellular carcinoma growth by decreasing IL-6 production and angiogenesis. Glycobiology. 2015;25(8):825-35. DOI:10.1093/glycob/cwv023
57. Rodríguez MM, Onorato A, Cantero MJ, et al. 4-methylumbelliferone-mediated polarization of M1 macrophages correlate with decreased hepatocellular carcinoma aggressiveness in mice. Sci Rep. 2021;11(1):6310. DOI:10.1038/s41598-021-85491-0
58. Vitale DL, Icardi A, Rosales P, et al. Targeting the Tumor Extracellular Matrix by the Natural Molecule 4-Methylumbelliferone: A Complementary and Alternative Cancer Therapeutic Strategy. Front Oncol. 2021;11:710061. DOI:10.3389/fonc.2021.710061
59. Kakizaki I, Takagaki K, Endo Y, et al. Inhibition of hyaluronan synthesis in Streptococcus equi FM100 by 4-methylumbelliferone. Eur J Biochem. 2002;269(20):5066-75. DOI:10.1046/j.1432-1033.2002.03217.x
60. Jong A, Wu CH, Chen HM, et al. Identification and characterization of CPS1 as a hyaluronic acid synthase contributing to the pathogenesis of Cryptococcus neoformans infection. Eukaryot Cell. 2007;6(8):1486-96. DOI:10.1128/EC.00120-07
61. Yoshioka Y, Kozawa E, Urakawa H, et al. Suppression of hyaluronan synthesis alleviates inflammatory responses in murine arthritis and in human rheumatoid synovial fibroblasts. Arthritis Rheum. 2013;65(5):1160-70. DOI:10.1002/art.37861
62. Mueller AM, Yoon BH, Sadiq SA. Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS. J Biol Chem. 2014;289(33):22888-99. DOI:10.1074/jbc.M114.559583
63. Nagy N, Kaber G, Sunkari VG, et al. Inhibition of hyaluronan synthesis prevents β-cell loss in obesity-associated type 2 diabetes. Matrix Biol. 2023;123:34-47. DOI:10.1016/j.matbio.2023.09.003
64. Al-Majedy YK, Al-Amiery AA, Kadhum AA, Mohamad AB. Antioxidant Activities of 4-Methylumbelliferone Derivatives. PLoS One. 2016;11(5):e0156625. DOI:10.1371/journal.pone.0156625
65. Lin Z, Cheng X, Zheng H. Umbelliferon: a review of its pharmacology, toxicity and pharmacokinetics. Inflammopharmacology. 2023;31(4):1731-50. DOI:10.1007/s10787-023-01256-3
66. Tsitrina AA, Halimani N, Andreichenko IN, et al. 4-Methylumbelliferone Targets Revealed by Public Data Analysis and Liver Transcriptome Sequencing. Int J Mol Sci. 2023;24(3):2129. DOI:10.3390/ijms24032129
67. Li T, Francl JM, Boehme S, Chiang JY. Regulation of cholesterol and bile acid homeostasis by the cholesterol 7α-hydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice. Hepatology. 2013;58(3):1111-21. DOI:10.1002/hep.26427
68. Xing X, Burgermeister E, Geisler F, et al. Hematopoietically expressed homeobox is a target gene of farnesoid X receptor in chenodeoxycholic acid-induced liver hypertrophy. Hepatology. 2009;49(3):979-88. DOI:10.1002/hep.22712
69. Gupta S, Stravitz RT, Dent P, Hylemon PB. Down-regulation of cholesterol 7alpha-hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-Jun N-terminal kinase pathway. J Biol Chem. 2001;276(19):15816-22. DOI:10.1074/jbc.M010878200
70. Chiang JYL, Ferrell JM. Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis. Liver Res. 2020;4(2):47-63. DOI:10.1016/j.livres.2020.05.001
2. Garrett ER, Venitz J. Comparisons of detections, stabilities, and kinetics of degradation of hymecromone and its glucuronide and sulfate metabolites. J Pharm Sci. 1994;83(1):115-6. DOI:10.1002/jps.2600830128
3. Garrett ER, Venitz J, Eberst K, Cerda JJ. Pharmacokinetics and bioavailabilities of hymecromone in human volunteers. Biopharm Drug Dispos. 1993;14(1):13-39. DOI:10.1002/bdd.2510140103
4. Nagy N, Kuipers HF, Frymoyer AR, et al. 4-methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer. Front Immunol. 2015;6:123. DOI:10.3389/fimmu.2015.00123
5. Hoffmann RM, Schwarz G, Pohl C, et al. Gallensäure-unabhängige Wirkung von Hymecromon auf die Gallesekretion und die Motilität der Gallenwege [Bile acid-independent effect of hymecromone on bile secretion and common bile duct motility]. Dtsch Med Wochenschr. 2005;130(34–35):1938-43 [Article in German]. DOI:10.1055/s-2005-872606
6. Минушкин О.Н. Одестон в лечении больных билиарной дисфункцией. Фарматека. 2010;(2):61-5 [Minushkin ON. Odeston v lechenii bol'nykh biliarnoi disfunktsiei. Farmateka. 2010;(2):61-5 (in Russian)].
7. Яковенко Э.П., Агафонова Н.А., Кальнова С.Б. Одестон в терапии заболеваний билиарного тракта. Практикующий врач. 2001;19(1):30-2 [Iakovenko EP, Agafonova NA, Kal'nova SB. Odeston v terapii zabolevanii biliarnogo trakta. Praktikuiushchii Vrach. 2001;19(1):30-2 (in Russian)].
8. Максимов В.А., Бунтин С.Е., Бунтина В.Г., и др. О влиянии гимекромона на моторную функцию билиарного тракта у больных с постхолецистэктомическим синдромом. Лечащий врач. 2008;(2):76-7 [Maksimov VA, Buntin SE, Buntina VG, et al. O vliianii gimekromona na motornuiu funktsiiu biliarnogo trakta u bol'nykh s postkholetsistektomicheskim sindromom. Lechashchii Vrach. 2008;(2):76-7 (in Russian)].
9. Барышникова Н.B., Соусова Я.В. Эффективность монотерапии Гимекромоном-СЗ в лечении пациентов с различной патологией билиарного тракта. Медицинский алфавит. 2021;(40):14-20 [Baryshnikova NV, Sousova YaV. Effectiveness of Hymecromone monotherapy in treatment of patients with various pathologies of biliary tract. Medical Alphabet. 2021;(40):14-20 (in Russian)]. DOI:10.33667/2078-5631-2021-40-14-20
10. Никитин И.Г., Саликов А.В., Федоров И.Г., Ильченко Л.Ю. Монотерапия гимекромоном пациентов с патологией билиарного тракта: клиническая эффективность и профиль безопасности. Лечебное дело. 2023;(3):34-40 [Nikitin IG, Salikov AV, Fedorov IG, Ilchenko LYu. Hymecromone Monotherapy in Patients with Biliary Tract Disorders: Clinical Efficacy and Safety Profile. Lechebnoe Delo. 2023;(3):34-40 (in Russian)].
11. Бордин Д.С., Дубцова Е.А., Селезнева Э.Я., и др. Эффективность и безопасность различных доз гимекромона у больных, перенесших холецистэктомию. Эффективная фармакотерапия. 2021;17(39):34-8 [Bordin DS, Dubtsova EA, Selezneva EYa, et al. Efficacy and Safety of Hymecromone Various Doses in Patients Who Have Undergone Cholecystectomy. Effektivnaia Farmakoterapiia. 2021;17(39):34-8 (in Russian)]. DOI:10.33978/2307-3586-2021-17-39-34-38
12. Поленов А.М., Погромов А.П. Гимекромон (одестон) в терапии больных с постхолецистэктомической дисфункцией сфинктера Одди. Экспериментальная и клиническая гастроэнтерология. 2003;(5):163-4 [Polenov AM, Pogromov AP. Gimekromon (odeston) v terapii bol'nykh s postkholetsistektomicheskoi disfunktsiei sfinktera Oddi. Eksperimental'naia i Klinicheskaia Gastroenterologiia. 2003;(5):163-4 (in Russian)].
13. Охлобыстин А.В., Татаркина М.А., Охлобыстина О.З., и др. Эффективность применения препарата гимекромон при билиарном панкреатите. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2019;29(5):26-35 [Okhlobystin AV, Tatarkina MA, Okhlobystina OZ, et al. Hymecromone Efficacy in the Treatment of Biliary Pancreatitis. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2019;29(5):26-35 (in Russian)]. DOI:10.22416/1382-4376-2019-29-5-26-35
14. Максимов В.А., Бунтин С.Е., Бунтина В.Г. Эффективность Одестона в лечении больных хроническим панкреатитом. Фарматека. 2009;13:72-4 [Maksimov VA, Buntin SE, Buntina VG. Effektivnost' Odestona v lechenii bol'nykh khronicheskim pankreatitom. Farmateka. 2009;13:72-4 (in Russian)].
15. Goth A. The antibacterial properties of dicumarol. Science. 1945;101(2624):383. DOI:10.1126/science.101.2624.383
16. Melliou E, Magiatis P, Mitaku S, et al. Natural and synthetic 2,2-dimethylpyranocoumarins with antibacterial activity. J Nat Prod. 2005;68(1):78-82. DOI:10.1021/np0497447
17. Kawase M, Varu B, Shah A, et al. Antimicrobial activity of new coumarin derivatives. Arzneimittelforschung. 2001;51(1):67-71. DOI:10.1055/s-0031-1300004
18. El-Attar MS, Sadeek SA, Abd El-Hamid SM, Elshafie HS. Spectroscopic Analyses and Antimicrobial Activity of Novel Ciprofloxacin and 7-Hydroxy-4-methylcoumarin, the Plant-Based Natural Benzopyrone Derivative. Int J Mol Sci. 2022;23(14):8019. DOI:10.3390/ijms23148019
19. Singh LK, Priyanka, Singh V, Katiyar D. Design, synthesis and biological evaluation of some new coumarin derivatives as potential antimicrobial agents. Med Chem.
2015;11(2):128-34. DOI:10.2174/1573406410666140902110452
20. McKallip RJ, Ban H, Uchakina ON. Treatment with the hyaluronic Acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation. Inflammation. 2015;38(3):1250-9. DOI:10.1007/s10753-014-0092-y
21. Barnes HW, Demirdjian S, Haddock NL, et al. Hyaluronan in the pathogenesis of acute and post-acute COVID-19 infection. Matrix Biol. 2023;116:49-66. DOI:10.1016/j.matbio.2023.02.001
22. McKallip RJ, Hagele HF, Uchakina ON. Treatment with the hyaluronic acid synthesis inhibitor 4-methylumbelliferone suppresses SEB-induced lung inflammation. Toxins (Basel). 2013;5(10):1814-26. DOI:10.3390/toxins5101814
23. Arai E, Nishida Y, Wasa J, et al. Inhibition of hyaluronan retention by 4-methylumbelliferone suppresses osteosarcoma cells in vitro and lung metastasis in vivo. Br J Cancer. 2011;105(12):1839-49. DOI:10.1038/bjc.2011.459
24. Collum SD, Chen NY, Hernandez AM, et al. Inhibition of hyaluronan synthesis attenuates pulmonary hypertension associated with lung fibrosis. Br J Pharmacol.
2017;174(19):3284-301. DOI:10.1111/bph.13947
25. Collum SD, Molina JG, Hanmandlu A, et al. Adenosine and hyaluronan promote lung fibrosis and pulmonary hypertension in combined pulmonary fibrosis and emphysema. Dis Model Mech. 2019;12(5):dmm038711. DOI:10.1242/dmm.038711
26. Yang S, Ling Y, Zhao F, et al. Hymecromone: a clinical prescription hyaluronan inhibitor for efficiently blocking COVID-19 progression. Signal Transduct Target Ther. 2022;7(1):91. DOI:10.1038/s41392-022-00952-w
27. Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev. 2011;91(1):221-64. DOI:10.1152/physrev.00052.2009
28. Itano N, Atsumi F, Sawai T, et al. Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. Proc Natl Acad Sci U S A. 2002;99(6):3609-14. DOI:10.1073/pnas.052026799
29. Ruppert SM, Hawn TR, Arrigoni A, et al. Tissue integrity signals communicated by high-molecular weight hyaluronan and the resolution of inflammation. Immunol Res.
2014;58(2-3):186-92. DOI:10.1007/s12026-014-8495-2
30. Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol. 2006;85(8):699-715. DOI:10.1016/j.ejcb.2006.05.009
31. Laurent TC, Laurent UB, Fraser JR. The structure and function of hyaluronan: An overview. Immunol Cell Biol. 1996;74(2):A1-7. DOI:10.1038/icb.1996.32
32. Scott JE. Supramolecular organization of extracellular matrix glycosaminoglycans, in vitro and in the tissues. FASEB J. 1992;6(9):2639-45.
33. Tasanarong A, Khositseth S, Thitiarchakul S. The mechanism of increased vascular permeability in renal ischemic reperfusion injury: potential role of angiopoietin-1 and hyaluronan. J Med Assoc Thai. 2009;92(9):1150-8.
34. Khan AI, Kerfoot SM, Heit B, et al. Role of CD44 and hyaluronan in neutrophil recruitment. J Immunol. 2004;173(12):7594-601. DOI:10.4049/jimmunol.173.12.7594
35. Evanko SP, Potter-Perigo S, Bollyky PL, et al. Hyaluronan and versican in the control of human T-lymphocyte adhesion and migration. Matrix Biol. 2012;31(2):90-100. DOI:10.1016/j.matbio.2011.10.004
36. Powell JD, Horton MR. Threat matrix: low-molecular-weight hyaluronan (HA) as a danger signal. Immunol Res. 2005;31(3):207-18. DOI:10.1385/IR:31:3:207
37. Tesar BM, Jiang D, Liang J, et al. The role of hyaluronan degradation products as innate alloimmune agonists. Am J Transplant. 2006;6(11):2622-35.
DOI:10.1111/j.1600-6143.2006.01537.x
38. Termeer C, Benedix F, Sleeman J, et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med. 2002;195(1):99-111. DOI:10.1084/jem.20001858
39. Bollyky PL, Wu RP, Falk BA, et al. ECM components guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors. Proc Natl Acad Sci U S A. 2011;108(19):7938-43. DOI:10.1073/pnas.1017360108
40. Horton MR, Burdick MD, Strieter RM, et al. Regulation of hyaluronan-induced chemokine gene expression by IL-10 and IFN-gamma in mouse macrophages. J Immunol. 1998;160(6):3023-30.
41. Scheibner KA, Lutz MA, Boodoo S, et al. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol. 2006;177(2):1272-81. DOI:10.4049/jimmunol.177.2.1272
42. Zheng L, Riehl TE, Stenson WF. Regulation of colonic epithelial repair in mice by Toll-like receptors and hyaluronic acid. Gastroenterology. 2009;137(6):2041-51. DOI:10.1053/j.gastro.2009.08.055
43. Gao F, Liu Y, He Y, et al. Hyaluronan oligosaccharides promote excisional wound healing through enhanced angiogenesis. Matrix Biol. 2010;29(2):107-16. DOI:10.1016/j.matbio.2009.11.002
44. Gao F, Koenitzer JR, Tobolewski JM, et al. Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan. J Biol Chem. 2008;283(10):6058-66. DOI:10.1074/jbc
45. Rilla K, Pasonen-Seppänen S, Rieppo J, et al. The hyaluronan synthesis inhibitor 4-methylumbelliferone prevents keratinocyte activation and epidermal hyperproliferation induced by epidermal growth factor. J Invest Dermatol. 2004;123(4):708-14. DOI:10.1111/j.0022-202X.2004.23409.x
46. Kultti A, Pasonen-Seppänen S, Jauhiainen M, et al. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3. Exp Cell Res. 2009;315(11):1914-23. DOI:10.1016/j.yexcr.2009.03.002
47. Yoshihara S, Kon A, Kudo D, et al. A hyaluronan synthase suppressor, 4-methylumbelliferone, inhibits liver metastasis of melanoma cells. FEBS Lett. 2005;579(12):2722-6. DOI:10.1016/j.febslet.2005.03.079
48. Clarkin CE, Allen S, Wheeler-Jones CP, et al. Reduced chondrogenic matrix accumulation by 4-methylumbelliferone reveals the potential for selective targeting of UDP-glucose dehydrogenase. Matrix Biol. 2011;30(3):163-8. DOI:10.1016/j.matbio.2011.01.002
49. Nakazawa H, Yoshihara S, Kudo D, et al. 4-methylumbelliferone, a hyaluronan synthase suppressor, enhances the anticancer activity of gemcitabine in human pancreatic cancer cells. Cancer Chemother Pharmacol. 2006;57(2):165-70. DOI:10.1007/s00280-005-0016-5
50. Saito T, Tamura D, Nakamura T, et al. 4-methylumbelliferone leads to growth arrest and apoptosis in canine mammary tumor cells. Oncol Rep. 2013;29(1):335-42. DOI:10.3892/or.2012.2100
51. García-Vilas JA, Quesada AR, Medina MÁ. 4-methylumbelliferone inhibits angiogenesis in vitro and in vivo. J Agric Food Chem. 2013;61(17):4063-71. DOI:10.1021/jf303062h
52. Vigetti D, Rizzi M, Viola M, et al. The effects of 4-methylumbelliferone on hyaluronan synthesis, MMP2 activity, proliferation, and motility of human aortic smooth muscle cells. Glycobiology. 2009;19(5):537-46. DOI:10.1093/glycob/cwp022
53. Saga R, Matsuya Y, Takahashi R, et al. 4-Methylumbelliferone administration enhances radiosensitivity of human fibrosarcoma by intercellular communication. Sci Rep. 2021;11(1):8258. DOI:10.1038/s41598-021-87850-3
54. Díaz M, Pibuel M, Paglilla N, et al. 4-Methylumbelliferone induces antitumor effects independently of hyaluronan synthesis inhibition in human acute leukemia cell lines. Life Sci. 2021;287:120065. DOI:10.1016/j.lfs.2021.120065
55. Weiz G, Molejon MI, Malvicini M, et al. Glycosylated 4-methylumbelliferone as a targeted therapy for hepatocellular carcinoma. Liver Int. 2022;42(2):444-57. DOI:10.1111/liv.15084
56. Piccioni F, Fiore E, Bayo J, et al. 4-methylumbelliferone inhibits hepatocellular carcinoma growth by decreasing IL-6 production and angiogenesis. Glycobiology. 2015;25(8):825-35. DOI:10.1093/glycob/cwv023
57. Rodríguez MM, Onorato A, Cantero MJ, et al. 4-methylumbelliferone-mediated polarization of M1 macrophages correlate with decreased hepatocellular carcinoma aggressiveness in mice. Sci Rep. 2021;11(1):6310. DOI:10.1038/s41598-021-85491-0
58. Vitale DL, Icardi A, Rosales P, et al. Targeting the Tumor Extracellular Matrix by the Natural Molecule 4-Methylumbelliferone: A Complementary and Alternative Cancer Therapeutic Strategy. Front Oncol. 2021;11:710061. DOI:10.3389/fonc.2021.710061
59. Kakizaki I, Takagaki K, Endo Y, et al. Inhibition of hyaluronan synthesis in Streptococcus equi FM100 by 4-methylumbelliferone. Eur J Biochem. 2002;269(20):5066-75. DOI:10.1046/j.1432-1033.2002.03217.x
60. Jong A, Wu CH, Chen HM, et al. Identification and characterization of CPS1 as a hyaluronic acid synthase contributing to the pathogenesis of Cryptococcus neoformans infection. Eukaryot Cell. 2007;6(8):1486-96. DOI:10.1128/EC.00120-07
61. Yoshioka Y, Kozawa E, Urakawa H, et al. Suppression of hyaluronan synthesis alleviates inflammatory responses in murine arthritis and in human rheumatoid synovial fibroblasts. Arthritis Rheum. 2013;65(5):1160-70. DOI:10.1002/art.37861
62. Mueller AM, Yoon BH, Sadiq SA. Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS. J Biol Chem. 2014;289(33):22888-99. DOI:10.1074/jbc.M114.559583
63. Nagy N, Kaber G, Sunkari VG, et al. Inhibition of hyaluronan synthesis prevents β-cell loss in obesity-associated type 2 diabetes. Matrix Biol. 2023;123:34-47. DOI:10.1016/j.matbio.2023.09.003
64. Al-Majedy YK, Al-Amiery AA, Kadhum AA, Mohamad AB. Antioxidant Activities of 4-Methylumbelliferone Derivatives. PLoS One. 2016;11(5):e0156625. DOI:10.1371/journal.pone.0156625
65. Lin Z, Cheng X, Zheng H. Umbelliferon: a review of its pharmacology, toxicity and pharmacokinetics. Inflammopharmacology. 2023;31(4):1731-50. DOI:10.1007/s10787-023-01256-3
66. Tsitrina AA, Halimani N, Andreichenko IN, et al. 4-Methylumbelliferone Targets Revealed by Public Data Analysis and Liver Transcriptome Sequencing. Int J Mol Sci. 2023;24(3):2129. DOI:10.3390/ijms24032129
67. Li T, Francl JM, Boehme S, Chiang JY. Regulation of cholesterol and bile acid homeostasis by the cholesterol 7α-hydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice. Hepatology. 2013;58(3):1111-21. DOI:10.1002/hep.26427
68. Xing X, Burgermeister E, Geisler F, et al. Hematopoietically expressed homeobox is a target gene of farnesoid X receptor in chenodeoxycholic acid-induced liver hypertrophy. Hepatology. 2009;49(3):979-88. DOI:10.1002/hep.22712
69. Gupta S, Stravitz RT, Dent P, Hylemon PB. Down-regulation of cholesterol 7alpha-hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-Jun N-terminal kinase pathway. J Biol Chem. 2001;276(19):15816-22. DOI:10.1074/jbc.M010878200
70. Chiang JYL, Ferrell JM. Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis. Liver Res. 2020;4(2):47-63. DOI:10.1016/j.livres.2020.05.001
________________________________________________
2. Garrett ER, Venitz J. Comparisons of detections, stabilities, and kinetics of degradation of hymecromone and its glucuronide and sulfate metabolites. J Pharm Sci. 1994;83(1):115-6. DOI:10.1002/jps.2600830128
3. Garrett ER, Venitz J, Eberst K, Cerda JJ. Pharmacokinetics and bioavailabilities of hymecromone in human volunteers. Biopharm Drug Dispos. 1993;14(1):13-39. DOI:10.1002/bdd.2510140103
4. Nagy N, Kuipers HF, Frymoyer AR, et al. 4-methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer. Front Immunol. 2015;6:123. DOI:10.3389/fimmu.2015.00123
5. Hoffmann RM, Schwarz G, Pohl C, et al. Gallensäure-unabhängige Wirkung von Hymecromon auf die Gallesekretion und die Motilität der Gallenwege [Bile acid-independent effect of hymecromone on bile secretion and common bile duct motility]. Dtsch Med Wochenschr. 2005;130(34–35):1938-43 [Article in German]. DOI:10.1055/s-2005-872606
6. Minushkin ON. Odeston v lechenii bol'nykh biliarnoi disfunktsiei. Farmateka. 2010;(2):61-5 (in Russian).
7. Iakovenko EP, Agafonova NA, Kal'nova SB. Odeston v terapii zabolevanii biliarnogo trakta. Praktikuiushchii Vrach. 2001;19(1):30-2 (in Russian).
8. Maksimov VA, Buntin SE, Buntina VG, et al. O vliianii gimekromona na motornuiu funktsiiu biliarnogo trakta u bol'nykh s postkholetsistektomicheskim sindromom. Lechashchii Vrach. 2008;(2):76-7 (in Russian).
9. Baryshnikova NV, Sousova YaV. Effectiveness of Hymecromone monotherapy in treatment of patients with various pathologies of biliary tract. Medical Alphabet. 2021;(40):14-20 (in Russian). DOI:10.33667/2078-5631-2021-40-14-20
10. Nikitin IG, Salikov AV, Fedorov IG, Ilchenko LYu. Hymecromone Monotherapy in Patients with Biliary Tract Disorders: Clinical Efficacy and Safety Profile. Lechebnoe Delo.
2023;(3):34-40 (in Russian).
11. Bordin DS, Dubtsova EA, Selezneva EYa, et al. Efficacy and Safety of Hymecromone Various Doses in Patients Who Have Undergone Cholecystectomy. Effektivnaia Farmakoterapiia. 2021;17(39):34-8 (in Russian). DOI:10.33978/2307-3586-2021-17-39-34-38
12. Polenov AM, Pogromov AP. Gimekromon (odeston) v terapii bol'nykh s postkholetsistektomicheskoi disfunktsiei sfinktera Oddi. Eksperimental'naia i Klinicheskaia Gastroenterologiia. 2003;(5):163-4 (in Russian).
13. Okhlobystin AV, Tatarkina MA, Okhlobystina OZ, et al. Hymecromone Efficacy in the Treatment of Biliary Pancreatitis. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2019;29(5):26-35 (in Russian). DOI:10.22416/1382-4376-2019-29-5-26-35
14. Maksimov VA, Buntin SE, Buntina VG. Effektivnost' Odestona v lechenii bol'nykh khronicheskim pankreatitom. Farmateka. 2009;13:72-4 (in Russian).
15. Goth A. The antibacterial properties of dicumarol. Science. 1945;101(2624):383. DOI:10.1126/science.101.2624.383
16. Melliou E, Magiatis P, Mitaku S, et al. Natural and synthetic 2,2-dimethylpyranocoumarins with antibacterial activity. J Nat Prod. 2005;68(1):78-82. DOI:10.1021/np0497447
17. Kawase M, Varu B, Shah A, et al. Antimicrobial activity of new coumarin derivatives. Arzneimittelforschung. 2001;51(1):67-71. DOI:10.1055/s-0031-1300004
18. El-Attar MS, Sadeek SA, Abd El-Hamid SM, Elshafie HS. Spectroscopic Analyses and Antimicrobial Activity of Novel Ciprofloxacin and 7-Hydroxy-4-methylcoumarin, the Plant-Based Natural Benzopyrone Derivative. Int J Mol Sci. 2022;23(14):8019. DOI:10.3390/ijms23148019
19. Singh LK, Priyanka, Singh V, Katiyar D. Design, synthesis and biological evaluation of some new coumarin derivatives as potential antimicrobial agents. Med Chem.
2015;11(2):128-34. DOI:10.2174/1573406410666140902110452
20. McKallip RJ, Ban H, Uchakina ON. Treatment with the hyaluronic Acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation. Inflammation. 2015;38(3):1250-9. DOI:10.1007/s10753-014-0092-y
21. Barnes HW, Demirdjian S, Haddock NL, et al. Hyaluronan in the pathogenesis of acute and post-acute COVID-19 infection. Matrix Biol. 2023;116:49-66. DOI:10.1016/j.matbio.2023.02.001
22. McKallip RJ, Hagele HF, Uchakina ON. Treatment with the hyaluronic acid synthesis inhibitor 4-methylumbelliferone suppresses SEB-induced lung inflammation. Toxins (Basel). 2013;5(10):1814-26. DOI:10.3390/toxins5101814
23. Arai E, Nishida Y, Wasa J, et al. Inhibition of hyaluronan retention by 4-methylumbelliferone suppresses osteosarcoma cells in vitro and lung metastasis in vivo. Br J Cancer. 2011;105(12):1839-49. DOI:10.1038/bjc.2011.459
24. Collum SD, Chen NY, Hernandez AM, et al. Inhibition of hyaluronan synthesis attenuates pulmonary hypertension associated with lung fibrosis. Br J Pharmacol.
2017;174(19):3284-301. DOI:10.1111/bph.13947
25. Collum SD, Molina JG, Hanmandlu A, et al. Adenosine and hyaluronan promote lung fibrosis and pulmonary hypertension in combined pulmonary fibrosis and emphysema. Dis Model Mech. 2019;12(5):dmm038711. DOI:10.1242/dmm.038711
26. Yang S, Ling Y, Zhao F, et al. Hymecromone: a clinical prescription hyaluronan inhibitor for efficiently blocking COVID-19 progression. Signal Transduct Target Ther. 2022;7(1):91. DOI:10.1038/s41392-022-00952-w
27. Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev. 2011;91(1):221-64. DOI:10.1152/physrev.00052.2009
28. Itano N, Atsumi F, Sawai T, et al. Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. Proc Natl Acad Sci U S A. 2002;99(6):3609-14. DOI:10.1073/pnas.052026799
29. Ruppert SM, Hawn TR, Arrigoni A, et al. Tissue integrity signals communicated by high-molecular weight hyaluronan and the resolution of inflammation. Immunol Res.
2014;58(2-3):186-92. DOI:10.1007/s12026-014-8495-2
30. Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol. 2006;85(8):699-715. DOI:10.1016/j.ejcb.2006.05.009
31. Laurent TC, Laurent UB, Fraser JR. The structure and function of hyaluronan: An overview. Immunol Cell Biol. 1996;74(2):A1-7. DOI:10.1038/icb.1996.32
32. Scott JE. Supramolecular organization of extracellular matrix glycosaminoglycans, in vitro and in the tissues. FASEB J. 1992;6(9):2639-45.
33. Tasanarong A, Khositseth S, Thitiarchakul S. The mechanism of increased vascular permeability in renal ischemic reperfusion injury: potential role of angiopoietin-1 and hyaluronan. J Med Assoc Thai. 2009;92(9):1150-8.
34. Khan AI, Kerfoot SM, Heit B, et al. Role of CD44 and hyaluronan in neutrophil recruitment. J Immunol. 2004;173(12):7594-601. DOI:10.4049/jimmunol.173.12.7594
35. Evanko SP, Potter-Perigo S, Bollyky PL, et al. Hyaluronan and versican in the control of human T-lymphocyte adhesion and migration. Matrix Biol. 2012;31(2):90-100. DOI:10.1016/j.matbio.2011.10.004
36. Powell JD, Horton MR. Threat matrix: low-molecular-weight hyaluronan (HA) as a danger signal. Immunol Res. 2005;31(3):207-18. DOI:10.1385/IR:31:3:207
37. Tesar BM, Jiang D, Liang J, et al. The role of hyaluronan degradation products as innate alloimmune agonists. Am J Transplant. 2006;6(11):2622-35.
DOI:10.1111/j.1600-6143.2006.01537.x
38. Termeer C, Benedix F, Sleeman J, et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med. 2002;195(1):99-111. DOI:10.1084/jem.20001858
39. Bollyky PL, Wu RP, Falk BA, et al. ECM components guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors. Proc Natl Acad Sci U S A. 2011;108(19):7938-43. DOI:10.1073/pnas.1017360108
40. Horton MR, Burdick MD, Strieter RM, et al. Regulation of hyaluronan-induced chemokine gene expression by IL-10 and IFN-gamma in mouse macrophages. J Immunol. 1998;160(6):3023-30.
41. Scheibner KA, Lutz MA, Boodoo S, et al. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol. 2006;177(2):1272-81. DOI:10.4049/jimmunol.177.2.1272
42. Zheng L, Riehl TE, Stenson WF. Regulation of colonic epithelial repair in mice by Toll-like receptors and hyaluronic acid. Gastroenterology. 2009;137(6):2041-51. DOI:10.1053/j.gastro.2009.08.055
43. Gao F, Liu Y, He Y, et al. Hyaluronan oligosaccharides promote excisional wound healing through enhanced angiogenesis. Matrix Biol. 2010;29(2):107-16. DOI:10.1016/j.matbio.2009.11.002
44. Gao F, Koenitzer JR, Tobolewski JM, et al. Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan. J Biol Chem. 2008;283(10):6058-66. DOI:10.1074/jbc
45. Rilla K, Pasonen-Seppänen S, Rieppo J, et al. The hyaluronan synthesis inhibitor 4-methylumbelliferone prevents keratinocyte activation and epidermal hyperproliferation induced by epidermal growth factor. J Invest Dermatol. 2004;123(4):708-14. DOI:10.1111/j.0022-202X.2004.23409.x
46. Kultti A, Pasonen-Seppänen S, Jauhiainen M, et al. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3. Exp Cell Res. 2009;315(11):1914-23. DOI:10.1016/j.yexcr.2009.03.002
47. Yoshihara S, Kon A, Kudo D, et al. A hyaluronan synthase suppressor, 4-methylumbelliferone, inhibits liver metastasis of melanoma cells. FEBS Lett. 2005;579(12):2722-6. DOI:10.1016/j.febslet.2005.03.079
48. Clarkin CE, Allen S, Wheeler-Jones CP, et al. Reduced chondrogenic matrix accumulation by 4-methylumbelliferone reveals the potential for selective targeting of UDP-glucose dehydrogenase. Matrix Biol. 2011;30(3):163-8. DOI:10.1016/j.matbio.2011.01.002
49. Nakazawa H, Yoshihara S, Kudo D, et al. 4-methylumbelliferone, a hyaluronan synthase suppressor, enhances the anticancer activity of gemcitabine in human pancreatic cancer cells. Cancer Chemother Pharmacol. 2006;57(2):165-70. DOI:10.1007/s00280-005-0016-5
50. Saito T, Tamura D, Nakamura T, et al. 4-methylumbelliferone leads to growth arrest and apoptosis in canine mammary tumor cells. Oncol Rep. 2013;29(1):335-42. DOI:10.3892/or.2012.2100
51. García-Vilas JA, Quesada AR, Medina MÁ. 4-methylumbelliferone inhibits angiogenesis in vitro and in vivo. J Agric Food Chem. 2013;61(17):4063-71. DOI:10.1021/jf303062h
52. Vigetti D, Rizzi M, Viola M, et al. The effects of 4-methylumbelliferone on hyaluronan synthesis, MMP2 activity, proliferation, and motility of human aortic smooth muscle cells. Glycobiology. 2009;19(5):537-46. DOI:10.1093/glycob/cwp022
53. Saga R, Matsuya Y, Takahashi R, et al. 4-Methylumbelliferone administration enhances radiosensitivity of human fibrosarcoma by intercellular communication. Sci Rep. 2021;11(1):8258. DOI:10.1038/s41598-021-87850-3
54. Díaz M, Pibuel M, Paglilla N, et al. 4-Methylumbelliferone induces antitumor effects independently of hyaluronan synthesis inhibition in human acute leukemia cell lines. Life Sci. 2021;287:120065. DOI:10.1016/j.lfs.2021.120065
55. Weiz G, Molejon MI, Malvicini M, et al. Glycosylated 4-methylumbelliferone as a targeted therapy for hepatocellular carcinoma. Liver Int. 2022;42(2):444-57. DOI:10.1111/liv.15084
56. Piccioni F, Fiore E, Bayo J, et al. 4-methylumbelliferone inhibits hepatocellular carcinoma growth by decreasing IL-6 production and angiogenesis. Glycobiology. 2015;25(8):825-35. DOI:10.1093/glycob/cwv023
57. Rodríguez MM, Onorato A, Cantero MJ, et al. 4-methylumbelliferone-mediated polarization of M1 macrophages correlate with decreased hepatocellular carcinoma aggressiveness in mice. Sci Rep. 2021;11(1):6310. DOI:10.1038/s41598-021-85491-0
58. Vitale DL, Icardi A, Rosales P, et al. Targeting the Tumor Extracellular Matrix by the Natural Molecule 4-Methylumbelliferone: A Complementary and Alternative Cancer Therapeutic Strategy. Front Oncol. 2021;11:710061. DOI:10.3389/fonc.2021.710061
59. Kakizaki I, Takagaki K, Endo Y, et al. Inhibition of hyaluronan synthesis in Streptococcus equi FM100 by 4-methylumbelliferone. Eur J Biochem. 2002;269(20):5066-75. DOI:10.1046/j.1432-1033.2002.03217.x
60. Jong A, Wu CH, Chen HM, et al. Identification and characterization of CPS1 as a hyaluronic acid synthase contributing to the pathogenesis of Cryptococcus neoformans infection. Eukaryot Cell. 2007;6(8):1486-96. DOI:10.1128/EC.00120-07
61. Yoshioka Y, Kozawa E, Urakawa H, et al. Suppression of hyaluronan synthesis alleviates inflammatory responses in murine arthritis and in human rheumatoid synovial fibroblasts. Arthritis Rheum. 2013;65(5):1160-70. DOI:10.1002/art.37861
62. Mueller AM, Yoon BH, Sadiq SA. Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS. J Biol Chem. 2014;289(33):22888-99. DOI:10.1074/jbc.M114.559583
63. Nagy N, Kaber G, Sunkari VG, et al. Inhibition of hyaluronan synthesis prevents β-cell loss in obesity-associated type 2 diabetes. Matrix Biol. 2023;123:34-47. DOI:10.1016/j.matbio.2023.09.003
64. Al-Majedy YK, Al-Amiery AA, Kadhum AA, Mohamad AB. Antioxidant Activities of 4-Methylumbelliferone Derivatives. PLoS One. 2016;11(5):e0156625. DOI:10.1371/journal.pone.0156625
65. Lin Z, Cheng X, Zheng H. Umbelliferon: a review of its pharmacology, toxicity and pharmacokinetics. Inflammopharmacology. 2023;31(4):1731-50. DOI:10.1007/s10787-023-01256-3
66. Tsitrina AA, Halimani N, Andreichenko IN, et al. 4-Methylumbelliferone Targets Revealed by Public Data Analysis and Liver Transcriptome Sequencing. Int J Mol Sci. 2023;24(3):2129. DOI:10.3390/ijms24032129
67. Li T, Francl JM, Boehme S, Chiang JY. Regulation of cholesterol and bile acid homeostasis by the cholesterol 7α-hydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice. Hepatology. 2013;58(3):1111-21. DOI:10.1002/hep.26427
68. Xing X, Burgermeister E, Geisler F, et al. Hematopoietically expressed homeobox is a target gene of farnesoid X receptor in chenodeoxycholic acid-induced liver hypertrophy. Hepatology. 2009;49(3):979-88. DOI:10.1002/hep.22712
69. Gupta S, Stravitz RT, Dent P, Hylemon PB. Down-regulation of cholesterol 7alpha-hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-Jun N-terminal kinase pathway. J Biol Chem. 2001;276(19):15816-22. DOI:10.1074/jbc.M010878200
70. Chiang JYL, Ferrell JM. Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis. Liver Res. 2020;4(2):47-63. DOI:10.1016/j.livres.2020.05.001
Авторы
Е.Ю. Плотникова*
ФГБОУ ВО «Кемеровский государственный медицинский университет» Минздрава России, Кемерово, Россия
*eka-pl@rambler.ru
Kemerovo State Medical University, Kemerovo, Russia
*eka-pl@rambler.ru
ФГБОУ ВО «Кемеровский государственный медицинский университет» Минздрава России, Кемерово, Россия
*eka-pl@rambler.ru
________________________________________________
Kemerovo State Medical University, Kemerovo, Russia
*eka-pl@rambler.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
