Роль эпителиально-мезенхимального перехода в патогенезе различных заболеваний
Роль эпителиально-мезенхимального перехода в патогенезе различных заболеваний
Варданян М.А., Пилюгина Э.И., Бадлаева А.С., Чупрынин В.Д., Буралкина Н.А. Роль эпителиально-мезенхимального перехода в патогенезе различных заболеваний. Consilium Medicum. 2024;26(7):455–460. DOI: 10.26442/20751753.2024.7.202966
Vardanyan MA, Pilyugina EI, Badlaeva AS, Chuprynin VD, Buralkina NA. The role of epithelial-mesenchymal transition in the pathogenesis of various diseases: A review. Consilium Medicum. 2024;26(7):455–460.
DOI: 10.26442/20751753.2024.7.202966
Роль эпителиально-мезенхимального перехода в патогенезе различных заболеваний
Варданян М.А., Пилюгина Э.И., Бадлаева А.С., Чупрынин В.Д., Буралкина Н.А. Роль эпителиально-мезенхимального перехода в патогенезе различных заболеваний. Consilium Medicum. 2024;26(7):455–460. DOI: 10.26442/20751753.2024.7.202966
Vardanyan MA, Pilyugina EI, Badlaeva AS, Chuprynin VD, Buralkina NA. The role of epithelial-mesenchymal transition in the pathogenesis of various diseases: A review. Consilium Medicum. 2024;26(7):455–460.
DOI: 10.26442/20751753.2024.7.202966
Эпителиально-мезенхимальный переход (ЭМП) является клеточным процессом, в ходе которого эпителиальные клетки приобретают фенотип и свойства мезенхимальных. Этот процесс играет большую и важную роль в прогрессировании различных заболеваний, пусковых механизмах на различных стадиях развития как у мужчин, так и у женщин разной возрастной категории. Проведенный анализ литературных данных позволяет заключить, что пусковые факторы ЭМП в патогенезе различных заболеваний схожи. Воздействие на молекулярно-биологические мишени ЭМП предотвратит формирование заболеваний на ранних этапах. Данный факт будет способствовать поиску таргетных препаратов для лечения таких пациентов.
Ключевые слова: эпителиально-мезенхимальный переход, злокачественные и доброкачественные заболевания
________________________________________________
Epithelial-mesenchymal transition (EMT) is a cellular process in which epithelial cells acquire the phenotype and properties of mesenchymal cells. This process plays a large and important role in the progression of various diseases, in the launch of trigger mechanisms at various stages of development, both in men and women, of different age categories. The conducted analysis of literary data allows us to conclude that the triggering factors of EMT in the pathogenesis of various diseases are similar. The impact on the molecular biological targets of EMT will prevent the formation of diseases at early stages. This fact will contribute to the search for targeted drugs for the treatment of such patients.
Keywords: epithelial-mesenchymal transition, malignant and benign diseases
1. Yang J, Antin P, Berx G, et al. EMT International Association (TEMTIA). Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2020;21(6):341-52. DOI:10.1038/s41580-020-0237-9
2. Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442-54. DOI:10.1038/nrc822
3. Gleason K. Elizabeth Dexter Hay (1927–2007). Embryo Project Encyclopedia 2017-07-26. Available at: https://hdl.handle.net/10776/12968. Accessed: 01.08.2024.
4. Newgreen DF, Ritterman M, Peters EA. Morphology and behaviour of neural crest cells of chick embryo in vitro. Cell Tissue Res. 1979;203:115-40. DOI:10.1007/BF00234333.
5. Markwald RR, Fitzharris TP, Manasek FJ. Structural development of endocardial cushions. Am J Anat. 1977;148:85-119. DOI:10.1002/aja.1001480108
6. Trelstad RL, Hayashi A, Hayashi K, Donahoe PK. The epithelial–mesenchymal interface of the male rate Mullerian duct: loss of basement membrane integrity and ductal regression. Dev Biol. 1982;92:27-40. DOI:10.1016/0012-1606(82)90147-6
7. Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol. 1982;95:333-9. DOI:10.1083/jcb.95.1.333
8. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420-8. DOI:10.1172/JCI39104
9. Francou A, Anderson KV. The Epithelial-to-Mesenchymal Transition (EMT) in Development and Cancer. Annu Rev Cancer Biol. 2020:4:197-220.
DOI:10.1146/annurev-cancerbio-030518-055425
10. Acloque H, Adams MS, Fishwick K, et al. Epithelial–mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest. 2009;119:1438-49.
11. Duband JL, Monier F. Epithelium-mesenchyme transition during neural crest development. Acta Anat (Basel). 1995;154(1):63-78.
12. Azhar M, Schultz J, Grupp I, et al. Transforming growth factor beta in cardiovascular development and function. Cytokine Growth Factor Rev. 2003;14(5):391-407.
13. Yamakoshi S, Bai R, Chaen T. Expression of mesenchymal-related genes by the bovine trophectoderm following conceptus attachment to the endometrial epithelium. Reproduction. 2012;143(3):377-87.
14. Uchida H, Maruyama T, Nishikawa-Uchida S, et al. Studies using an in vitro model show evidence of involvement of epithelial-mesenchymal transition of human endometrial epithelial cells in human embryo implantation. J Biol Chem. 2012;287(7):4441-50.
15. Saunders LR, McClay DR. Sub-circuits of a gene regulatory network control a developmental epithelial-mesenchymal transition. Development. 2014;141(7):1503-13.
16. Viebahn C. Epithelio-mesenchymal transformation during formation of the mesoderm in the mammalian embryo. Acta Anat (Basel). 1995;154(1):79-97.
17. Yang R, Yi M, Xiang B. Novel Insights on Lipid Metabolism Alterations in Drug Resistance in Cancer. Front Cell Dev Biol. 2022;10:875318. DOI:10.3389/fcell.2022.875318
18. Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol. 2001;159:1465-75.
19. Zeisberg M, Bonner G, Maeshima Y, et al. Renal fibrosis: collagen composition and assembly regulates epithelial-mesenchymal transdifferentiation. Am J Pathol. 2001;159:1313-21.
20. Buhrmann C, Brockmueller A, Harsha C. Evidence That Tumor Microenvironment Initiates Epithelial-To-Mesenchymal Transition and Calebin A can Suppress it in Colorectal Cancer Cells. Front Pharmacol. 2021;12:699842. DOI:10.3389/fphar.2021.699842
21. Taki M, Abiko K, Ukita M, et al. Tumor Immune Microenvironment during Epithelial-Mesenchymal Transition. Clin Cancer Res. 2021;27(17):4669-79.
DOI:10.1158/1078-0432.CCR-20-4459
22. Fan JM, Ng YY, Hill PA, et al. Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int. 1999;56:1455-67.
23. Okada H, Danoff TM, Kalluri R, Neilson EG. The early role of FSP1 in epithelial-mesenchymal transformation. Am J Physiol. 1997;273:563-74.
24. Morali OG, Delmas V, Moore R, et al. IGF-II induces rapid beta-catenin relocation to the nucleus during epithelium to mesenchyme transition. Oncogene. 2001;20:4942-50.
25. Strutz F, Zeisberg M, Ziyadeh FN, et al. Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int. 2002;61:1714-28.
26. Ньето М.А. Пластичность эпителия: общая тема в эмбриональных и раковых клетках. Наука. 2013;342:1234850 [Nyeto MA. Plastichnost epiteliia: obshchaia tema v embrionalnykh i rakovykh kletkakh. Nauka. 2013;342:1234850 (in Russian)].
27. Hatta K, Okada TS, Takeichi M. A monoclonal antibody disrupting calcium-dependent cell-cell adhesion of brain tissues: possible role of its target antigen in animal pattern formation. Proc Natl Acad Sci U S A. 1985;82(9):278993. DOI:10.1073/pnas.82.9.2789
28. Larue L, Ohsugi M, Hirchenhain J, Kemler R. E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci U S A. 1994;91(17):8263-7. DOI:10.1073/pnas.91.17.8263
29. Andrews JL, Kim AC, Hens JR. The role and function of cadherins in the mammary gland. Breast Cancer Research. 2012;14(1):203.
30. Roy F, Berx G. The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 2008;65:3756-88.
31. Angst BD, Marcozzi C, Magee AI. The cadherin superfamily. J Cell Sci. 2001;114(4):1-9.
32. Saadatmand S, de Kruijf EM, Sajet A, et al. Expression of cell adhesion molecules and prognosis in breast cancer. Br J Surg. 2013;100(2):252-60.
33. Wheelock MJ, Johnson KR. Cadherin-mediated cellular signaling. Curr Opin Cell Biol. 2003;15:509-14.
34. Drivalos A, Chrisofos M, Efstathiou E, et al. Expression of alpha5-integrin, alpha7-integrin, Epsilon-cadherin, and N-cadherin in localized prostate cancer. Urol Oncol. 2016;34(4):165e111-68.
35. Hui L, Zhang S, Dong X, et al. Prognostic significance of twist and N-cadherin expression in NSCLC. PLoS One. 2013;8(4):e62171.
36. Muramaki M, Miyake H, Terakawa T, et al. Expression profile of E-cadherin and N-cadherin in urothelial carcinoma of the upper urinary tract is associated with disease recurrence in patients undergoing nephroureterectomy. Urology. 2011;78(6):1443-7.
37. Seo DD, Lee HC, Kim HJ, et al. Neural cadherin overexpression is a predictive marker for early postoperative recurrence in hepatocellular carcinoma patients. J Gastroenterol Hepatol. 2008;23(7 Pt .1):1112-8.
38. Reis SA, Thompson MN, Lee JM. Striatal neurons expressing full-length mutant huntingtin exhibit decreased N-cadherin and altered neuritogenesis. Hum Mol Genet. 2011;20(12):2344-55. DOI:10.1093/hmg/ddr127
39. Li J, Levin MD, Xiong Y, et al. N-cadherin haploinsufficiency affects cardiac gap junctions and arrhythmic susceptibility. J Mol Cell Cardiol. 2008;44(3):597-606. DOI:10.1016/j.yjmcc.2007.11.013
40. Miettinen PJ, Ebner R, Lopez AR, Derynck R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol. 1994;127(6 Pt. 2):2021-36.
41. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178-96.
42. De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13(2):97-110.
43. Derynck R, Muthusamy BM, Saeteurn KY. Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition. Curr Opin Cell Biol. 2014;31:56-66.
44. Cano A. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76-83. DOI:10.1038/35000025
45. Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018;18:128-34. DOI:10.1038/nrc.2017.118
46. Nieto MA, Huang RY, Jackson RA, et al. Emt: 2016. Cell. 2016;166:21-45. DOI:10.1016/j.cell.2016.06.028
47. Hsu MY, Meier FE, Nesbit M, Hsu JY. E-cadherin expression in melanoma cells restores keratinocyte-mediated growth control and down-regulates expression of invasion-related adhesion receptors. Am J Pathol. 2000;156:1515-25. DOI:10.1016/S0002-9440(10)65023-7
48. Ruscetti M, Quach B, Dadashian EL, et al. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells during Prostate Cancer Metastasis. Cancer Res. 2015;75:2749-59. DOI:10.1158/0008-5472.CAN-14-3476
49. Krebs AM, Mitschke J, Lasierra Losada M, et al. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol. 2017;19:518-29. DOI:10.1038/ncb3513
50. Mattiolo P, Fiadone G, Paolino G, et al. Epithelial-mesenchymal transition in undifferentiated carcinoma of the pancreas with and without osteoclast-like giant cells. Virchows Arch. 2021;478(2):319-26. DOI:10.1007/s00428-020-02889-3
51. Van Keymeulen A, Lee MY, Ousset M, et al. Reactivation of multipotency by oncogenic PIK3CA induces breast tumour heterogeneity. Nature. 2015;525:119-23. DOI:10.1038/nature14665
52. Sasatomi E, Tokunaga O, Miyazaki K. Spontaneous apoptosis in gallbladder carcinoma. Relationships with clinicopathologic factors, expression of E-cadherin, bcl-2 protooncogene, and p53 oncosuppressor gene. Cancer. 1996;78:2101-10. DOI:10.1002/(SICI)1097-0142(19961115)78:10<2101::AID-CNCR10>3.0.CO;2-2
53. Barlow LJ, Shen MM. SnapShot: Prostate cancer. Cancer Cell. 2013;24:400-1.
54. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA: Cancer J Clin. 2016;66:7-30.
55. Imamichi Y, Konig A, Gress T, Menke A. Collagen type I-induced Smad-interacting protein 1 expression downregulates E-cadherin in pancreatic cancer. Oncogene. 2007;26:2381-5.
56. Maeda G, Chiba T, Okazaki M, et al. Expression of SIP1 in oral squamous cell carcinomas: implications for E-cadherin expression and tumor progression. Int J Oncol.
2005;27:1535-41.
57. Spaderna S, Schmalhofer O, Hlubek F, et al. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology. 2006;131:830-40.
58. Spaderna S, Schmalhofer O, Wahlbuhl M, et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res. 2008;68:537-44.
59. Spoelstra NS, Manning NG, Higashi Y, et al. The transcription factor ZEB1 is aberrantly expressed in aggressive uterine cancers. Cancer Res. 2006;66:3893-902.
60. Nauseef JT, Henry MD. Epithelial-to-mesenchymal transition in prostate cancer: paradigm or puzzle? Nat Rev Urol. 2011;8:428-39.
61. Cheng L, Nagabhushan M, Pretlow TP, et al. Expression of E-cadherin in primary and metastatic prostate cancer. Am J Pathol. 1996;148:1375-80.
62. Wallerand H, Robert G, Pasticier G, et al. The epithelial-mesenchymal transition-inducing factor TWIST is an attractive target in advanced and/or metastatic bladder and prostate cancers. Urol Oncol. 2010;28:473-9.
63. Liu YN, Yin JJ, Abou-Kheir W, et al. MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene. 2012;32(3):296-306.
64. Adler HL, McCurdy MA, Kattan MW, et al. Elevated levels of circulating interleukin-6 and transforming growth factor-beta1 in patients with metastatic prostatic carcinoma. J Urol. 1999;161:182-7.
65. Wikstrom P, Stattin P, Franck-Lissbrant I, et al. Transforming growth factor beta1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate. 1998;37:19-29.
66. Zhang J, Ma L. MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metastasis Rev. 2012;31:653-62.
67. Lamouille S, Subramanyam D, Blelloch R, Derynck R. Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. Curr Opin Cell Biol. 2013;25:200-7.
68. Zaravinos A. The Regulatory Role of MicroRNAs in EMT and Cancer. J Oncol. 2015;2015:865816.
69. Khomiak A, Brunner M, Kordes M, et al. Recent Discoveries of Diagnostic, Prognostic and Predictive Biomarkers for Pancreatic Cancer. Cancers (Basel) 2020;12.
70. Löhr M. Is it possible to survive pancreatic cancer? Nat Clin Pract Gastroenterol Hepatol. 2006;3:236-7.
71. Miller KD, Goding Sauer A, Ortiz AP, et al. Cancer statistics for hispanics/latinos, 2018. CA: A Cancer J Clin. 2018;68(6):425-45. DOI:10.3322/caac.21494
72. Ганцев Ш.Х. Онкология: Учебник для студентов медицинских вузов. М.: Медицинское информационное агентство, 2006 [Gantsev ShKh. Onkologiia: Uchebnik dlia studentov meditsinskikh vuzov. Moscow: Meditsinskoe informatsionnoe agentstvo, 2006 (in Russian)].
73. Rawla P, Sunkara T, Gaduputi V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J Oncol. 2019;10:10-27.
74. Rahib L, Smith BD, Aizenberg R, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913-21.
75. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69-84. DOI:10.1038/s41580-018-0080-4
76. Nieto MA. Context-specific roles of EMT programmes in cancer cell dissemination. Nat Cell Biol. 2017;19(5):416-8. DOI:10.1038/ncb3520
77. Mateen S, Raina K, Agarwal C, et al. Silibinin synergizes with histone deacetylase and DNA methyltransferase inhibitors in upregulating E-cadherin expression together with inhibition of migration and invasion of human non-small cell lung cancer cells. J Pharmacol Exp Ther. 345:206-14.
78. Zhang X, Liu G, Kang Y, et al. N-cadherin expression is associated with acquisition of EMT phenotype and with enhanced invasion in erlotinib-resistant lung cancer cell lines. PLoS One. 2013;8:e576922013.
79. Vano-Galvan S, Molina-Ruiz AM, Serrano-Falcon C, et al. Frontal fibrosing alopecia: a multicenter review of 355 patients. J Am Acad Dermatol. 2014;70:670-8. DOI:10.1016/j.jaad.2013.12.003
80. Ross EK, Tan E, Shapiro J. Update on primary cicatricial alopecias. J Am Acad Dermatol. 2005;53:1-37.
81. Moreno-Arrones OM, Saceda-Corralo D, Fonda-Pascual P, et al. Frontal fibrosing alopecia: clinical and prognostic classification. J Eur Acad Dermatol Venereol. 2017;31:1739-45. DOI:10.1111/jdv.14287
82. Jozic I, Chéret J, Abujamra BA, et al. A cell membrane-level approach to cicatricial alopecia management: Is caveolin-1 a viable therapeutic target in frontal fibrosing alopecia? Biomedicines. 2021;9:572. DOI:10.3390/biomedicines9050572
83. Imanishi H, Ansell DM, Chéret J, et al. Epithelial-to-mesenchymal stem cell transition in a human organ: lessons from lichen planopilaris. J Invest Dermatol. 2018;138:511-9. DOI:10.1016/j.jid.2017.09.047
84. Stuart AJ, Romano V, Virgili G, Shortt AJ. Descemet's membrane endothelial keratoplasty (DMEK) versus Descemet's stripping automated endothelial keratoplasty (DSAEK) for corneal endothelial failure. Cochrane Database Syst Rev. 2018;6(6):CD012097. DOI:10.1002/14651858.CD012097.pub2
85. Price MO, Giebel AW, Fairchild KM, Price FW Jr. Descemet's membrane endothelial keratoplasty: prospective multicenter study of visual and refractive outcomes and endothelial survival. Ophthalmology. 2009;116(12):2361-8. DOI:10.1016/j.ophtha.2009.07.010
86. Iliff BW, Riazuddin SA, Gottsch JD. The genetics of Fuchs' corneal dystrophy. Expert Rev Ophthalmol. 2012;7(4):363-75. DOI:10.1586/eop.12.39
87. Lee JG, Kay EP. NF-κB is the transcription factor for FGF-2 that causes endothelial mesenchymal transformation in cornea. Invest Ophthalmol Vis Sci. 2012;53(3):1530-8. DOI:10.1167/iovs.11-9102
88. Chen D, Texada DE, Duggan C, et al. Caspase-3 and -7 mediate apoptosis of human Chang's conjunctival cells induced by enterovirus 70. Virology. 2006;347(2):307-22. DOI:10.1016/j.virol.2005.12.005
89. Zhu YT, Chen HC, Chen SY, Tseng SCG. Nuclear p120 catenin unlocks mitotic block of contact-inhibited human corneal endothelial monolayers without disrupting adherent junctions. J Cell Sci. 2012;125:3636-48.
90. Li C, Dong F, Jia YN, et al. Notch signal regulates corneal endothelial-to-mesenchymal transition. Am J Pathol. 2013;183:786-95.
91. Kawai M, Inoue T, Inatani M, et al. Elevated levels of monocyte chemoattractant protein-1 in the aqueous humor after phacoemulsification. Investig Ophthalmol Vis Sci.
2012;53:7951-60.
92. Rieder F, Kessler SP, West GA, et al. Inflammation-induced endothelial-to-mesenchymal transition: A novel mechanism of intestinal fibrosis. Am J Pathol. 2011;179:2660-73.
93. Zhang XH, Sun HM, Yuan JQ. Extracellular matrix production of lens epithelial cells. J Cataract Refract Surg. 2001;27:1303-9.
94. Pitts JF, Jay JL. The association of Fuchs's corneal endothelial dystrophy with axial hypermetropia, shallow anterior chamber, and angle closure glaucoma. Br J Ophthalmol. 1990;74(10):601-4. DOI:10.1136/bjo.74.10.601
95. Chen F, Liu X, Chen Y, et al. Sphere-induced reprogramming of RPE cells into dual-potential RPE stem-like cells. EBioMedicine. 2020;52:102618. DOI:10.1016/j.ebiom.2019.102618
96. Gupta R, Kumawat BL, Paliwal P, et al. Association of ZEB1 and TCF4 rs613872 changes with late onset Fuchs endothelial corneal dystrophy in patients from northern India. Mol Vis. 2015;21:1252-60.
97. Lechner J, Dash DP, Muszynska D, et al. Mutational spectrum of the ZEB1 gene in corneal dystrophies supports a genotype-phenotype correlation. Invest Ophthalmol Vis Sci. 2013;54(5):3215-23. DOI:10.1167/iovs.13-11781
98. Yellore VS, Rayner SA, Nguyen CK, et al. Analysis of the role of ZEB1 in the pathogenesis of posterior polymorphous corneal dystrophy. Investig Ophthalmol Vis Sci. 2012;53:273-8.
99. Косяков С.Я. Пискунов Г.З., Атанесян А.Г. Современная диагностика и лечение отитов и риносинуситов согласно международным стандартам: учебное пособие для врачей. М., 2007 [Kosyakov SIa, Piskunov GZ, Atanesyan AG. Sovremennaia diagnostika i lecheniie otitov i rinosinusitov soglasno mezhdunarodnym standartam: uchebnoie posobiie dlia vrachei. Moscow, 2007 (in Russian)].
100. Плужников М.С., Лавренова Г.В., Катинас Е.Б. Основные принципы иммунокорригирующей терапии в оториноларингологии. Вестник оториноларингологии. 2008;4:7-12 [Pluzhnikov M.S. Lavrenova G.V. Katinas E.B. Osnovnye printsipy immunokorrigiruiushchei terapii v otorinolaringologii. Vestnik otorinilaringologii. 2008;4:7-12 (in Russian)].
101. Hupin C, Gohy S, Bouzin C, et al. Features of mesenchymal transition in the airway epithelium from chronic rhinosinusitis. Allergy. 2014;69(11):1540-9. DOI:10.1111/all.12503
102. Soyka MB, Wawrzyniak P, Eiwegger T, et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-γ and IL-4. J Allergy Clin Immunol. 2012;130(5):1087-96.e10. DOI:10.1016/j.jaci.2012.05.052
103. Schleimer RP. Иммунопатогенез хронического риносинусита и полипоза носа. Annu Rev Pathol. 2017;12:331-57.
104. Bankova LG, Barrett NA. Epithelial cell function and remodeling in nasal polyposis. Ann Allergy Asthma Immunol. 2020;124(4):333-41. DOI:10.1016/j.anai.2020.01.018
105. Bronsert P, Enderle-Ammour K, Bader M, et al. Cancer cell invasion and EMT marker expression: a three-dimensional study of the human cancerhost interface. J Pathol. 2014;234:410-22
106. Bitterman P, Chun B, Kurman RJ. The significance of epithelial differentiation in mixed mesodermal tumors of the uterus. A clinicopathologic and immunohistochemical study. Am J Surg Pathol. 1990;14:317-28.
107. DeLong W, Grignon DJ, Eberwein P, et al. Sarcomatoid renal cell carcinoma. An immunohistochemical study of 18 cases. Arch Pathol Lab Med. 1993;117:636-40.
108. Haraguchi S, Fukuda Y, Sugisaki Y, Yamanaka N. Pulmonary carcinosarcoma: immunohistochemical and ultrastructural studies. Pathol Int. 1999;49:903-8.
109. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, et al. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008;68:989-97.
110. Yabuuchi Y, Tanaka M, Ono H. Carcinosarcoma of the esophagus with rapid morphological change. Am J Gastroenterol. 2018;113:642.
111. Paniz-Mondolfi A, Singh R, Jour G, et al. Cutaneous carcinosarcoma: further insights into its mutational landscape through massive parallel genome sequencing. Virchows Arch. 2014;465:339-50.
112. Paniz-Mondolfi A, Singh R, Jour G, et al. Cutaneous carcinosarcoma and the EMT: to transition, or not to transition? That is the question. Virchows Arch. 2015;466:359-60.
113. Somarelli JA. Carcinosarcomas: tumors in transition? Histol Histopathol. 2015;30.
114. Koba H, Kimura H, Nishikawa S, et al. Next-generation sequencing analysis identifies genomic alterations in pathological :morphologies: a case of pulmonary carcinosarcoma harboring EGFR mutations. Lung Cancer. 2018;122:146-50.
115. Ocaña OH, Córcoles R, Fabra A, et al. Metastatic colonization requires the repression of the epithelial–mesenchymal transition inducer Prrx1. Cancer Cell. 2012;22:709-24. DOI:10.1016/j.ccr.2012.10.012
116. Tsai JH, Donaher JL, Murphy DA, et al. Spatiotemporal regulation of epithelial–mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell. 2012;22:725-36. DOI:10.1016/j.ccr.2012.09.022
117. Tsai JH, Yang J. Epithelial–mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013;27:2192-206. DOI:10.1101/gad.225334.113
118. Brabletz T. To differentiate or not-routes towards metastasis. Nat Rev Cancer. 2012;12:425-36. DOI:10.1038/nrc3265
119. Chaffer CL, San Juan BP, Lim E, Weinberg RA. EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 2016;35:645-54. DOI:10.1007/s10555-016-9648-7
120. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168:670-91. DOI:10.1016/j.cell.2016.11.037
121. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871-90. DOI:10.1016/j.cell.2009.11.007
122. Li F, Pascal LE, Stolz DB, et al. E-cadherin is downregulated in benign prostatic hyperplasia and required for tight junction formation and permeability barrier in the prostatic epithelial cell monolayer. Prostate. 2019;79:1226-37. DOI:10.1002/pros.23806
123. O’Malley KJ, Eisermann K, Pascal LE, et al. Proteomic analysis of patient tissue reveals PSA protein in the stroma of benign prostatic hyperplasia. Prostate. 2014;74:892-900. DOI:10.1002/pros.22807
124. Alonso-Magdalena P, Brössner C, Reiner A, et al. A role for epithelial-mesenchymal transition in the etiology of benign prostatic hyperplasia. Proc Natl Acad Sci USA.
2009;106:2859-63. DOI:10.1073/pnas.0812666106
125. Liu J, Zhang J, Fu X, et al. The Emerging Role of Cell Adhesion Molecules on Benign Prostatic Hyperplasia. Int J Mol Sci. 2023;24(3):2870. DOI:10.3390/ijms24032870
126. He X, Liu N, Mu T, et al. Oestrogen induces epithelial-mesenchymal transition in endometriosis via circ_0004712/miR-148a-3p sponge function. J Cell Mol Med.
2020;24(17):9658-66. DOI:10.1111/jcmm.15495
127. Tan HJ, Deng ZH, Zhang C, et al. CXADR promote epithelial-mesenchymal transition in endometriosis by modulating AKT/GSK-3β signaling. Cell Cycle. 2023;22(21-2):2436-48. DOI:10.1080/15384101.2023.2296242
128. Wang M, Wu Y, He Y, et al. SIRT1 upregulation promotes epithelial-mesenchymal transition by inducing senescence escape in endometriosis. Sci Rep. 2022;12(1):12302. DOI:10.1038/s41598-022-16629-x
129. Konrad L, Dietze R, Riaz MA, et al. Epithelial-Mesenchymal Transition in Endometriosis – When Does It Happen? J Clin Med. 2020;9(6):1915. DOI:10.3390/jcm9061915
________________________________________________
1. Yang J, Antin P, Berx G, et al. EMT International Association (TEMTIA). Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2020;21(6):341-52. DOI:10.1038/s41580-020-0237-9
2. Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442-54. DOI:10.1038/nrc822
3. Gleason K. Elizabeth Dexter Hay (1927–2007). Embryo Project Encyclopedia 2017-07-26. Available at: https://hdl.handle.net/10776/12968. Accessed: 01.08.2024.
4. Newgreen DF, Ritterman M, Peters EA. Morphology and behaviour of neural crest cells of chick embryo in vitro. Cell Tissue Res. 1979;203:115-40. DOI:10.1007/BF00234333.
5. Markwald RR, Fitzharris TP, Manasek FJ. Structural development of endocardial cushions. Am J Anat. 1977;148:85-119. DOI:10.1002/aja.1001480108
6. Trelstad RL, Hayashi A, Hayashi K, Donahoe PK. The epithelial–mesenchymal interface of the male rate Mullerian duct: loss of basement membrane integrity and ductal regression. Dev Biol. 1982;92:27-40. DOI:10.1016/0012-1606(82)90147-6
7. Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol. 1982;95:333-9. DOI:10.1083/jcb.95.1.333
8. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420-8. DOI:10.1172/JCI39104
9. Francou A, Anderson KV. The Epithelial-to-Mesenchymal Transition (EMT) in Development and Cancer. Annu Rev Cancer Biol. 2020:4:197-220.
DOI:10.1146/annurev-cancerbio-030518-055425
10. Acloque H, Adams MS, Fishwick K, et al. Epithelial–mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest. 2009;119:1438-49.
11. Duband JL, Monier F. Epithelium-mesenchyme transition during neural crest development. Acta Anat (Basel). 1995;154(1):63-78.
12. Azhar M, Schultz J, Grupp I, et al. Transforming growth factor beta in cardiovascular development and function. Cytokine Growth Factor Rev. 2003;14(5):391-407.
13. Yamakoshi S, Bai R, Chaen T. Expression of mesenchymal-related genes by the bovine trophectoderm following conceptus attachment to the endometrial epithelium. Reproduction. 2012;143(3):377-87.
14. Uchida H, Maruyama T, Nishikawa-Uchida S, et al. Studies using an in vitro model show evidence of involvement of epithelial-mesenchymal transition of human endometrial epithelial cells in human embryo implantation. J Biol Chem. 2012;287(7):4441-50.
15. Saunders LR, McClay DR. Sub-circuits of a gene regulatory network control a developmental epithelial-mesenchymal transition. Development. 2014;141(7):1503-13.
16. Viebahn C. Epithelio-mesenchymal transformation during formation of the mesoderm in the mammalian embryo. Acta Anat (Basel). 1995;154(1):79-97.
17. Yang R, Yi M, Xiang B. Novel Insights on Lipid Metabolism Alterations in Drug Resistance in Cancer. Front Cell Dev Biol. 2022;10:875318. DOI:10.3389/fcell.2022.875318
18. Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol. 2001;159:1465-75.
19. Zeisberg M, Bonner G, Maeshima Y, et al. Renal fibrosis: collagen composition and assembly regulates epithelial-mesenchymal transdifferentiation. Am J Pathol. 2001;159:1313-21.
20. Buhrmann C, Brockmueller A, Harsha C. Evidence That Tumor Microenvironment Initiates Epithelial-To-Mesenchymal Transition and Calebin A can Suppress it in Colorectal Cancer Cells. Front Pharmacol. 2021;12:699842. DOI:10.3389/fphar.2021.699842
21. Taki M, Abiko K, Ukita M, et al. Tumor Immune Microenvironment during Epithelial-Mesenchymal Transition. Clin Cancer Res. 2021;27(17):4669-79.
DOI:10.1158/1078-0432.CCR-20-4459
22. Fan JM, Ng YY, Hill PA, et al. Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int. 1999;56:1455-67.
23. Okada H, Danoff TM, Kalluri R, Neilson EG. The early role of FSP1 in epithelial-mesenchymal transformation. Am J Physiol. 1997;273:563-74.
24. Morali OG, Delmas V, Moore R, et al. IGF-II induces rapid beta-catenin relocation to the nucleus during epithelium to mesenchyme transition. Oncogene. 2001;20:4942-50.
25. Strutz F, Zeisberg M, Ziyadeh FN, et al. Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int. 2002;61:1714-28.
26. Nyeto MA. Plastichnost epiteliia: obshchaia tema v embrionalnykh i rakovykh kletkakh. Nauka. 2013;342:1234850 (in Russian).
27. Hatta K, Okada TS, Takeichi M. A monoclonal antibody disrupting calcium-dependent cell-cell adhesion of brain tissues: possible role of its target antigen in animal pattern formation. Proc Natl Acad Sci U S A. 1985;82(9):278993. DOI:10.1073/pnas.82.9.2789
28. Larue L, Ohsugi M, Hirchenhain J, Kemler R. E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci U S A. 1994;91(17):8263-7. DOI:10.1073/pnas.91.17.8263
29. Andrews JL, Kim AC, Hens JR. The role and function of cadherins in the mammary gland. Breast Cancer Research. 2012;14(1):203.
30. Roy F, Berx G. The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 2008;65:3756-88.
31. Angst BD, Marcozzi C, Magee AI. The cadherin superfamily. J Cell Sci. 2001;114(4):1-9.
32. Saadatmand S, de Kruijf EM, Sajet A, et al. Expression of cell adhesion molecules and prognosis in breast cancer. Br J Surg. 2013;100(2):252-60.
33. Wheelock MJ, Johnson KR. Cadherin-mediated cellular signaling. Curr Opin Cell Biol. 2003;15:509-14.
34. Drivalos A, Chrisofos M, Efstathiou E, et al. Expression of alpha5-integrin, alpha7-integrin, Epsilon-cadherin, and N-cadherin in localized prostate cancer. Urol Oncol. 2016;34(4):165e111-68.
35. Hui L, Zhang S, Dong X, et al. Prognostic significance of twist and N-cadherin expression in NSCLC. PLoS One. 2013;8(4):e62171.
36. Muramaki M, Miyake H, Terakawa T, et al. Expression profile of E-cadherin and N-cadherin in urothelial carcinoma of the upper urinary tract is associated with disease recurrence in patients undergoing nephroureterectomy. Urology. 2011;78(6):1443-7.
37. Seo DD, Lee HC, Kim HJ, et al. Neural cadherin overexpression is a predictive marker for early postoperative recurrence in hepatocellular carcinoma patients. J Gastroenterol Hepatol. 2008;23(7 Pt .1):1112-8.
38. Reis SA, Thompson MN, Lee JM. Striatal neurons expressing full-length mutant huntingtin exhibit decreased N-cadherin and altered neuritogenesis. Hum Mol Genet. 2011;20(12):2344-55. DOI:10.1093/hmg/ddr127
39. Li J, Levin MD, Xiong Y, et al. N-cadherin haploinsufficiency affects cardiac gap junctions and arrhythmic susceptibility. J Mol Cell Cardiol. 2008;44(3):597-606. DOI:10.1016/j.yjmcc.2007.11.013
40. Miettinen PJ, Ebner R, Lopez AR, Derynck R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol. 1994;127(6 Pt. 2):2021-36.
41. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178-96.
42. De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13(2):97-110.
43. Derynck R, Muthusamy BM, Saeteurn KY. Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition. Curr Opin Cell Biol. 2014;31:56-66.
44. Cano A. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76-83. DOI:10.1038/35000025
45. Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018;18:128-34. DOI:10.1038/nrc.2017.118
46. Nieto MA, Huang RY, Jackson RA, et al. Emt: 2016. Cell. 2016;166:21-45. DOI:10.1016/j.cell.2016.06.028
47. Hsu MY, Meier FE, Nesbit M, Hsu JY. E-cadherin expression in melanoma cells restores keratinocyte-mediated growth control and down-regulates expression of invasion-related adhesion receptors. Am J Pathol. 2000;156:1515-25. DOI:10.1016/S0002-9440(10)65023-7
48. Ruscetti M, Quach B, Dadashian EL, et al. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells during Prostate Cancer Metastasis. Cancer Res. 2015;75:2749-59. DOI:10.1158/0008-5472.CAN-14-3476
49. Krebs AM, Mitschke J, Lasierra Losada M, et al. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol. 2017;19:518-29. DOI:10.1038/ncb3513
50. Mattiolo P, Fiadone G, Paolino G, et al. Epithelial-mesenchymal transition in undifferentiated carcinoma of the pancreas with and without osteoclast-like giant cells. Virchows Arch. 2021;478(2):319-26. DOI:10.1007/s00428-020-02889-3
51. Van Keymeulen A, Lee MY, Ousset M, et al. Reactivation of multipotency by oncogenic PIK3CA induces breast tumour heterogeneity. Nature. 2015;525:119-23. DOI:10.1038/nature14665
52. Sasatomi E, Tokunaga O, Miyazaki K. Spontaneous apoptosis in gallbladder carcinoma. Relationships with clinicopathologic factors, expression of E-cadherin, bcl-2 protooncogene, and p53 oncosuppressor gene. Cancer. 1996;78:2101-10. DOI:10.1002/(SICI)1097-0142(19961115)78:10<2101::AID-CNCR10>3.0.CO;2-2
53. Barlow LJ, Shen MM. SnapShot: Prostate cancer. Cancer Cell. 2013;24:400-1.
54. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA: Cancer J Clin. 2016;66:7-30.
55. Imamichi Y, Konig A, Gress T, Menke A. Collagen type I-induced Smad-interacting protein 1 expression downregulates E-cadherin in pancreatic cancer. Oncogene. 2007;26:2381-5.
56. Maeda G, Chiba T, Okazaki M, et al. Expression of SIP1 in oral squamous cell carcinomas: implications for E-cadherin expression and tumor progression. Int J Oncol.
2005;27:1535-41.
57. Spaderna S, Schmalhofer O, Hlubek F, et al. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology. 2006;131:830-40.
58. Spaderna S, Schmalhofer O, Wahlbuhl M, et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res. 2008;68:537-44.
59. Spoelstra NS, Manning NG, Higashi Y, et al. The transcription factor ZEB1 is aberrantly expressed in aggressive uterine cancers. Cancer Res. 2006;66:3893-902.
60. Nauseef JT, Henry MD. Epithelial-to-mesenchymal transition in prostate cancer: paradigm or puzzle? Nat Rev Urol. 2011;8:428-39.
61. Cheng L, Nagabhushan M, Pretlow TP, et al. Expression of E-cadherin in primary and metastatic prostate cancer. Am J Pathol. 1996;148:1375-80.
62. Wallerand H, Robert G, Pasticier G, et al. The epithelial-mesenchymal transition-inducing factor TWIST is an attractive target in advanced and/or metastatic bladder and prostate cancers. Urol Oncol. 2010;28:473-9.
63. Liu YN, Yin JJ, Abou-Kheir W, et al. MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene. 2012;32(3):296-306.
64. Adler HL, McCurdy MA, Kattan MW, et al. Elevated levels of circulating interleukin-6 and transforming growth factor-beta1 in patients with metastatic prostatic carcinoma. J Urol. 1999;161:182-7.
65. Wikstrom P, Stattin P, Franck-Lissbrant I, et al. Transforming growth factor beta1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate. 1998;37:19-29.
66. Zhang J, Ma L. MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metastasis Rev. 2012;31:653-62.
67. Lamouille S, Subramanyam D, Blelloch R, Derynck R. Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. Curr Opin Cell Biol. 2013;25:200-7.
68. Zaravinos A. The Regulatory Role of MicroRNAs in EMT and Cancer. J Oncol. 2015;2015:865816.
69. Khomiak A, Brunner M, Kordes M, et al. Recent Discoveries of Diagnostic, Prognostic and Predictive Biomarkers for Pancreatic Cancer. Cancers (Basel) 2020;12.
70. Löhr M. Is it possible to survive pancreatic cancer? Nat Clin Pract Gastroenterol Hepatol. 2006;3:236-7.
71. Miller KD, Goding Sauer A, Ortiz AP, et al. Cancer statistics for hispanics/latinos, 2018. CA: A Cancer J Clin. 2018;68(6):425-45. DOI:10.3322/caac.21494
72. Gantsev ShKh. Onkologiia: Uchebnik dlia studentov meditsinskikh vuzov. Moscow: Meditsinskoe informatsionnoe agentstvo, 2006 (in Russian).
73. Rawla P, Sunkara T, Gaduputi V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J Oncol. 2019;10:10-27.
74. Rahib L, Smith BD, Aizenberg R, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913-21.
75. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69-84. DOI:10.1038/s41580-018-0080-4
76. Nieto MA. Context-specific roles of EMT programmes in cancer cell dissemination. Nat Cell Biol. 2017;19(5):416-8. DOI:10.1038/ncb3520
77. Mateen S, Raina K, Agarwal C, et al. Silibinin synergizes with histone deacetylase and DNA methyltransferase inhibitors in upregulating E-cadherin expression together with inhibition of migration and invasion of human non-small cell lung cancer cells. J Pharmacol Exp Ther. 345:206-14.
78. Zhang X, Liu G, Kang Y, et al. N-cadherin expression is associated with acquisition of EMT phenotype and with enhanced invasion in erlotinib-resistant lung cancer cell lines. PLoS One. 2013;8:e576922013.
79. Vano-Galvan S, Molina-Ruiz AM, Serrano-Falcon C, et al. Frontal fibrosing alopecia: a multicenter review of 355 patients. J Am Acad Dermatol. 2014;70:670-8. DOI:10.1016/j.jaad.2013.12.003
80. Ross EK, Tan E, Shapiro J. Update on primary cicatricial alopecias. J Am Acad Dermatol. 2005;53:1-37.
81. Moreno-Arrones OM, Saceda-Corralo D, Fonda-Pascual P, et al. Frontal fibrosing alopecia: clinical and prognostic classification. J Eur Acad Dermatol Venereol. 2017;31:1739-45. DOI:10.1111/jdv.14287
82. Jozic I, Chéret J, Abujamra BA, et al. A cell membrane-level approach to cicatricial alopecia management: Is caveolin-1 a viable therapeutic target in frontal fibrosing alopecia? Biomedicines. 2021;9:572. DOI:10.3390/biomedicines9050572
83. Imanishi H, Ansell DM, Chéret J, et al. Epithelial-to-mesenchymal stem cell transition in a human organ: lessons from lichen planopilaris. J Invest Dermatol. 2018;138:511-9. DOI:10.1016/j.jid.2017.09.047
84. Stuart AJ, Romano V, Virgili G, Shortt AJ. Descemet's membrane endothelial keratoplasty (DMEK) versus Descemet's stripping automated endothelial keratoplasty (DSAEK) for corneal endothelial failure. Cochrane Database Syst Rev. 2018;6(6):CD012097. DOI:10.1002/14651858.CD012097.pub2
85. Price MO, Giebel AW, Fairchild KM, Price FW Jr. Descemet's membrane endothelial keratoplasty: prospective multicenter study of visual and refractive outcomes and endothelial survival. Ophthalmology. 2009;116(12):2361-8. DOI:10.1016/j.ophtha.2009.07.010
86. Iliff BW, Riazuddin SA, Gottsch JD. The genetics of Fuchs' corneal dystrophy. Expert Rev Ophthalmol. 2012;7(4):363-75. DOI:10.1586/eop.12.39
87. Lee JG, Kay EP. NF-κB is the transcription factor for FGF-2 that causes endothelial mesenchymal transformation in cornea. Invest Ophthalmol Vis Sci. 2012;53(3):1530-8. DOI:10.1167/iovs.11-9102
88. Chen D, Texada DE, Duggan C, et al. Caspase-3 and -7 mediate apoptosis of human Chang's conjunctival cells induced by enterovirus 70. Virology. 2006;347(2):307-22. DOI:10.1016/j.virol.2005.12.005
89. Zhu YT, Chen HC, Chen SY, Tseng SCG. Nuclear p120 catenin unlocks mitotic block of contact-inhibited human corneal endothelial monolayers without disrupting adherent junctions. J Cell Sci. 2012;125:3636-48.
90. Li C, Dong F, Jia YN, et al. Notch signal regulates corneal endothelial-to-mesenchymal transition. Am J Pathol. 2013;183:786-95.
91. Kawai M, Inoue T, Inatani M, et al. Elevated levels of monocyte chemoattractant protein-1 in the aqueous humor after phacoemulsification. Investig Ophthalmol Vis Sci.
2012;53:7951-60.
92. Rieder F, Kessler SP, West GA, et al. Inflammation-induced endothelial-to-mesenchymal transition: A novel mechanism of intestinal fibrosis. Am J Pathol. 2011;179:2660-73.
93. Zhang XH, Sun HM, Yuan JQ. Extracellular matrix production of lens epithelial cells. J Cataract Refract Surg. 2001;27:1303-9.
94. Pitts JF, Jay JL. The association of Fuchs's corneal endothelial dystrophy with axial hypermetropia, shallow anterior chamber, and angle closure glaucoma. Br J Ophthalmol. 1990;74(10):601-4. DOI:10.1136/bjo.74.10.601
95. Chen F, Liu X, Chen Y, et al. Sphere-induced reprogramming of RPE cells into dual-potential RPE stem-like cells. EBioMedicine. 2020;52:102618. DOI:10.1016/j.ebiom.2019.102618
96. Gupta R, Kumawat BL, Paliwal P, et al. Association of ZEB1 and TCF4 rs613872 changes with late onset Fuchs endothelial corneal dystrophy in patients from northern India. Mol Vis. 2015;21:1252-60.
97. Lechner J, Dash DP, Muszynska D, et al. Mutational spectrum of the ZEB1 gene in corneal dystrophies supports a genotype-phenotype correlation. Invest Ophthalmol Vis Sci. 2013;54(5):3215-23. DOI:10.1167/iovs.13-11781
98. Yellore VS, Rayner SA, Nguyen CK, et al. Analysis of the role of ZEB1 in the pathogenesis of posterior polymorphous corneal dystrophy. Investig Ophthalmol Vis Sci. 2012;53:273-8.
99. Kosyakov SIa, Piskunov GZ, Atanesyan AG. Sovremennaia diagnostika i lecheniie otitov i rinosinusitov soglasno mezhdunarodnym standartam: uchebnoie posobiie dlia vrachei. Moscow, 2007 (in Russian).
100. Pluzhnikov M.S. Lavrenova G.V. Katinas E.B. Osnovnye printsipy immunokorrigiruiushchei terapii v otorinolaringologii. Vestnik otorinilaringologii. 2008;4:7-12 (in Russian).
101. Hupin C, Gohy S, Bouzin C, et al. Features of mesenchymal transition in the airway epithelium from chronic rhinosinusitis. Allergy. 2014;69(11):1540-9. DOI:10.1111/all.12503
102. Soyka MB, Wawrzyniak P, Eiwegger T, et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-γ and IL-4. J Allergy Clin Immunol. 2012;130(5):1087-96.e10. DOI:10.1016/j.jaci.2012.05.052
103. Schleimer RP. Иммунопатогенез хронического риносинусита и полипоза носа. Annu Rev Pathol. 2017;12:331-57.
104. Bankova LG, Barrett NA. Epithelial cell function and remodeling in nasal polyposis. Ann Allergy Asthma Immunol. 2020;124(4):333-41. DOI:10.1016/j.anai.2020.01.018
105. Bronsert P, Enderle-Ammour K, Bader M, et al. Cancer cell invasion and EMT marker expression: a three-dimensional study of the human cancerhost interface. J Pathol. 2014;234:410-22
106. Bitterman P, Chun B, Kurman RJ. The significance of epithelial differentiation in mixed mesodermal tumors of the uterus. A clinicopathologic and immunohistochemical study. Am J Surg Pathol. 1990;14:317-28.
107. DeLong W, Grignon DJ, Eberwein P, et al. Sarcomatoid renal cell carcinoma. An immunohistochemical study of 18 cases. Arch Pathol Lab Med. 1993;117:636-40.
108. Haraguchi S, Fukuda Y, Sugisaki Y, Yamanaka N. Pulmonary carcinosarcoma: immunohistochemical and ultrastructural studies. Pathol Int. 1999;49:903-8.
109. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, et al. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008;68:989-97.
110. Yabuuchi Y, Tanaka M, Ono H. Carcinosarcoma of the esophagus with rapid morphological change. Am J Gastroenterol. 2018;113:642.
111. Paniz-Mondolfi A, Singh R, Jour G, et al. Cutaneous carcinosarcoma: further insights into its mutational landscape through massive parallel genome sequencing. Virchows Arch. 2014;465:339-50.
112. Paniz-Mondolfi A, Singh R, Jour G, et al. Cutaneous carcinosarcoma and the EMT: to transition, or not to transition? That is the question. Virchows Arch. 2015;466:359-60.
113. Somarelli JA. Carcinosarcomas: tumors in transition? Histol Histopathol. 2015;30.
114. Koba H, Kimura H, Nishikawa S, et al. Next-generation sequencing analysis identifies genomic alterations in pathological :morphologies: a case of pulmonary carcinosarcoma harboring EGFR mutations. Lung Cancer. 2018;122:146-50.
115. Ocaña OH, Córcoles R, Fabra A, et al. Metastatic colonization requires the repression of the epithelial–mesenchymal transition inducer Prrx1. Cancer Cell. 2012;22:709-24. DOI:10.1016/j.ccr.2012.10.012
116. Tsai JH, Donaher JL, Murphy DA, et al. Spatiotemporal regulation of epithelial–mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell. 2012;22:725-36. DOI:10.1016/j.ccr.2012.09.022
117. Tsai JH, Yang J. Epithelial–mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013;27:2192-206. DOI:10.1101/gad.225334.113
118. Brabletz T. To differentiate or not-routes towards metastasis. Nat Rev Cancer. 2012;12:425-36. DOI:10.1038/nrc3265
119. Chaffer CL, San Juan BP, Lim E, Weinberg RA. EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 2016;35:645-54. DOI:10.1007/s10555-016-9648-7
120. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168:670-91. DOI:10.1016/j.cell.2016.11.037
121. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871-90. DOI:10.1016/j.cell.2009.11.007
122. Li F, Pascal LE, Stolz DB, et al. E-cadherin is downregulated in benign prostatic hyperplasia and required for tight junction formation and permeability barrier in the prostatic epithelial cell monolayer. Prostate. 2019;79:1226-37. DOI:10.1002/pros.23806
123. O’Malley KJ, Eisermann K, Pascal LE, et al. Proteomic analysis of patient tissue reveals PSA protein in the stroma of benign prostatic hyperplasia. Prostate. 2014;74:892-900. DOI:10.1002/pros.22807
124. Alonso-Magdalena P, Brössner C, Reiner A, et al. A role for epithelial-mesenchymal transition in the etiology of benign prostatic hyperplasia. Proc Natl Acad Sci USA.
2009;106:2859-63. DOI:10.1073/pnas.0812666106
125. Liu J, Zhang J, Fu X, et al. The Emerging Role of Cell Adhesion Molecules on Benign Prostatic Hyperplasia. Int J Mol Sci. 2023;24(3):2870. DOI:10.3390/ijms24032870
126. He X, Liu N, Mu T, et al. Oestrogen induces epithelial-mesenchymal transition in endometriosis via circ_0004712/miR-148a-3p sponge function. J Cell Mol Med.
2020;24(17):9658-66. DOI:10.1111/jcmm.15495
127. Tan HJ, Deng ZH, Zhang C, et al. CXADR promote epithelial-mesenchymal transition in endometriosis by modulating AKT/GSK-3β signaling. Cell Cycle. 2023;22(21-2):2436-48. DOI:10.1080/15384101.2023.2296242
128. Wang M, Wu Y, He Y, et al. SIRT1 upregulation promotes epithelial-mesenchymal transition by inducing senescence escape in endometriosis. Sci Rep. 2022;12(1):12302. DOI:10.1038/s41598-022-16629-x
129. Konrad L, Dietze R, Riaz MA, et al. Epithelial-Mesenchymal Transition in Endometriosis – When Does It Happen? J Clin Med. 2020;9(6):1915. DOI:10.3390/jcm9061915
Авторы
М.А. Варданян*1, Э.И. Пилюгина2, А.С. Бадлаева1, В.Д. Чупрынин1, Н.А. Буралкина1 1ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии им. акад. В.И. Кулакова» Минздрава России, Москва, Россия; 2ООО «Гута-Клиник», Москва, Россия
*mv132013@mail.ru
________________________________________________
Mariam A. Vardanyan*1, Ellina I. Pilyugina2, Alina S. Badlaeva1, Vladimir D. Chuprynin1, Natalya A. Buralkina1
1Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia; 2Guta-Clinic, Moscow, Russia
*mv132013@mail.ru