Babak SL, Gorbunova MV, Malyavin AG, Borovitsky VS. Sirtuins and mechanisms of diabetic lung damage: a scientific discussion. A review. Consilium Medicum. 2024;26(9):624–627. DOI: 10.26442/20751753.2024.9.202973
Сиртуины и механизмы диабетического повреждения легких: научная дискуссия
Babak SL, Gorbunova MV, Malyavin AG, Borovitsky VS. Sirtuins and mechanisms of diabetic lung damage: a scientific discussion. A review. Consilium Medicum. 2024;26(9):624–627. DOI: 10.26442/20751753.2024.9.202973
Индуцированные повреждения тканей в органах-мишенях (почках, сердце, глазах, печени, коже, нервной системе) оказывают выраженное действие на заболеваемость и смертность пациентов от сахарного диабета (СД). Последние десятилетия активно обсуждается вопрос: следует ли считать легкие органом-мишенью СД? Накопленные данные демонстрируют гистологические и функциональные нарушения легких у пациентов с СД. Это позволяет предположить, что легкие являются органом-мишенью при СД. Известно, что сиртуины регулируют ряд физиологических процессов, отвечают за развитие резистентности к инсулину, что приводит к ожирению, СД 2-го типа, а также влияют на развитие болезней сердца и процессы старения. В обзоре мы постарались суммировать знания о вкладе сиртуинов в клеточную регуляцию и формирование легочного заболевания у пациентов с СД 2-го типа.
Induced tissue damage in target organs (kidneys, heart, eyes, liver, skin, nervous system) significantly contributes to the morbidity and mortality of patients from diabetes mellitus (DM). In recent decades, the question has been actively discussed: should the lungs be regarded as a target organ for diabetes? The c collected data demonstrate histological and functional lung disorders in DM patients. This suggests that the lungs are a target organ for diabetes. It is known that sirtuins regulate a number of physiological processes and affect obesity, insulin resistance, type 2 DM, heart disease and aging. In this review, we have tried to summarize the knowledge about the contribution of sirtuins to cellular regulation and the formation of pulmonary disease in patients with type 2 DM.
1. Wang W, Mei A, Qian H, et al. The Role of Glucagon-Like Peptide-1 Receptor Agonists in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis. 2023;18:129-37. DOI:10.2147/COPD.S393323
2. Cazzola M, Rogliani P, Ora J, et al. Hyperglycaemia and Chronic Obstructive Pulmonary Disease. Diagnostics (Basel). 2023;13(21):3362. DOI:10.3390/diagnostics13213362
3. Raslan AS, Quint JK, Cook S. All-Cause, Cardiovascular and Respiratory Mortality in People with Type 2 Diabetes and Chronic Obstructive Pulmonary Disease (COPD) in England: A Cohort Study Using the Clinical Practice Research Datalink (CPRD). Int J Chron Obstruct Pulmon Dis. 2023;18:1207-18. DOI:10.2147/COPD.S407085
4. Yadav R, Kailashiya V, Sharma HB, et al. Persistent Hyperglycemia Worsens the Oleic Acid Induced Acute Lung Injury in Rat Model of Type II Diabetes Mellitus. J Pharm Bioallied Sci. 2023;15(4):197-204. DOI:10.4103/jpbs.jpbs_391_23
5. O’Donnell CP, Tankersley CG, Polotsky VP, et al. Leptin, obesity, and respiratory function. Respir Physiol. 2000;119(2-3):163-70. DOI:10.1016/s0034-5687(99)00111-5
6. Dwivedi J, Wal P, Dash B, et al. Diabetic Pneumopathy- A Novel Diabetes-associated Complication: Pathophysiology, the Underlying Mechanism and Combination Medication. Endocr Metab Immune Disord Drug Targets. 2024;24(9):1027-52. DOI:10.2174/0118715303265960230926113201
7. Masri S. Sirtuin-dependent clock control: new advances in metabolism, aging and cancer. Curr Opin Clin Nutr Metab Care. 2015;18(6):521-7. DOI:10.1097/MCO.0000000000000219
8. Wang CH, Wei YH. Roles of Mitochondrial Sirtuins in Mitochondrial Function, Redox Homeostasis, Insulin Resistance and Type 2 Diabetes. Int J Mol Sci. 2020;21(15):5266. DOI:10.3390/ijms21155266
9. Zhang L, Jiang F, Xie Y, et al. Diabetic endothelial microangiopathy and pulmonary dysfunction. Front Endocrinol (Lausanne). 2023;14:1073878. DOI:10.3389/fendo.2023.1073878
10. Schnider SL, Kohn RR. Glucosylation of human collagen in aging and diabetes mellitus. J Clin Invest. 1980;66(5):1179-81. DOI:10.1172/JCI109950
11. Ehrlich SF, Quesenberry CPJr, Van Den Eeden SK, et al. Patients diagnosed with diabetes are at increased risk for asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and pneumonia but not lung cancer. Diabetes Care. 2010;33(1):55-60. DOI:10.2337/dc09-0880
12. Kang Q, Ren J, Cong J, et al. Diabetes mellitus and idiopathic pulmonary fibrosis: a Mendelian randomization study. BMC Pulm Med. 2024;24(1):142.
DOI:10.1186/s12890-024-02961-7
13. Wang D, Ma Y, Tong X, et al. Diabetes Mellitus Contributes to Idiopathic Pulmonary Fibrosis: A Review From Clinical Appearance to Possible Pathogenesis. Front Public Health. 2020;8:196. DOI:10.3389/fpubh.2020.00196
14. Mittal S, Jindal M, Srivastava S, et al. Evaluation of Pulmonary Functions in Patients With Type 2 Diabetes Mellitus: A Cross-Sectional Study. Cureus. 2023;15(3):e35628. DOI:10.7759/cureus.35628
15. Pitocco D, Fuso L, Conte EG, et al. The diabetic lung – a new target organ? Rev Diabet Stud. 2012;9(1):23-35. DOI:10.1900/RDS.2012.9.23
16. Tai H, Wang MY, Zhao YP, et al. The effect of alogliptin on pulmonary function in obese patients with type 2 diabetes inadequately controlled by metformin monotherapy. Medicine (Baltimore). 2016;95(33):e4541. DOI:10.1097/MD.0000000000004541
17. Zhou S, Dai YM, Zeng XF, et al. Circadian Clock and Sirtuins in Diabetic Lung: A Mechanistic Perspective. Front Endocrinol (Lausanne). 2020;11:173. DOI:10.3389/fendo.2020.00173
18. Peng Y, Zhong GC, Wang L, et al. Chronic obstructive pulmonary disease, lung function and risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. BMC Pulm Med. 2020;20(1):137. DOI:10.1186/s12890-020-1178-y
19. Bottini P, Scionti L, Santeusanio F, et al. Impairment of the respiratory system in diabetic autonomic neuropathy. Diabetes Nutr Metab. 2000;13(3):165-72.
20. Nishimura M, Miyamoto K, Suzuki A, et al. Ventilatory and heart rate responses to hypoxia and hypercapnia in patients with diabetes mellitus. Thorax. 1989;44(4):251-7. DOI:10.1136/thx.44.4.251
21. Wanke T, Formanek D, Auinger M, et al. Inspiratory muscle performance and pulmonary function changes in insulin-dependent diabetes mellitus. Am Rev Respir Dis.
1991;143(1):97-100. DOI:10.1164/ajrccm/143.1.97
22. Guarente L., Franklin H. Epstein Lecture: Sirtuins, aging, and medicine. N Engl J Med. 2011;364(23):2235-44. DOI:10.1056/NEJMra1100831
23. Morris BJ. Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med. 2013;56:133-71. DOI:10.1016/j.freeradbiomed.2012.10.525
24. Di Vincenzo S, Heijink IH, Noordhoek JA, et al. SIRT1/FoxO3 axis alteration leads to aberrant immune responses in bronchial epithelial cells. J Cell Mol Med. 2018;22(4):2272-82. DOI:10.1111/jcmm.13509
25. Hwang JW, Sundar IK, Yao H, et al. Circadian clock function is disrupted by environmental tobacco/cigarette smoke, leading to lung inflammation and injury via a SIRT1-BMAL1 pathway. FASEB J. 2014;28(1):176-94. DOI:10.1096/fj.13-232629
26. Li S, Huang Q, He B. SIRT1 as a Potential Therapeutic Target for Chronic Obstructive Pulmonary Disease. Lung. 2023;201(2):201-15. DOI:10.1007/s00408-023-00607-9
27. Qin T, Song X, Shao Q, et al. Resveratrol ameliorates pathological fibrosis of the myodural bridge by regulating the SIRT3/TGF-β1/Smad pathway. Heliyon. 2024;10(15):e34974. DOI:10.1016/j.heliyon.2024.e34974
28. Cheresh P, Kim SJ, Jablonski R, et al. SIRT3 Overexpression Ameliorates Asbestos-Induced Pulmonary Fibrosis, mt-DNA Damage, and Lung Fibrogenic Monocyte Recruitment. Int J Mol Sci. 2021;22(13):6856. DOI:10.3390/ijms22136856
29. Tian K, Chen P, Liu Z, et al. Sirtuin 6 inhibits epithelial to mesenchymal transition during idiopathic pulmonary fibrosis via inactivating TGF-β1/Smad3 signaling. Oncotarget. 2017;8(37):61011-24. DOI:10.18632/oncotarget.17723
30. Takasaka N, Araya J, Hara H, et al. Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence. J Immunol. 2014;192(3):958-68. DOI:10.4049/jimmunol.1302341
________________________________________________
1. Wang W, Mei A, Qian H, et al. The Role of Glucagon-Like Peptide-1 Receptor Agonists in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis. 2023;18:129-37. DOI:10.2147/COPD.S393323
2. Cazzola M, Rogliani P, Ora J, et al. Hyperglycaemia and Chronic Obstructive Pulmonary Disease. Diagnostics (Basel). 2023;13(21):3362. DOI:10.3390/diagnostics13213362
3. Raslan AS, Quint JK, Cook S. All-Cause, Cardiovascular and Respiratory Mortality in People with Type 2 Diabetes and Chronic Obstructive Pulmonary Disease (COPD) in England: A Cohort Study Using the Clinical Practice Research Datalink (CPRD). Int J Chron Obstruct Pulmon Dis. 2023;18:1207-18. DOI:10.2147/COPD.S407085
4. Yadav R, Kailashiya V, Sharma HB, et al. Persistent Hyperglycemia Worsens the Oleic Acid Induced Acute Lung Injury in Rat Model of Type II Diabetes Mellitus. J Pharm Bioallied Sci. 2023;15(4):197-204. DOI:10.4103/jpbs.jpbs_391_23
5. O’Donnell CP, Tankersley CG, Polotsky VP, et al. Leptin, obesity, and respiratory function. Respir Physiol. 2000;119(2-3):163-70. DOI:10.1016/s0034-5687(99)00111-5
6. Dwivedi J, Wal P, Dash B, et al. Diabetic Pneumopathy- A Novel Diabetes-associated Complication: Pathophysiology, the Underlying Mechanism and Combination Medication. Endocr Metab Immune Disord Drug Targets. 2024;24(9):1027-52. DOI:10.2174/0118715303265960230926113201
7. Masri S. Sirtuin-dependent clock control: new advances in metabolism, aging and cancer. Curr Opin Clin Nutr Metab Care. 2015;18(6):521-7. DOI:10.1097/MCO.0000000000000219
8. Wang CH, Wei YH. Roles of Mitochondrial Sirtuins in Mitochondrial Function, Redox Homeostasis, Insulin Resistance and Type 2 Diabetes. Int J Mol Sci. 2020;21(15):5266. DOI:10.3390/ijms21155266
9. Zhang L, Jiang F, Xie Y, et al. Diabetic endothelial microangiopathy and pulmonary dysfunction. Front Endocrinol (Lausanne). 2023;14:1073878. DOI:10.3389/fendo.2023.1073878
10. Schnider SL, Kohn RR. Glucosylation of human collagen in aging and diabetes mellitus. J Clin Invest. 1980;66(5):1179-81. DOI:10.1172/JCI109950
11. Ehrlich SF, Quesenberry CPJr, Van Den Eeden SK, et al. Patients diagnosed with diabetes are at increased risk for asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and pneumonia but not lung cancer. Diabetes Care. 2010;33(1):55-60. DOI:10.2337/dc09-0880
12. Kang Q, Ren J, Cong J, et al. Diabetes mellitus and idiopathic pulmonary fibrosis: a Mendelian randomization study. BMC Pulm Med. 2024;24(1):142.
DOI:10.1186/s12890-024-02961-7
13. Wang D, Ma Y, Tong X, et al. Diabetes Mellitus Contributes to Idiopathic Pulmonary Fibrosis: A Review From Clinical Appearance to Possible Pathogenesis. Front Public Health. 2020;8:196. DOI:10.3389/fpubh.2020.00196
14. Mittal S, Jindal M, Srivastava S, et al. Evaluation of Pulmonary Functions in Patients With Type 2 Diabetes Mellitus: A Cross-Sectional Study. Cureus. 2023;15(3):e35628. DOI:10.7759/cureus.35628
15. Pitocco D, Fuso L, Conte EG, et al. The diabetic lung – a new target organ? Rev Diabet Stud. 2012;9(1):23-35. DOI:10.1900/RDS.2012.9.23
16. Tai H, Wang MY, Zhao YP, et al. The effect of alogliptin on pulmonary function in obese patients with type 2 diabetes inadequately controlled by metformin monotherapy. Medicine (Baltimore). 2016;95(33):e4541. DOI:10.1097/MD.0000000000004541
17. Zhou S, Dai YM, Zeng XF, et al. Circadian Clock and Sirtuins in Diabetic Lung: A Mechanistic Perspective. Front Endocrinol (Lausanne). 2020;11:173. DOI:10.3389/fendo.2020.00173
18. Peng Y, Zhong GC, Wang L, et al. Chronic obstructive pulmonary disease, lung function and risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. BMC Pulm Med. 2020;20(1):137. DOI:10.1186/s12890-020-1178-y
19. Bottini P, Scionti L, Santeusanio F, et al. Impairment of the respiratory system in diabetic autonomic neuropathy. Diabetes Nutr Metab. 2000;13(3):165-72.
20. Nishimura M, Miyamoto K, Suzuki A, et al. Ventilatory and heart rate responses to hypoxia and hypercapnia in patients with diabetes mellitus. Thorax. 1989;44(4):251-7. DOI:10.1136/thx.44.4.251
21. Wanke T, Formanek D, Auinger M, et al. Inspiratory muscle performance and pulmonary function changes in insulin-dependent diabetes mellitus. Am Rev Respir Dis.
1991;143(1):97-100. DOI:10.1164/ajrccm/143.1.97
22. Guarente L., Franklin H. Epstein Lecture: Sirtuins, aging, and medicine. N Engl J Med. 2011;364(23):2235-44. DOI:10.1056/NEJMra1100831
23. Morris BJ. Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med. 2013;56:133-71. DOI:10.1016/j.freeradbiomed.2012.10.525
24. Di Vincenzo S, Heijink IH, Noordhoek JA, et al. SIRT1/FoxO3 axis alteration leads to aberrant immune responses in bronchial epithelial cells. J Cell Mol Med. 2018;22(4):2272-82. DOI:10.1111/jcmm.13509
25. Hwang JW, Sundar IK, Yao H, et al. Circadian clock function is disrupted by environmental tobacco/cigarette smoke, leading to lung inflammation and injury via a SIRT1-BMAL1 pathway. FASEB J. 2014;28(1):176-94. DOI:10.1096/fj.13-232629
26. Li S, Huang Q, He B. SIRT1 as a Potential Therapeutic Target for Chronic Obstructive Pulmonary Disease. Lung. 2023;201(2):201-15. DOI:10.1007/s00408-023-00607-9
27. Qin T, Song X, Shao Q, et al. Resveratrol ameliorates pathological fibrosis of the myodural bridge by regulating the SIRT3/TGF-β1/Smad pathway. Heliyon. 2024;10(15):e34974. DOI:10.1016/j.heliyon.2024.e34974
28. Cheresh P, Kim SJ, Jablonski R, et al. SIRT3 Overexpression Ameliorates Asbestos-Induced Pulmonary Fibrosis, mt-DNA Damage, and Lung Fibrogenic Monocyte Recruitment. Int J Mol Sci. 2021;22(13):6856. DOI:10.3390/ijms22136856
29. Tian K, Chen P, Liu Z, et al. Sirtuin 6 inhibits epithelial to mesenchymal transition during idiopathic pulmonary fibrosis via inactivating TGF-β1/Smad3 signaling. Oncotarget. 2017;8(37):61011-24. DOI:10.18632/oncotarget.17723
30. Takasaka N, Araya J, Hara H, et al. Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence. J Immunol. 2014;192(3):958-68. DOI:10.4049/jimmunol.1302341
1ФГБОУ ВО «Российский университет медицины» Минздрава России, Москва, Россия; 2ФКУ «Научно-исследовательский институт Федеральной службы исполнения наказаний» Минюста России, Москва, Россия
*sergbabak@mail.ru
________________________________________________
Sergei L. Babak*1, Marina V. Gorbunova1, Andrey G. Malyavin1, Vladislav S. Borovitsky2
1Russian University of Medicine, Moscow, Russia; 2Research Institute of the Federal Penitentiary Service of Russia, Moscow, Russia
*sergbabak@mail.ru