Перевод статьи из журнала “Fertility & Sterility”, Vol. 81, No.5, May 2004 Активность экзогенного лютеинизирующего гормона может влиять на исход лечения методом ЭКО, но не ИКСИ
Перевод статьи из журнала “Fertility & Sterility”, Vol. 81, No.5, May 2004 Активность экзогенного лютеинизирующего гормона может влиять на исход лечения методом ЭКО, но не ИКСИ
Перевод статьи из журнала “Fertility & Sterility”, Vol. 81, No.5, May 2004 Активность экзогенного лютеинизирующего гормона может влиять на исход лечения методом ЭКО, но не ИКСИ
1. Van Wely M, Westergaard LG, Bossuyt PM, Van der Veen F. Human menopausal gonadotropin versus recombinant follicle stimulation hormone for ovarian stimulation in assisted reproductive cycles. Cochrane Database Syst Rev 2003; 1: CD003973.
2. Gordon UD, Harrison RF, Fawzy M et al. A randomized prospective assessor-blind evaluation of luteinizing hormone dosage and in vitro fertilization outcome. Fertil Steril 2001; 75: 324–31.
3. Westergaard LG, Erb K, Laursen SB et al. Human menopausal gonadotropin versus recombinant follicle-stimulating hormone in normogonadotropic women down-regulated with a gonadotropin-releasing hormone agonist who were undergoing in vitro fertilization and intracytoplasmic sperm injection: a prospective randomized study. Fertil Steril 2001; 76: 543–9.
4. Ng EHY, Lau EYL, Yeung WSB, Ho PC. HMG is as good as recombinant human FSH in terms of oocytes and embryo quality: a prospective randomized trial. Hum Reprod 2001; 16: 319–25.
5. The European and Israeli Study Group, Efficacy and safety of highly purified menotropin versus recombinant follicle-stimulating hormone in in vitro fertilization/intracytoplasmic sperm injection cycles: a randomized, comparative trial. Fertil Steril 2002; 78: 520–8.
6. Cross PC, Brinster RL. In vitro development of mouse oocytes. Biol Reprod 1970; 3: 298–307.
7. Eyestone WH, Leibfried-Rutlege ML, Northey DL et al. Culture of one– and two–cell bovine embryos to the blastocyst stage in the ovine oviduct. Theriogenology 1987; 28: 1–24.
8. Goto K, Kajihara Y, Kosaka S et al. Pregnancies after co-culture of cumulus cells with bovine embryos derived from in-vitro fertilization of in-vitro matured follicular oocytes. J Reprod Fertil 1988; 83: 753–8.
9. Nandi S, Chauhan MS, Palta P. Influence of cumulus cells and sperm concentration on cleavage rate and subsequent embryonic development of buffalo oocytes matured and fertilized in vitro. Theriogenology 1998; 50: 1251–62.
10. Fatehi AN, Zeinstra EC, Kooij RV et al. Effect of cumulus cell removal of in vitro matured bovine oocytes prior to in vitro fertilization on subsequent cleavage rate. Theriogenology 2002; 57: 1347–55.
11. Zhang L, Jiang S, Wozniak PJ et al. Cumulus cell function during bovine oocyte maturation, fertilization, and embryo development in vitro. Mol Reprod Dev 1995; 40: 338–44.
12. Liu Y, Holyoak GR, Wang S, Bunch TD. The importance of cumulus cells on the in vitro production of bovine oocytes. Theriogenology 1995; 43: 267.
13. Magier S, van der Ven HH, Diedrich K, Krebs D. Significance of cumulus oophorus in in-vitro fertilization and oocytes viability and fertility. Hum Reprod 1990; 5: 847–52.
14. Hassan H.A. Cumulus cell contribution to cytoplasmic maturation and oocytes developmental competence in vitro. J Assist Reprod Genet 2001; 18: 539–43.
15. Akar AH, Gervasi G, Blacker C et al. Human chorionic gonadotrophin-like and -core-like materials in postmenopausal urine. J Endocrinol 1990; 125: 477–84.
16. Stokman PGW, de Leeuw R, van den Wijngaard HAGW et al., Human chorionic gonadotropin in commercial human menopausal gonadotropin preparations. Fertil Steril 1993; 60:175–8.