Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Молекулярные роли микронутриентов в физиологических механизмах закрытия родничков и профилактика краниостеноза
Молекулярные роли микронутриентов в физиологических механизмах закрытия родничков и профилактика краниостеноза
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Краниостеноз – преждевременное закрытие родничков, черепных швов – представляет собой как тяжелую аномалию развития, так и патологию раннего возраста, приводящую к повышению внутричерепного давления растущего мозга. В результате развивается диспропорция строения головы и лица, у ребенка наблюдаются хронические головные боли, снижение аппетита, рвота и, зачастую, – значительное замедление умственного и физического развития. Поскольку этиология краниостеноза недостаточно изучена, в настоящее время хирургическое вмешательство – единственный вариант лечения. Поэтому перспективным является установление этиопатологических механизмов краниостеноза и разработка соответствующих подходов к профилактике и терапии данного заболевания. В настоящей работе проведен систематический анализ молекулярных механизмов закрытия родничков. Показано, что активность сигнальных каскадов, непосредственно связанных с заращиванием черепных швов (сигнальные каскады ФРФ, трансформирующего фактора роста b2, интерлейкина-11), зависит от ряда микронутриентов. Дефицит магния, цинка, кальция, инозитола и холина будет приводить к нарушениям регуляции этих сигнальных каскадов и, следовательно, к нарушениям развития костной ткани – абнормально ускоренной оссификации (краниостеноз) или, наоборот, крайне замедленной оссификации (рахит). Особо следует отметить роль ФРФ-23, который необходим для регуляции реадсорбции кальция, фосфата и активных форм витамина D в почках. По данным экспериментальных и клинических исследований, кальций, магний, витамины B2, B6, C и E действительно способствуют профилактике краниостеноза и, также, поддерживают функционирование почек. Поэтому прием препаратов, содержащих данные макро- и микронутриенты, будет способствовать профилактике краниостеноза.
Ключевые слова: краниостеноз, черепные швы, аномалии развития, оссификация, кальций, микронутриенты.
Key words: craniostenosis, cranial seams, congenital abnormalities, ossification, calcium, micronutrients.
Ключевые слова: краниостеноз, черепные швы, аномалии развития, оссификация, кальций, микронутриенты.
________________________________________________
Key words: craniostenosis, cranial seams, congenital abnormalities, ossification, calcium, micronutrients.
Полный текст
Список литературы
1. Slater BJ, Lenton KA, Kwan MD et al. Cranial sutures: a brief review. Plast Reconstr Surg 2008; 121 (4): 170e–178e.
2. Kimonis V, Gold JA, Hoffman TL et al. Genetics of craniosynostosis. Semin Pediatr Neurol 2007; 14 (3): 150–61.
3. Gault DT, Renier D, Marchac D, Jones BM. Intracranial pressure and intracranial volume in children with craniosynostosis. Plast Reconstr Surg 1992; 90 (3): 377–81.
4. Cerovac S, Neil-Dwyer JG, Rich P et al. Are routine preoperative CT scans necessary in the management of single suture craniosynostosis? Br J Neurosurg 2002; 16 (4): 348–54.
5. Aviv RI, Rodger E, Hall CM. Craniosynostosis. Clin Radiol 2002; 57 (2): 93–102.
6. Cunningham ML, Heike CL. Evaluation of the infant with an abnormal skull shape. Curr Opin Pediatr 2007; 19 (6): 645–51.
7. Бадалян Л.О. Детская неврология. М.: Медицина, 1984; с. 346–7.
8. Kapp-Simon KA, Speltz ML, Cunningham ML et al. Neurodevelopment of children with single suture craniosynostosis: a review. Childs Nerv Syst 2007; 23 (3): 269–81.
9. Jacob S, Wu C, Freeman TA et al. Expression of Indian Hedgehog, BMP-4 and Noggin in craniosynostosis induced by fetal constraint. Ann Plast Surg 2007; 58 (2): 215–21.
10. Johnsonbaugh RE, Bryan RN, Hierlwimmer R, Georges LP. Premature craniosynostosis: A common complication of juvenile thyrotoxicosis. J Pediatr 1978; 93 (2): 188–91.
11. Carmichael SL, Ma C, Rasmussen SA et al. Craniosynostosis and maternal smoking. Birth Defects Res Clin Mol Teratol 2008; 82 (2): 78–85.
12. Blount JP, Louis RG, Tubbs RS, Grant JH. Pansynostosis: a review. Childs Nerv Syst 2007; 23 (10): 1103–9.
13. Moloney DM, Wall SA, Ashworth GJ et al. Prevalence of Pro250Arg mutation of fibroblast growth factor receptor 3 in coronal craniosynostosis. Lancet 1997; 349 (9058): 1059–62.
14. Frazier BC, Mooney MP, Losken HW et al. Comparison of craniofacial phenotype in craniosynostotic rabbits treated with anti-Tgf-beta2 at suturectomy site. Cleft Palate Craniofac J 2008; 45 (6): 571–82. 15. Mulliken JB, Gripp KW, Stolle CA et al. Molecular analysis of patients with synostotic frontal plagiocephaly (unilateral coronal synostosis). Plast Reconstr Surg 2004; 113 (7): 1899–909.
16. Kinsella CR, Cray JJ, Durham EL et al. Recombinant human bone morphogenetic protein-2-induced craniosynostosis and growth restriction in the immature skeleton. Plast Reconstr Surg 2011; 127 (3): 1173–81.
17. Seto ML, Hing AV, Chang J et al. Isolated sagittal and coronal craniosynostosis associated with TWIST box mutations. Am J Med Genet A 2007; 143 (7): 678–86.
18. Jabs EW, Muller U, Li X et al. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 1993; 75 (3): 443–50.
19. Miura K, Miura S, Yoshiura K et al. A case of Kallmann syndrome carrying a missense mutation in alternatively spliced exon 8A encoding the immunoglobulin-like domain IIIb of fibroblast growth factor receptor 1. Hum Reprod 2010; 25 (4): 1076–80.
20. Gorry MC, Preston RA, White GJ et al. Crouzon syndrome: mutations in two spliceoforms of FGFR2 and a common point mutation shared with Jackson-Weiss syndrome. Hum Mol Genet 1995; 4 (8): 1387–90.
21. Katoh M. FGFR2 abnormalities underlie a spectrum of bone, skin, and cancer pathologies. J Invest Dermatol 2009; 129 (8): 1861–7.
22. Mackie EJ, Ahmed YA, Tatarczuch L et al. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 2008; 40 (1): 46–62.
23. Pathak A, Sandhu BK, Radotra BD et al. Histopathological and biochemical changes in the sutural region in craniosynostosis. Childs Nerv Syst 2000; 16 (9): 564–8.
24.De Pollack C, Renier D, Hott M, Marie PJ. Increased bone formation and osteoblastic cell phenotype in premature cranial suture ossification (craniosynostosis). J Bone Miner Res 1996; 11 (3): 401–7.
25. Torshin I.Yu. Bioinformatics in the post-genomic era: sensing the change from molecular genetics to personalized medicine. Nova Biomedical Books, NY, USA, 2009, In «Bioinformatics in the Post-Genomic Era» series, ISBN: 978-1-60692-217-0.
26. Moursi AM, Winnard PL, Winnard AV et al. Fibroblast growth factor 2 induces increased calvarial osteoblast proliferation and cranial suture fusion. Cleft Palate Craniofac J 2002; 39 (5): 487–96.
27. Zhang X, Ibrahimi OA, Olsen SK et al. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 2006; 281 (23): 15694–700.
28. Sun G, Budde RJ. Requirement for an additional divalent metal cation to activate protein tyrosine kinases. Biochemistry 1997; 36 (8): 2139–46.
29. Kato Y, Kravchenko VV, Tapping RI et al. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J 1997; 16 (23): 7054–66.
30. Wu XL, Gu MM, Huang L, Liu XS. Multiple synostoses syndrome is due to a missense mutation in exon 2 of FGF9 gene. Am J Hum Genet 2009; 85 (1): 53–63.
31. Sanford LP, Ormsby I, Gittenberger-de Groot AC et al. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 1997; 124 (13): 2659–70.
32. Yang T, Mendoza-Londono R, Lu H. E-selectin ligand-1 regulates growth plate homeostasis in mice by inhibiting the intracellular processing and secretion of mature TGF-beta. J Clin Invest 2010; 120 (7): 2474–85 doi.
33. Ito Y, Yeo JY, Chytil A et al. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development 2003; 130 (21): 5269–80.
34. Loeys BL, Chen J, Neptune ER. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 2005; 37 (3): 275–81.
35. Ades LC, Sullivan K, Biggin A et al. FBN1, TGFBR1, and the Marfan-craniosynostosis/mental retardation disorders revisited. Am J Med Genet 2006; 140 (10): 1047–58.
36. Whitman M, Downes CP. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 1988; 332 (6165): 644–6.
37. Franke TF, Kaplan DR, Cantley LC, Toker A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 1997; 275 (5300): 665–8.
38. Heinrich PC, Behrmann I, Haan S et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374
(Pt. 1):1–20.
39. Nieminen P, Morgan NV, Fenwick AL, Parmanen S. Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption, and supernumerary teeth. Am J Hum Genet 2011; 89 (1): 67–81.
40. Juppner H. Phosphate and FGF-23. Kidney Int 2011 (Suppl.); 121: S24–7.
41. ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 2000; 26 (3): 345–8.
42. Roy WA, Iorio RJ, Meyer GA. Craniosynostosis in vitamin D-resistant rickets. A mouse model. J Neurosurg 1981; 55 (2): 265–71.
43. Nabeshima Y. Regulation of calcium homeostasis by alpha-Klotho and FGF23. Clin Calcium. 2010; 20 (11): 1677–85.
44. Su AI, Wiltshire T, Batalov S et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 2004; 101 (16): 6062–7.
45. Liu S, Tang W, Fang J et al. Novel regulators of Fgf23 expression and mineralization in Hyp bone. Mol Endocrinol 2009; 23 (9): 1505–18.
46. Tsuji K, Maeda T, Kawane T et al. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1alpha,25-dihydroxyvitamin D3 synthesis in leptin-deficient mice. J Bone Miner Res 2010; 25 (8): 1711–23. 47. Khosravi A, Cutler CM, Kelly MH et al. Determination of the elimination half-life of fibroblast growth factor-23. J Clin Endocrinol Metab 2007; 92 (6): 2374–7.
48. Kato K, Jeanneau C, Tarp MA, Benet-Pages A. Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J Biol Chem 2006; 281 (27): 18370–7.
49. Bowe AE, Finnegan R, Jan de Beur SM. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 2001; 284 (4): 977–81.
50. Sato T, Kudo T, Ikehara Y, Ogawa H. Chondroitin sulfate N-acetylgalactosaminyltransferase 1 is necessary for normal endochondral ossification and aggrecan metabolism. J Biol Chem 2011; 286 (7): 5803–12.
51. Watanabe Y, Takeuchi K, Higa Onaga S. Chondroitin sulfate N-acetylgalactosaminyltransferase-1 is required for normal cartilage development. Biochem J 2010; 432 (1): 47–55.
52. Frishberg Y, Topaz O, Bergman R. Identification of a recurrent mutation in GALNT3 demonstrates that hyperostosis-hyperphosphatemia syndrome and familial tumoral calcinosis are allelic disorders. J Mol Med (Berl) 2005; 83 (1): 33–8.
53. Francis F, Strom TM, Hennig S, Boddrich A. Genomic organization of the human PEX gene mutated in X-linked dominant hypophosphatemic rickets. Genome Res 1997; 7 (6): 573–85.
54. Ребров В.Г., Громова О.А. Витамины и микроэлементы. М.: ГЭОТАР-МЕД, 2008.
55. Gutierrez OM, Smith KT, Barchi-Chung A et al. (1–34) Parathyroid hormone infusion acutely lowers fibroblast growth factor 23 concentrations in adult volunteers. Clin J Am Soc Nephrol 2012; 7 (1): 139–45.
56. Sanchez Alvarez JE, Perez Tamajon L, Hernandez D et al. Efficacy and safety of two vitamin supplement regimens on homocysteine levels in hemodialysis patients. Prospective, randomized clinical trial. Nefrologia 2005; 25 (3): 288–96.
57. Nakamura S, Li H, Adijiang A et al. Pyridoxal phosphate prevents progression of diabetic nephropathy. Nephrol Dial Transplant 2007; 22 (8): 2165–74.
58. Ocak S, Gorur S, Hakverdi S et al. Protective effects of caffeic acid phenethyl ester, vitamin C, vitamin E and N-acetylcysteine on vancomycin-induced nephrotoxicity in rats. Basic Clin Pharmacol Toxicol 2007; 100 (5): 328–33.
59. Emamghorashi F, Owji SM, Motamedifar M. Evaluation of Effectiveness of Vitamins C and E on Prevention of Renal Scar due to Pyelonephritis in Rat. Adv Urol 2011; с. 48949.
60. Huang HS, Ma MC, Chen J. Low-vitamin E diet exacerbates calcium oxalate crystal formation via enhanced oxidative stress in rat hyperoxaluric kidney. Am J Physiol Renal Physiol 2009; 296 (1): F34–45. Epub 2008 Se.
61. Tasanarong A, Piyayotai D, Thitiarchakul S. Protection of radiocontrast induced nephropathy by vitamin E (alpha tocopherol): a randomized controlled pilot study. J Med Assoc Thai 2009; 92 (10): 1273–81.
62. Carmichael SL, Rasmussen SA, Lammer EJ, Ma C, Shaw GM. Craniosynostosis and nutrient intake during pregnancy. Birth Defects Res A Clin Mol Teratol 2010; 88 (12): 1032–9 doi.
63. Laue K, Pogoda HM, Daniel PB et al. Craniosynostosis and multiple skeletal anomalies in humans and zebrafish result from a defect in the localized degradation of retinoic acid. Am J Hum Genet 2011; 89 (5): 595–606.
64. Song HM, Nacamuli RP, Xia W et al. High-dose retinoic acid modulates rat calvarial osteoblast biology. J Cell Physiol 2005; 202 (1): 255–62.
65. James AW, Levi B, Xu Y et al. Retinoic acid enhances osteogenesis in cranial suture-derived mesenchymal cells: potential mechanisms of retinoid-induced craniosynostosis. Plast Reconstr Surg 2010; 125 (5): 1352–61.
2. Kimonis V, Gold JA, Hoffman TL et al. Genetics of craniosynostosis. Semin Pediatr Neurol 2007; 14 (3): 150–61.
3. Gault DT, Renier D, Marchac D, Jones BM. Intracranial pressure and intracranial volume in children with craniosynostosis. Plast Reconstr Surg 1992; 90 (3): 377–81.
4. Cerovac S, Neil-Dwyer JG, Rich P et al. Are routine preoperative CT scans necessary in the management of single suture craniosynostosis? Br J Neurosurg 2002; 16 (4): 348–54.
5. Aviv RI, Rodger E, Hall CM. Craniosynostosis. Clin Radiol 2002; 57 (2): 93–102.
6. Cunningham ML, Heike CL. Evaluation of the infant with an abnormal skull shape. Curr Opin Pediatr 2007; 19 (6): 645–51.
7. Бадалян Л.О. Детская неврология. М.: Медицина, 1984; с. 346–7.
8. Kapp-Simon KA, Speltz ML, Cunningham ML et al. Neurodevelopment of children with single suture craniosynostosis: a review. Childs Nerv Syst 2007; 23 (3): 269–81.
9. Jacob S, Wu C, Freeman TA et al. Expression of Indian Hedgehog, BMP-4 and Noggin in craniosynostosis induced by fetal constraint. Ann Plast Surg 2007; 58 (2): 215–21.
10. Johnsonbaugh RE, Bryan RN, Hierlwimmer R, Georges LP. Premature craniosynostosis: A common complication of juvenile thyrotoxicosis. J Pediatr 1978; 93 (2): 188–91.
11. Carmichael SL, Ma C, Rasmussen SA et al. Craniosynostosis and maternal smoking. Birth Defects Res Clin Mol Teratol 2008; 82 (2): 78–85.
12. Blount JP, Louis RG, Tubbs RS, Grant JH. Pansynostosis: a review. Childs Nerv Syst 2007; 23 (10): 1103–9.
13. Moloney DM, Wall SA, Ashworth GJ et al. Prevalence of Pro250Arg mutation of fibroblast growth factor receptor 3 in coronal craniosynostosis. Lancet 1997; 349 (9058): 1059–62.
14. Frazier BC, Mooney MP, Losken HW et al. Comparison of craniofacial phenotype in craniosynostotic rabbits treated with anti-Tgf-beta2 at suturectomy site. Cleft Palate Craniofac J 2008; 45 (6): 571–82. 15. Mulliken JB, Gripp KW, Stolle CA et al. Molecular analysis of patients with synostotic frontal plagiocephaly (unilateral coronal synostosis). Plast Reconstr Surg 2004; 113 (7): 1899–909.
16. Kinsella CR, Cray JJ, Durham EL et al. Recombinant human bone morphogenetic protein-2-induced craniosynostosis and growth restriction in the immature skeleton. Plast Reconstr Surg 2011; 127 (3): 1173–81.
17. Seto ML, Hing AV, Chang J et al. Isolated sagittal and coronal craniosynostosis associated with TWIST box mutations. Am J Med Genet A 2007; 143 (7): 678–86.
18. Jabs EW, Muller U, Li X et al. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 1993; 75 (3): 443–50.
19. Miura K, Miura S, Yoshiura K et al. A case of Kallmann syndrome carrying a missense mutation in alternatively spliced exon 8A encoding the immunoglobulin-like domain IIIb of fibroblast growth factor receptor 1. Hum Reprod 2010; 25 (4): 1076–80.
20. Gorry MC, Preston RA, White GJ et al. Crouzon syndrome: mutations in two spliceoforms of FGFR2 and a common point mutation shared with Jackson-Weiss syndrome. Hum Mol Genet 1995; 4 (8): 1387–90.
21. Katoh M. FGFR2 abnormalities underlie a spectrum of bone, skin, and cancer pathologies. J Invest Dermatol 2009; 129 (8): 1861–7.
22. Mackie EJ, Ahmed YA, Tatarczuch L et al. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 2008; 40 (1): 46–62.
23. Pathak A, Sandhu BK, Radotra BD et al. Histopathological and biochemical changes in the sutural region in craniosynostosis. Childs Nerv Syst 2000; 16 (9): 564–8.
24.De Pollack C, Renier D, Hott M, Marie PJ. Increased bone formation and osteoblastic cell phenotype in premature cranial suture ossification (craniosynostosis). J Bone Miner Res 1996; 11 (3): 401–7.
25. Torshin I.Yu. Bioinformatics in the post-genomic era: sensing the change from molecular genetics to personalized medicine. Nova Biomedical Books, NY, USA, 2009, In «Bioinformatics in the Post-Genomic Era» series, ISBN: 978-1-60692-217-0.
26. Moursi AM, Winnard PL, Winnard AV et al. Fibroblast growth factor 2 induces increased calvarial osteoblast proliferation and cranial suture fusion. Cleft Palate Craniofac J 2002; 39 (5): 487–96.
27. Zhang X, Ibrahimi OA, Olsen SK et al. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 2006; 281 (23): 15694–700.
28. Sun G, Budde RJ. Requirement for an additional divalent metal cation to activate protein tyrosine kinases. Biochemistry 1997; 36 (8): 2139–46.
29. Kato Y, Kravchenko VV, Tapping RI et al. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J 1997; 16 (23): 7054–66.
30. Wu XL, Gu MM, Huang L, Liu XS. Multiple synostoses syndrome is due to a missense mutation in exon 2 of FGF9 gene. Am J Hum Genet 2009; 85 (1): 53–63.
31. Sanford LP, Ormsby I, Gittenberger-de Groot AC et al. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 1997; 124 (13): 2659–70.
32. Yang T, Mendoza-Londono R, Lu H. E-selectin ligand-1 regulates growth plate homeostasis in mice by inhibiting the intracellular processing and secretion of mature TGF-beta. J Clin Invest 2010; 120 (7): 2474–85 doi.
33. Ito Y, Yeo JY, Chytil A et al. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development 2003; 130 (21): 5269–80.
34. Loeys BL, Chen J, Neptune ER. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 2005; 37 (3): 275–81.
35. Ades LC, Sullivan K, Biggin A et al. FBN1, TGFBR1, and the Marfan-craniosynostosis/mental retardation disorders revisited. Am J Med Genet 2006; 140 (10): 1047–58.
36. Whitman M, Downes CP. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 1988; 332 (6165): 644–6.
37. Franke TF, Kaplan DR, Cantley LC, Toker A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 1997; 275 (5300): 665–8.
38. Heinrich PC, Behrmann I, Haan S et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374
(Pt. 1):1–20.
39. Nieminen P, Morgan NV, Fenwick AL, Parmanen S. Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption, and supernumerary teeth. Am J Hum Genet 2011; 89 (1): 67–81.
40. Juppner H. Phosphate and FGF-23. Kidney Int 2011 (Suppl.); 121: S24–7.
41. ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 2000; 26 (3): 345–8.
42. Roy WA, Iorio RJ, Meyer GA. Craniosynostosis in vitamin D-resistant rickets. A mouse model. J Neurosurg 1981; 55 (2): 265–71.
43. Nabeshima Y. Regulation of calcium homeostasis by alpha-Klotho and FGF23. Clin Calcium. 2010; 20 (11): 1677–85.
44. Su AI, Wiltshire T, Batalov S et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 2004; 101 (16): 6062–7.
45. Liu S, Tang W, Fang J et al. Novel regulators of Fgf23 expression and mineralization in Hyp bone. Mol Endocrinol 2009; 23 (9): 1505–18.
46. Tsuji K, Maeda T, Kawane T et al. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1alpha,25-dihydroxyvitamin D3 synthesis in leptin-deficient mice. J Bone Miner Res 2010; 25 (8): 1711–23. 47. Khosravi A, Cutler CM, Kelly MH et al. Determination of the elimination half-life of fibroblast growth factor-23. J Clin Endocrinol Metab 2007; 92 (6): 2374–7.
48. Kato K, Jeanneau C, Tarp MA, Benet-Pages A. Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J Biol Chem 2006; 281 (27): 18370–7.
49. Bowe AE, Finnegan R, Jan de Beur SM. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 2001; 284 (4): 977–81.
50. Sato T, Kudo T, Ikehara Y, Ogawa H. Chondroitin sulfate N-acetylgalactosaminyltransferase 1 is necessary for normal endochondral ossification and aggrecan metabolism. J Biol Chem 2011; 286 (7): 5803–12.
51. Watanabe Y, Takeuchi K, Higa Onaga S. Chondroitin sulfate N-acetylgalactosaminyltransferase-1 is required for normal cartilage development. Biochem J 2010; 432 (1): 47–55.
52. Frishberg Y, Topaz O, Bergman R. Identification of a recurrent mutation in GALNT3 demonstrates that hyperostosis-hyperphosphatemia syndrome and familial tumoral calcinosis are allelic disorders. J Mol Med (Berl) 2005; 83 (1): 33–8.
53. Francis F, Strom TM, Hennig S, Boddrich A. Genomic organization of the human PEX gene mutated in X-linked dominant hypophosphatemic rickets. Genome Res 1997; 7 (6): 573–85.
54. Ребров В.Г., Громова О.А. Витамины и микроэлементы. М.: ГЭОТАР-МЕД, 2008.
55. Gutierrez OM, Smith KT, Barchi-Chung A et al. (1–34) Parathyroid hormone infusion acutely lowers fibroblast growth factor 23 concentrations in adult volunteers. Clin J Am Soc Nephrol 2012; 7 (1): 139–45.
56. Sanchez Alvarez JE, Perez Tamajon L, Hernandez D et al. Efficacy and safety of two vitamin supplement regimens on homocysteine levels in hemodialysis patients. Prospective, randomized clinical trial. Nefrologia 2005; 25 (3): 288–96.
57. Nakamura S, Li H, Adijiang A et al. Pyridoxal phosphate prevents progression of diabetic nephropathy. Nephrol Dial Transplant 2007; 22 (8): 2165–74.
58. Ocak S, Gorur S, Hakverdi S et al. Protective effects of caffeic acid phenethyl ester, vitamin C, vitamin E and N-acetylcysteine on vancomycin-induced nephrotoxicity in rats. Basic Clin Pharmacol Toxicol 2007; 100 (5): 328–33.
59. Emamghorashi F, Owji SM, Motamedifar M. Evaluation of Effectiveness of Vitamins C and E on Prevention of Renal Scar due to Pyelonephritis in Rat. Adv Urol 2011; с. 48949.
60. Huang HS, Ma MC, Chen J. Low-vitamin E diet exacerbates calcium oxalate crystal formation via enhanced oxidative stress in rat hyperoxaluric kidney. Am J Physiol Renal Physiol 2009; 296 (1): F34–45. Epub 2008 Se.
61. Tasanarong A, Piyayotai D, Thitiarchakul S. Protection of radiocontrast induced nephropathy by vitamin E (alpha tocopherol): a randomized controlled pilot study. J Med Assoc Thai 2009; 92 (10): 1273–81.
62. Carmichael SL, Rasmussen SA, Lammer EJ, Ma C, Shaw GM. Craniosynostosis and nutrient intake during pregnancy. Birth Defects Res A Clin Mol Teratol 2010; 88 (12): 1032–9 doi.
63. Laue K, Pogoda HM, Daniel PB et al. Craniosynostosis and multiple skeletal anomalies in humans and zebrafish result from a defect in the localized degradation of retinoic acid. Am J Hum Genet 2011; 89 (5): 595–606.
64. Song HM, Nacamuli RP, Xia W et al. High-dose retinoic acid modulates rat calvarial osteoblast biology. J Cell Physiol 2005; 202 (1): 255–62.
65. James AW, Levi B, Xu Y et al. Retinoic acid enhances osteogenesis in cranial suture-derived mesenchymal cells: potential mechanisms of retinoid-induced craniosynostosis. Plast Reconstr Surg 2010; 125 (5): 1352–61.
2. Kimonis V, Gold JA, Hoffman TL et al. Genetics of craniosynostosis. Semin Pediatr Neurol 2007; 14 (3): 150–61.
3. Gault DT, Renier D, Marchac D, Jones BM. Intracranial pressure and intracranial volume in children with craniosynostosis. Plast Reconstr Surg 1992; 90 (3): 377–81.
4. Cerovac S, Neil-Dwyer JG, Rich P et al. Are routine preoperative CT scans necessary in the management of single suture craniosynostosis? Br J Neurosurg 2002; 16 (4): 348–54.
5. Aviv RI, Rodger E, Hall CM. Craniosynostosis. Clin Radiol 2002; 57 (2): 93–102.
6. Cunningham ML, Heike CL. Evaluation of the infant with an abnormal skull shape. Curr Opin Pediatr 2007; 19 (6): 645–51.
7. Бадалян Л.О. Детская неврология. М.: Медицина, 1984; с. 346–7.
8. Kapp-Simon KA, Speltz ML, Cunningham ML et al. Neurodevelopment of children with single suture craniosynostosis: a review. Childs Nerv Syst 2007; 23 (3): 269–81.
9. Jacob S, Wu C, Freeman TA et al. Expression of Indian Hedgehog, BMP-4 and Noggin in craniosynostosis induced by fetal constraint. Ann Plast Surg 2007; 58 (2): 215–21.
10. Johnsonbaugh RE, Bryan RN, Hierlwimmer R, Georges LP. Premature craniosynostosis: A common complication of juvenile thyrotoxicosis. J Pediatr 1978; 93 (2): 188–91.
11. Carmichael SL, Ma C, Rasmussen SA et al. Craniosynostosis and maternal smoking. Birth Defects Res Clin Mol Teratol 2008; 82 (2): 78–85.
12. Blount JP, Louis RG, Tubbs RS, Grant JH. Pansynostosis: a review. Childs Nerv Syst 2007; 23 (10): 1103–9.
13. Moloney DM, Wall SA, Ashworth GJ et al. Prevalence of Pro250Arg mutation of fibroblast growth factor receptor 3 in coronal craniosynostosis. Lancet 1997; 349 (9058): 1059–62.
14. Frazier BC, Mooney MP, Losken HW et al. Comparison of craniofacial phenotype in craniosynostotic rabbits treated with anti-Tgf-beta2 at suturectomy site. Cleft Palate Craniofac J 2008; 45 (6): 571–82. 15. Mulliken JB, Gripp KW, Stolle CA et al. Molecular analysis of patients with synostotic frontal plagiocephaly (unilateral coronal synostosis). Plast Reconstr Surg 2004; 113 (7): 1899–909.
16. Kinsella CR, Cray JJ, Durham EL et al. Recombinant human bone morphogenetic protein-2-induced craniosynostosis and growth restriction in the immature skeleton. Plast Reconstr Surg 2011; 127 (3): 1173–81.
17. Seto ML, Hing AV, Chang J et al. Isolated sagittal and coronal craniosynostosis associated with TWIST box mutations. Am J Med Genet A 2007; 143 (7): 678–86.
18. Jabs EW, Muller U, Li X et al. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 1993; 75 (3): 443–50.
19. Miura K, Miura S, Yoshiura K et al. A case of Kallmann syndrome carrying a missense mutation in alternatively spliced exon 8A encoding the immunoglobulin-like domain IIIb of fibroblast growth factor receptor 1. Hum Reprod 2010; 25 (4): 1076–80.
20. Gorry MC, Preston RA, White GJ et al. Crouzon syndrome: mutations in two spliceoforms of FGFR2 and a common point mutation shared with Jackson-Weiss syndrome. Hum Mol Genet 1995; 4 (8): 1387–90.
21. Katoh M. FGFR2 abnormalities underlie a spectrum of bone, skin, and cancer pathologies. J Invest Dermatol 2009; 129 (8): 1861–7.
22. Mackie EJ, Ahmed YA, Tatarczuch L et al. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 2008; 40 (1): 46–62.
23. Pathak A, Sandhu BK, Radotra BD et al. Histopathological and biochemical changes in the sutural region in craniosynostosis. Childs Nerv Syst 2000; 16 (9): 564–8.
24.De Pollack C, Renier D, Hott M, Marie PJ. Increased bone formation and osteoblastic cell phenotype in premature cranial suture ossification (craniosynostosis). J Bone Miner Res 1996; 11 (3): 401–7.
25. Torshin I.Yu. Bioinformatics in the post-genomic era: sensing the change from molecular genetics to personalized medicine. Nova Biomedical Books, NY, USA, 2009, In «Bioinformatics in the Post-Genomic Era» series, ISBN: 978-1-60692-217-0.
26. Moursi AM, Winnard PL, Winnard AV et al. Fibroblast growth factor 2 induces increased calvarial osteoblast proliferation and cranial suture fusion. Cleft Palate Craniofac J 2002; 39 (5): 487–96.
27. Zhang X, Ibrahimi OA, Olsen SK et al. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 2006; 281 (23): 15694–700.
28. Sun G, Budde RJ. Requirement for an additional divalent metal cation to activate protein tyrosine kinases. Biochemistry 1997; 36 (8): 2139–46.
29. Kato Y, Kravchenko VV, Tapping RI et al. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J 1997; 16 (23): 7054–66.
30. Wu XL, Gu MM, Huang L, Liu XS. Multiple synostoses syndrome is due to a missense mutation in exon 2 of FGF9 gene. Am J Hum Genet 2009; 85 (1): 53–63.
31. Sanford LP, Ormsby I, Gittenberger-de Groot AC et al. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 1997; 124 (13): 2659–70.
32. Yang T, Mendoza-Londono R, Lu H. E-selectin ligand-1 regulates growth plate homeostasis in mice by inhibiting the intracellular processing and secretion of mature TGF-beta. J Clin Invest 2010; 120 (7): 2474–85 doi.
33. Ito Y, Yeo JY, Chytil A et al. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development 2003; 130 (21): 5269–80.
34. Loeys BL, Chen J, Neptune ER. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 2005; 37 (3): 275–81.
35. Ades LC, Sullivan K, Biggin A et al. FBN1, TGFBR1, and the Marfan-craniosynostosis/mental retardation disorders revisited. Am J Med Genet 2006; 140 (10): 1047–58.
36. Whitman M, Downes CP. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 1988; 332 (6165): 644–6.
37. Franke TF, Kaplan DR, Cantley LC, Toker A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 1997; 275 (5300): 665–8.
38. Heinrich PC, Behrmann I, Haan S et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374
(Pt. 1):1–20.
39. Nieminen P, Morgan NV, Fenwick AL, Parmanen S. Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption, and supernumerary teeth. Am J Hum Genet 2011; 89 (1): 67–81.
40. Juppner H. Phosphate and FGF-23. Kidney Int 2011 (Suppl.); 121: S24–7.
41. ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 2000; 26 (3): 345–8.
42. Roy WA, Iorio RJ, Meyer GA. Craniosynostosis in vitamin D-resistant rickets. A mouse model. J Neurosurg 1981; 55 (2): 265–71.
43. Nabeshima Y. Regulation of calcium homeostasis by alpha-Klotho and FGF23. Clin Calcium. 2010; 20 (11): 1677–85.
44. Su AI, Wiltshire T, Batalov S et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 2004; 101 (16): 6062–7.
45. Liu S, Tang W, Fang J et al. Novel regulators of Fgf23 expression and mineralization in Hyp bone. Mol Endocrinol 2009; 23 (9): 1505–18.
46. Tsuji K, Maeda T, Kawane T et al. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1alpha,25-dihydroxyvitamin D3 synthesis in leptin-deficient mice. J Bone Miner Res 2010; 25 (8): 1711–23. 47. Khosravi A, Cutler CM, Kelly MH et al. Determination of the elimination half-life of fibroblast growth factor-23. J Clin Endocrinol Metab 2007; 92 (6): 2374–7.
48. Kato K, Jeanneau C, Tarp MA, Benet-Pages A. Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J Biol Chem 2006; 281 (27): 18370–7.
49. Bowe AE, Finnegan R, Jan de Beur SM. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 2001; 284 (4): 977–81.
50. Sato T, Kudo T, Ikehara Y, Ogawa H. Chondroitin sulfate N-acetylgalactosaminyltransferase 1 is necessary for normal endochondral ossification and aggrecan metabolism. J Biol Chem 2011; 286 (7): 5803–12.
51. Watanabe Y, Takeuchi K, Higa Onaga S. Chondroitin sulfate N-acetylgalactosaminyltransferase-1 is required for normal cartilage development. Biochem J 2010; 432 (1): 47–55.
52. Frishberg Y, Topaz O, Bergman R. Identification of a recurrent mutation in GALNT3 demonstrates that hyperostosis-hyperphosphatemia syndrome and familial tumoral calcinosis are allelic disorders. J Mol Med (Berl) 2005; 83 (1): 33–8.
53. Francis F, Strom TM, Hennig S, Boddrich A. Genomic organization of the human PEX gene mutated in X-linked dominant hypophosphatemic rickets. Genome Res 1997; 7 (6): 573–85.
54. Ребров В.Г., Громова О.А. Витамины и микроэлементы. М.: ГЭОТАР-МЕД, 2008.
55. Gutierrez OM, Smith KT, Barchi-Chung A et al. (1–34) Parathyroid hormone infusion acutely lowers fibroblast growth factor 23 concentrations in adult volunteers. Clin J Am Soc Nephrol 2012; 7 (1): 139–45.
56. Sanchez Alvarez JE, Perez Tamajon L, Hernandez D et al. Efficacy and safety of two vitamin supplement regimens on homocysteine levels in hemodialysis patients. Prospective, randomized clinical trial. Nefrologia 2005; 25 (3): 288–96.
57. Nakamura S, Li H, Adijiang A et al. Pyridoxal phosphate prevents progression of diabetic nephropathy. Nephrol Dial Transplant 2007; 22 (8): 2165–74.
58. Ocak S, Gorur S, Hakverdi S et al. Protective effects of caffeic acid phenethyl ester, vitamin C, vitamin E and N-acetylcysteine on vancomycin-induced nephrotoxicity in rats. Basic Clin Pharmacol Toxicol 2007; 100 (5): 328–33.
59. Emamghorashi F, Owji SM, Motamedifar M. Evaluation of Effectiveness of Vitamins C and E on Prevention of Renal Scar due to Pyelonephritis in Rat. Adv Urol 2011; с. 48949.
60. Huang HS, Ma MC, Chen J. Low-vitamin E diet exacerbates calcium oxalate crystal formation via enhanced oxidative stress in rat hyperoxaluric kidney. Am J Physiol Renal Physiol 2009; 296 (1): F34–45. Epub 2008 Se.
61. Tasanarong A, Piyayotai D, Thitiarchakul S. Protection of radiocontrast induced nephropathy by vitamin E (alpha tocopherol): a randomized controlled pilot study. J Med Assoc Thai 2009; 92 (10): 1273–81.
62. Carmichael SL, Rasmussen SA, Lammer EJ, Ma C, Shaw GM. Craniosynostosis and nutrient intake during pregnancy. Birth Defects Res A Clin Mol Teratol 2010; 88 (12): 1032–9 doi.
63. Laue K, Pogoda HM, Daniel PB et al. Craniosynostosis and multiple skeletal anomalies in humans and zebrafish result from a defect in the localized degradation of retinoic acid. Am J Hum Genet 2011; 89 (5): 595–606.
64. Song HM, Nacamuli RP, Xia W et al. High-dose retinoic acid modulates rat calvarial osteoblast biology. J Cell Physiol 2005; 202 (1): 255–62.
65. James AW, Levi B, Xu Y et al. Retinoic acid enhances osteogenesis in cranial suture-derived mesenchymal cells: potential mechanisms of retinoid-induced craniosynostosis. Plast Reconstr Surg 2010; 125 (5): 1352–61.
________________________________________________
2. Kimonis V, Gold JA, Hoffman TL et al. Genetics of craniosynostosis. Semin Pediatr Neurol 2007; 14 (3): 150–61.
3. Gault DT, Renier D, Marchac D, Jones BM. Intracranial pressure and intracranial volume in children with craniosynostosis. Plast Reconstr Surg 1992; 90 (3): 377–81.
4. Cerovac S, Neil-Dwyer JG, Rich P et al. Are routine preoperative CT scans necessary in the management of single suture craniosynostosis? Br J Neurosurg 2002; 16 (4): 348–54.
5. Aviv RI, Rodger E, Hall CM. Craniosynostosis. Clin Radiol 2002; 57 (2): 93–102.
6. Cunningham ML, Heike CL. Evaluation of the infant with an abnormal skull shape. Curr Opin Pediatr 2007; 19 (6): 645–51.
7. Бадалян Л.О. Детская неврология. М.: Медицина, 1984; с. 346–7.
8. Kapp-Simon KA, Speltz ML, Cunningham ML et al. Neurodevelopment of children with single suture craniosynostosis: a review. Childs Nerv Syst 2007; 23 (3): 269–81.
9. Jacob S, Wu C, Freeman TA et al. Expression of Indian Hedgehog, BMP-4 and Noggin in craniosynostosis induced by fetal constraint. Ann Plast Surg 2007; 58 (2): 215–21.
10. Johnsonbaugh RE, Bryan RN, Hierlwimmer R, Georges LP. Premature craniosynostosis: A common complication of juvenile thyrotoxicosis. J Pediatr 1978; 93 (2): 188–91.
11. Carmichael SL, Ma C, Rasmussen SA et al. Craniosynostosis and maternal smoking. Birth Defects Res Clin Mol Teratol 2008; 82 (2): 78–85.
12. Blount JP, Louis RG, Tubbs RS, Grant JH. Pansynostosis: a review. Childs Nerv Syst 2007; 23 (10): 1103–9.
13. Moloney DM, Wall SA, Ashworth GJ et al. Prevalence of Pro250Arg mutation of fibroblast growth factor receptor 3 in coronal craniosynostosis. Lancet 1997; 349 (9058): 1059–62.
14. Frazier BC, Mooney MP, Losken HW et al. Comparison of craniofacial phenotype in craniosynostotic rabbits treated with anti-Tgf-beta2 at suturectomy site. Cleft Palate Craniofac J 2008; 45 (6): 571–82. 15. Mulliken JB, Gripp KW, Stolle CA et al. Molecular analysis of patients with synostotic frontal plagiocephaly (unilateral coronal synostosis). Plast Reconstr Surg 2004; 113 (7): 1899–909.
16. Kinsella CR, Cray JJ, Durham EL et al. Recombinant human bone morphogenetic protein-2-induced craniosynostosis and growth restriction in the immature skeleton. Plast Reconstr Surg 2011; 127 (3): 1173–81.
17. Seto ML, Hing AV, Chang J et al. Isolated sagittal and coronal craniosynostosis associated with TWIST box mutations. Am J Med Genet A 2007; 143 (7): 678–86.
18. Jabs EW, Muller U, Li X et al. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 1993; 75 (3): 443–50.
19. Miura K, Miura S, Yoshiura K et al. A case of Kallmann syndrome carrying a missense mutation in alternatively spliced exon 8A encoding the immunoglobulin-like domain IIIb of fibroblast growth factor receptor 1. Hum Reprod 2010; 25 (4): 1076–80.
20. Gorry MC, Preston RA, White GJ et al. Crouzon syndrome: mutations in two spliceoforms of FGFR2 and a common point mutation shared with Jackson-Weiss syndrome. Hum Mol Genet 1995; 4 (8): 1387–90.
21. Katoh M. FGFR2 abnormalities underlie a spectrum of bone, skin, and cancer pathologies. J Invest Dermatol 2009; 129 (8): 1861–7.
22. Mackie EJ, Ahmed YA, Tatarczuch L et al. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 2008; 40 (1): 46–62.
23. Pathak A, Sandhu BK, Radotra BD et al. Histopathological and biochemical changes in the sutural region in craniosynostosis. Childs Nerv Syst 2000; 16 (9): 564–8.
24.De Pollack C, Renier D, Hott M, Marie PJ. Increased bone formation and osteoblastic cell phenotype in premature cranial suture ossification (craniosynostosis). J Bone Miner Res 1996; 11 (3): 401–7.
25. Torshin I.Yu. Bioinformatics in the post-genomic era: sensing the change from molecular genetics to personalized medicine. Nova Biomedical Books, NY, USA, 2009, In «Bioinformatics in the Post-Genomic Era» series, ISBN: 978-1-60692-217-0.
26. Moursi AM, Winnard PL, Winnard AV et al. Fibroblast growth factor 2 induces increased calvarial osteoblast proliferation and cranial suture fusion. Cleft Palate Craniofac J 2002; 39 (5): 487–96.
27. Zhang X, Ibrahimi OA, Olsen SK et al. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 2006; 281 (23): 15694–700.
28. Sun G, Budde RJ. Requirement for an additional divalent metal cation to activate protein tyrosine kinases. Biochemistry 1997; 36 (8): 2139–46.
29. Kato Y, Kravchenko VV, Tapping RI et al. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J 1997; 16 (23): 7054–66.
30. Wu XL, Gu MM, Huang L, Liu XS. Multiple synostoses syndrome is due to a missense mutation in exon 2 of FGF9 gene. Am J Hum Genet 2009; 85 (1): 53–63.
31. Sanford LP, Ormsby I, Gittenberger-de Groot AC et al. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 1997; 124 (13): 2659–70.
32. Yang T, Mendoza-Londono R, Lu H. E-selectin ligand-1 regulates growth plate homeostasis in mice by inhibiting the intracellular processing and secretion of mature TGF-beta. J Clin Invest 2010; 120 (7): 2474–85 doi.
33. Ito Y, Yeo JY, Chytil A et al. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development 2003; 130 (21): 5269–80.
34. Loeys BL, Chen J, Neptune ER. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 2005; 37 (3): 275–81.
35. Ades LC, Sullivan K, Biggin A et al. FBN1, TGFBR1, and the Marfan-craniosynostosis/mental retardation disorders revisited. Am J Med Genet 2006; 140 (10): 1047–58.
36. Whitman M, Downes CP. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 1988; 332 (6165): 644–6.
37. Franke TF, Kaplan DR, Cantley LC, Toker A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 1997; 275 (5300): 665–8.
38. Heinrich PC, Behrmann I, Haan S et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374
(Pt. 1):1–20.
39. Nieminen P, Morgan NV, Fenwick AL, Parmanen S. Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption, and supernumerary teeth. Am J Hum Genet 2011; 89 (1): 67–81.
40. Juppner H. Phosphate and FGF-23. Kidney Int 2011 (Suppl.); 121: S24–7.
41. ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 2000; 26 (3): 345–8.
42. Roy WA, Iorio RJ, Meyer GA. Craniosynostosis in vitamin D-resistant rickets. A mouse model. J Neurosurg 1981; 55 (2): 265–71.
43. Nabeshima Y. Regulation of calcium homeostasis by alpha-Klotho and FGF23. Clin Calcium. 2010; 20 (11): 1677–85.
44. Su AI, Wiltshire T, Batalov S et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 2004; 101 (16): 6062–7.
45. Liu S, Tang W, Fang J et al. Novel regulators of Fgf23 expression and mineralization in Hyp bone. Mol Endocrinol 2009; 23 (9): 1505–18.
46. Tsuji K, Maeda T, Kawane T et al. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1alpha,25-dihydroxyvitamin D3 synthesis in leptin-deficient mice. J Bone Miner Res 2010; 25 (8): 1711–23. 47. Khosravi A, Cutler CM, Kelly MH et al. Determination of the elimination half-life of fibroblast growth factor-23. J Clin Endocrinol Metab 2007; 92 (6): 2374–7.
48. Kato K, Jeanneau C, Tarp MA, Benet-Pages A. Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J Biol Chem 2006; 281 (27): 18370–7.
49. Bowe AE, Finnegan R, Jan de Beur SM. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 2001; 284 (4): 977–81.
50. Sato T, Kudo T, Ikehara Y, Ogawa H. Chondroitin sulfate N-acetylgalactosaminyltransferase 1 is necessary for normal endochondral ossification and aggrecan metabolism. J Biol Chem 2011; 286 (7): 5803–12.
51. Watanabe Y, Takeuchi K, Higa Onaga S. Chondroitin sulfate N-acetylgalactosaminyltransferase-1 is required for normal cartilage development. Biochem J 2010; 432 (1): 47–55.
52. Frishberg Y, Topaz O, Bergman R. Identification of a recurrent mutation in GALNT3 demonstrates that hyperostosis-hyperphosphatemia syndrome and familial tumoral calcinosis are allelic disorders. J Mol Med (Berl) 2005; 83 (1): 33–8.
53. Francis F, Strom TM, Hennig S, Boddrich A. Genomic organization of the human PEX gene mutated in X-linked dominant hypophosphatemic rickets. Genome Res 1997; 7 (6): 573–85.
54. Ребров В.Г., Громова О.А. Витамины и микроэлементы. М.: ГЭОТАР-МЕД, 2008.
55. Gutierrez OM, Smith KT, Barchi-Chung A et al. (1–34) Parathyroid hormone infusion acutely lowers fibroblast growth factor 23 concentrations in adult volunteers. Clin J Am Soc Nephrol 2012; 7 (1): 139–45.
56. Sanchez Alvarez JE, Perez Tamajon L, Hernandez D et al. Efficacy and safety of two vitamin supplement regimens on homocysteine levels in hemodialysis patients. Prospective, randomized clinical trial. Nefrologia 2005; 25 (3): 288–96.
57. Nakamura S, Li H, Adijiang A et al. Pyridoxal phosphate prevents progression of diabetic nephropathy. Nephrol Dial Transplant 2007; 22 (8): 2165–74.
58. Ocak S, Gorur S, Hakverdi S et al. Protective effects of caffeic acid phenethyl ester, vitamin C, vitamin E and N-acetylcysteine on vancomycin-induced nephrotoxicity in rats. Basic Clin Pharmacol Toxicol 2007; 100 (5): 328–33.
59. Emamghorashi F, Owji SM, Motamedifar M. Evaluation of Effectiveness of Vitamins C and E on Prevention of Renal Scar due to Pyelonephritis in Rat. Adv Urol 2011; с. 48949.
60. Huang HS, Ma MC, Chen J. Low-vitamin E diet exacerbates calcium oxalate crystal formation via enhanced oxidative stress in rat hyperoxaluric kidney. Am J Physiol Renal Physiol 2009; 296 (1): F34–45. Epub 2008 Se.
61. Tasanarong A, Piyayotai D, Thitiarchakul S. Protection of radiocontrast induced nephropathy by vitamin E (alpha tocopherol): a randomized controlled pilot study. J Med Assoc Thai 2009; 92 (10): 1273–81.
62. Carmichael SL, Rasmussen SA, Lammer EJ, Ma C, Shaw GM. Craniosynostosis and nutrient intake during pregnancy. Birth Defects Res A Clin Mol Teratol 2010; 88 (12): 1032–9 doi.
63. Laue K, Pogoda HM, Daniel PB et al. Craniosynostosis and multiple skeletal anomalies in humans and zebrafish result from a defect in the localized degradation of retinoic acid. Am J Hum Genet 2011; 89 (5): 595–606.
64. Song HM, Nacamuli RP, Xia W et al. High-dose retinoic acid modulates rat calvarial osteoblast biology. J Cell Physiol 2005; 202 (1): 255–62.
65. James AW, Levi B, Xu Y et al. Retinoic acid enhances osteogenesis in cranial suture-derived mesenchymal cells: potential mechanisms of retinoid-induced craniosynostosis. Plast Reconstr Surg 2010; 125 (5): 1352–61.
Авторы
И.Ю.Торшин1, О.А.Громова1, 2, Г.Т.Сухих3, Н.Ю.Сотникова4
1. РСЦ Института микроэлементов ЮНЕСКО, Москва;
2. ГБОУ ВПО Ивановская медицинская академия Минздрава РФ;
3. ФГБУ НЦАГиП им. акад. В.И.Кулакова Минздрава России, Москва;
4. ФГБУ Ивановский НИИ материнства и детства им. В.Н.Городкова Росмедтехнологий
1. РСЦ Института микроэлементов ЮНЕСКО, Москва;
2. ГБОУ ВПО Ивановская медицинская академия Минздрава РФ;
3. ФГБУ НЦАГиП им. акад. В.И.Кулакова Минздрава России, Москва;
4. ФГБУ Ивановский НИИ материнства и детства им. В.Н.Городкова Росмедтехнологий
________________________________________________
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
