Краниостеноз – преждевременное закрытие родничков, черепных швов – представляет собой как тяжелую аномалию развития, так и патологию раннего возраста, приводящую к повышению внутричерепного давления растущего мозга. В результате развивается диспропорция строения головы и лица, у ребенка наблюдаются хронические головные боли, снижение аппетита, рвота и, зачастую, – значительное замедление умственного и физического развития. Поскольку этиология краниостеноза недостаточно изучена, в настоящее время хирургическое вмешательство – единственный вариант лечения. Поэтому перспективным является установление этиопатологических механизмов краниостеноза и разработка соответствующих подходов к профилактике и терапии данного заболевания. В настоящей работе проведен систематический анализ молекулярных механизмов закрытия родничков. Показано, что активность сигнальных каскадов, непосредственно связанных с заращиванием черепных швов (сигнальные каскады ФРФ, трансформирующего фактора роста b2, интерлейкина-11), зависит от ряда микронутриентов. Дефицит магния, цинка, кальция, инозитола и холина будет приводить к нарушениям регуляции этих сигнальных каскадов и, следовательно, к нарушениям развития костной ткани – абнормально ускоренной оссификации (краниостеноз) или, наоборот, крайне замедленной оссификации (рахит). Особо следует отметить роль ФРФ-23, который необходим для регуляции реадсорбции кальция, фосфата и активных форм витамина D в почках. По данным экспериментальных и клинических исследований, кальций, магний, витамины B2, B6, C и E действительно способствуют профилактике краниостеноза и, также, поддерживают функционирование почек. Поэтому прием препаратов, содержащих данные макро- и микронутриенты, будет способствовать профилактике краниостеноза.
Craniosynostosis, premature closure of «fontanelles» and cranial sutures, is a severe developmental abnormality and pathology of early age, leading to increased intracranial pressure of the growing brain. As a result occur deformities of the head and face, the child has chronic headaches, loss of appetite, vomiting, and often display a significant retardation of mental and physical development. Because the etiology of craniosynostosis is poorly understood at present, surgery appears to be the only treatment option. Thus, the establishment of ethiopathological mechanisms of craniosynostosis is required for the development of the efficient approaches to the prevention and treatment of this disease. In this paper, a systematic analysis of the molecular mechanisms of fontanelle closure is presented. It is shown that the activity of signaling cascades that are directly related to the closure of the cranial sutures (signaling cascades, fibroblast growth factor, transforming growth factor beta-2, IL-11) depends on a number of micronutrients. Deficiencies of magnesium, zinc, calcium, inositol and choline will lead to significant perturbations of the regulation of these signaling cascades and, consequently, to violations of the bone growth – either an abnormally accelerated ossification (craniosynostosis), or vice versa, an extremely slow ossification (rickets). Of particular note is the role of fibroblast growth factor 23, which is required for the regulation of the levels of calcium, phosphate and active forms of vitamin D by the kidneys. According to experimental and clinical studies, vitamins B2, B6, C and E maintain kidney function and also contribute to the prevention craniosynostosis.
1. Slater BJ, Lenton KA, Kwan MD et al. Cranial sutures: a brief review. Plast Reconstr Surg 2008; 121 (4): 170e–178e.
2. Kimonis V, Gold JA, Hoffman TL et al. Genetics of craniosynostosis. Semin Pediatr Neurol 2007; 14 (3): 150–61.
3. Gault DT, Renier D, Marchac D, Jones BM. Intracranial pressure and intracranial volume in children with craniosynostosis. Plast Reconstr Surg 1992; 90 (3): 377–81.
4. Cerovac S, Neil-Dwyer JG, Rich P et al. Are routine preoperative CT scans necessary in the management of single suture craniosynostosis? Br J Neurosurg 2002; 16 (4): 348–54.
5. Aviv RI, Rodger E, Hall CM. Craniosynostosis. Clin Radiol 2002; 57 (2): 93–102.
6. Cunningham ML, Heike CL. Evaluation of the infant with an abnormal skull shape. Curr Opin Pediatr 2007; 19 (6): 645–51.
7. Бадалян Л.О. Детская неврология. М.: Медицина, 1984; с. 346–7.
8. Kapp-Simon KA, Speltz ML, Cunningham ML et al. Neurodevelopment of children with single suture craniosynostosis: a review. Childs Nerv Syst 2007; 23 (3): 269–81.
9. Jacob S, Wu C, Freeman TA et al. Expression of Indian Hedgehog, BMP-4 and Noggin in craniosynostosis induced by fetal constraint. Ann Plast Surg 2007; 58 (2): 215–21.
10. Johnsonbaugh RE, Bryan RN, Hierlwimmer R, Georges LP. Premature craniosynostosis: A common complication of juvenile thyrotoxicosis. J Pediatr 1978; 93 (2): 188–91.
11. Carmichael SL, Ma C, Rasmussen SA et al. Craniosynostosis and maternal smoking. Birth Defects Res Clin Mol Teratol 2008; 82 (2): 78–85.
12. Blount JP, Louis RG, Tubbs RS, Grant JH. Pansynostosis: a review. Childs Nerv Syst 2007; 23 (10): 1103–9.
13. Moloney DM, Wall SA, Ashworth GJ et al. Prevalence of Pro250Arg mutation of fibroblast growth factor receptor 3 in coronal craniosynostosis. Lancet 1997; 349 (9058): 1059–62.
14. Frazier BC, Mooney MP, Losken HW et al. Comparison of craniofacial phenotype in craniosynostotic rabbits treated with anti-Tgf-beta2 at suturectomy site. Cleft Palate Craniofac J 2008; 45 (6): 571–82. 15. Mulliken JB, Gripp KW, Stolle CA et al. Molecular analysis of patients with synostotic frontal plagiocephaly (unilateral coronal synostosis). Plast Reconstr Surg 2004; 113 (7): 1899–909.
16. Kinsella CR, Cray JJ, Durham EL et al. Recombinant human bone morphogenetic protein-2-induced craniosynostosis and growth restriction in the immature skeleton. Plast Reconstr Surg 2011; 127 (3): 1173–81.
17. Seto ML, Hing AV, Chang J et al. Isolated sagittal and coronal craniosynostosis associated with TWIST box mutations. Am J Med Genet A 2007; 143 (7): 678–86.
18. Jabs EW, Muller U, Li X et al. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 1993; 75 (3): 443–50.
19. Miura K, Miura S, Yoshiura K et al. A case of Kallmann syndrome carrying a missense mutation in alternatively spliced exon 8A encoding the immunoglobulin-like domain IIIb of fibroblast growth factor receptor 1. Hum Reprod 2010; 25 (4): 1076–80.
20. Gorry MC, Preston RA, White GJ et al. Crouzon syndrome: mutations in two spliceoforms of FGFR2 and a common point mutation shared with Jackson-Weiss syndrome. Hum Mol Genet 1995; 4 (8): 1387–90.
21. Katoh M. FGFR2 abnormalities underlie a spectrum of bone, skin, and cancer pathologies. J Invest Dermatol 2009; 129 (8): 1861–7.
22. Mackie EJ, Ahmed YA, Tatarczuch L et al. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 2008; 40 (1): 46–62.
23. Pathak A, Sandhu BK, Radotra BD et al. Histopathological and biochemical changes in the sutural region in craniosynostosis. Childs Nerv Syst 2000; 16 (9): 564–8.
24.De Pollack C, Renier D, Hott M, Marie PJ. Increased bone formation and osteoblastic cell phenotype in premature cranial suture ossification (craniosynostosis). J Bone Miner Res 1996; 11 (3): 401–7.
25. Torshin I.Yu. Bioinformatics in the post-genomic era: sensing the change from molecular genetics to personalized medicine. Nova Biomedical Books, NY, USA, 2009, In «Bioinformatics in the Post-Genomic Era» series, ISBN: 978-1-60692-217-0.
26. Moursi AM, Winnard PL, Winnard AV et al. Fibroblast growth factor 2 induces increased calvarial osteoblast proliferation and cranial suture fusion. Cleft Palate Craniofac J 2002; 39 (5): 487–96.
27. Zhang X, Ibrahimi OA, Olsen SK et al. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 2006; 281 (23): 15694–700.
28. Sun G, Budde RJ. Requirement for an additional divalent metal cation to activate protein tyrosine kinases. Biochemistry 1997; 36 (8): 2139–46.
29. Kato Y, Kravchenko VV, Tapping RI et al. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J 1997; 16 (23): 7054–66.
30. Wu XL, Gu MM, Huang L, Liu XS. Multiple synostoses syndrome is due to a missense mutation in exon 2 of FGF9 gene. Am J Hum Genet 2009; 85 (1): 53–63.
31. Sanford LP, Ormsby I, Gittenberger-de Groot AC et al. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 1997; 124 (13): 2659–70.
32. Yang T, Mendoza-Londono R, Lu H. E-selectin ligand-1 regulates growth plate homeostasis in mice by inhibiting the intracellular processing and secretion of mature TGF-beta. J Clin Invest 2010; 120 (7): 2474–85 doi.
33. Ito Y, Yeo JY, Chytil A et al. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development 2003; 130 (21): 5269–80.
34. Loeys BL, Chen J, Neptune ER. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 2005; 37 (3): 275–81.
35. Ades LC, Sullivan K, Biggin A et al. FBN1, TGFBR1, and the Marfan-craniosynostosis/mental retardation disorders revisited. Am J Med Genet 2006; 140 (10): 1047–58.
36. Whitman M, Downes CP. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 1988; 332 (6165): 644–6.
37. Franke TF, Kaplan DR, Cantley LC, Toker A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 1997; 275 (5300): 665–8.
38. Heinrich PC, Behrmann I, Haan S et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374
(Pt. 1):1–20.
39. Nieminen P, Morgan NV, Fenwick AL, Parmanen S. Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption, and supernumerary teeth. Am J Hum Genet 2011; 89 (1): 67–81.
40. Juppner H. Phosphate and FGF-23. Kidney Int 2011 (Suppl.); 121: S24–7.
41. ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 2000; 26 (3): 345–8.
42. Roy WA, Iorio RJ, Meyer GA. Craniosynostosis in vitamin D-resistant rickets. A mouse model. J Neurosurg 1981; 55 (2): 265–71.
43. Nabeshima Y. Regulation of calcium homeostasis by alpha-Klotho and FGF23. Clin Calcium. 2010; 20 (11): 1677–85.
44. Su AI, Wiltshire T, Batalov S et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 2004; 101 (16): 6062–7.
45. Liu S, Tang W, Fang J et al. Novel regulators of Fgf23 expression and mineralization in Hyp bone. Mol Endocrinol 2009; 23 (9): 1505–18.
46. Tsuji K, Maeda T, Kawane T et al. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1alpha,25-dihydroxyvitamin D3 synthesis in leptin-deficient mice. J Bone Miner Res 2010; 25 (8): 1711–23. 47. Khosravi A, Cutler CM, Kelly MH et al. Determination of the elimination half-life of fibroblast growth factor-23. J Clin Endocrinol Metab 2007; 92 (6): 2374–7.
48. Kato K, Jeanneau C, Tarp MA, Benet-Pages A. Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J Biol Chem 2006; 281 (27): 18370–7.
49. Bowe AE, Finnegan R, Jan de Beur SM. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 2001; 284 (4): 977–81.
50. Sato T, Kudo T, Ikehara Y, Ogawa H. Chondroitin sulfate N-acetylgalactosaminyltransferase 1 is necessary for normal endochondral ossification and aggrecan metabolism. J Biol Chem 2011; 286 (7): 5803–12.
51. Watanabe Y, Takeuchi K, Higa Onaga S. Chondroitin sulfate N-acetylgalactosaminyltransferase-1 is required for normal cartilage development. Biochem J 2010; 432 (1): 47–55.
52. Frishberg Y, Topaz O, Bergman R. Identification of a recurrent mutation in GALNT3 demonstrates that hyperostosis-hyperphosphatemia syndrome and familial tumoral calcinosis are allelic disorders. J Mol Med (Berl) 2005; 83 (1): 33–8.
53. Francis F, Strom TM, Hennig S, Boddrich A. Genomic organization of the human PEX gene mutated in X-linked dominant hypophosphatemic rickets. Genome Res 1997; 7 (6): 573–85.
54. Ребров В.Г., Громова О.А. Витамины и микроэлементы. М.: ГЭОТАР-МЕД, 2008.
55. Gutierrez OM, Smith KT, Barchi-Chung A et al. (1–34) Parathyroid hormone infusion acutely lowers fibroblast growth factor 23 concentrations in adult volunteers. Clin J Am Soc Nephrol 2012; 7 (1): 139–45.
56. Sanchez Alvarez JE, Perez Tamajon L, Hernandez D et al. Efficacy and safety of two vitamin supplement regimens on homocysteine levels in hemodialysis patients. Prospective, randomized clinical trial. Nefrologia 2005; 25 (3): 288–96.
57. Nakamura S, Li H, Adijiang A et al. Pyridoxal phosphate prevents progression of diabetic nephropathy. Nephrol Dial Transplant 2007; 22 (8): 2165–74.
58. Ocak S, Gorur S, Hakverdi S et al. Protective effects of caffeic acid phenethyl ester, vitamin C, vitamin E and N-acetylcysteine on vancomycin-induced nephrotoxicity in rats. Basic Clin Pharmacol Toxicol 2007; 100 (5): 328–33.
59. Emamghorashi F, Owji SM, Motamedifar M. Evaluation of Effectiveness of Vitamins C and E on Prevention of Renal Scar due to Pyelonephritis in Rat. Adv Urol 2011; с. 48949.
60. Huang HS, Ma MC, Chen J. Low-vitamin E diet exacerbates calcium oxalate crystal formation via enhanced oxidative stress in rat hyperoxaluric kidney. Am J Physiol Renal Physiol 2009; 296 (1): F34–45. Epub 2008 Se.
61. Tasanarong A, Piyayotai D, Thitiarchakul S. Protection of radiocontrast induced nephropathy by vitamin E (alpha tocopherol): a randomized controlled pilot study. J Med Assoc Thai 2009; 92 (10): 1273–81.
62. Carmichael SL, Rasmussen SA, Lammer EJ, Ma C, Shaw GM. Craniosynostosis and nutrient intake during pregnancy. Birth Defects Res A Clin Mol Teratol 2010; 88 (12): 1032–9 doi.
63. Laue K, Pogoda HM, Daniel PB et al. Craniosynostosis and multiple skeletal anomalies in humans and zebrafish result from a defect in the localized degradation of retinoic acid. Am J Hum Genet 2011; 89 (5): 595–606.
64. Song HM, Nacamuli RP, Xia W et al. High-dose retinoic acid modulates rat calvarial osteoblast biology. J Cell Physiol 2005; 202 (1): 255–62.
65. James AW, Levi B, Xu Y et al. Retinoic acid enhances osteogenesis in cranial suture-derived mesenchymal cells: potential mechanisms of retinoid-induced craniosynostosis. Plast Reconstr Surg 2010; 125 (5): 1352–61.
________________________________________________
1. Slater BJ, Lenton KA, Kwan MD et al. Cranial sutures: a brief review. Plast Reconstr Surg 2008; 121 (4): 170e–178e.
2. Kimonis V, Gold JA, Hoffman TL et al. Genetics of craniosynostosis. Semin Pediatr Neurol 2007; 14 (3): 150–61.
3. Gault DT, Renier D, Marchac D, Jones BM. Intracranial pressure and intracranial volume in children with craniosynostosis. Plast Reconstr Surg 1992; 90 (3): 377–81.
4. Cerovac S, Neil-Dwyer JG, Rich P et al. Are routine preoperative CT scans necessary in the management of single suture craniosynostosis? Br J Neurosurg 2002; 16 (4): 348–54.
5. Aviv RI, Rodger E, Hall CM. Craniosynostosis. Clin Radiol 2002; 57 (2): 93–102.
6. Cunningham ML, Heike CL. Evaluation of the infant with an abnormal skull shape. Curr Opin Pediatr 2007; 19 (6): 645–51.
7. Бадалян Л.О. Детская неврология. М.: Медицина, 1984; с. 346–7.
8. Kapp-Simon KA, Speltz ML, Cunningham ML et al. Neurodevelopment of children with single suture craniosynostosis: a review. Childs Nerv Syst 2007; 23 (3): 269–81.
9. Jacob S, Wu C, Freeman TA et al. Expression of Indian Hedgehog, BMP-4 and Noggin in craniosynostosis induced by fetal constraint. Ann Plast Surg 2007; 58 (2): 215–21.
10. Johnsonbaugh RE, Bryan RN, Hierlwimmer R, Georges LP. Premature craniosynostosis: A common complication of juvenile thyrotoxicosis. J Pediatr 1978; 93 (2): 188–91.
11. Carmichael SL, Ma C, Rasmussen SA et al. Craniosynostosis and maternal smoking. Birth Defects Res Clin Mol Teratol 2008; 82 (2): 78–85.
12. Blount JP, Louis RG, Tubbs RS, Grant JH. Pansynostosis: a review. Childs Nerv Syst 2007; 23 (10): 1103–9.
13. Moloney DM, Wall SA, Ashworth GJ et al. Prevalence of Pro250Arg mutation of fibroblast growth factor receptor 3 in coronal craniosynostosis. Lancet 1997; 349 (9058): 1059–62.
14. Frazier BC, Mooney MP, Losken HW et al. Comparison of craniofacial phenotype in craniosynostotic rabbits treated with anti-Tgf-beta2 at suturectomy site. Cleft Palate Craniofac J 2008; 45 (6): 571–82. 15. Mulliken JB, Gripp KW, Stolle CA et al. Molecular analysis of patients with synostotic frontal plagiocephaly (unilateral coronal synostosis). Plast Reconstr Surg 2004; 113 (7): 1899–909.
16. Kinsella CR, Cray JJ, Durham EL et al. Recombinant human bone morphogenetic protein-2-induced craniosynostosis and growth restriction in the immature skeleton. Plast Reconstr Surg 2011; 127 (3): 1173–81.
17. Seto ML, Hing AV, Chang J et al. Isolated sagittal and coronal craniosynostosis associated with TWIST box mutations. Am J Med Genet A 2007; 143 (7): 678–86.
18. Jabs EW, Muller U, Li X et al. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 1993; 75 (3): 443–50.
19. Miura K, Miura S, Yoshiura K et al. A case of Kallmann syndrome carrying a missense mutation in alternatively spliced exon 8A encoding the immunoglobulin-like domain IIIb of fibroblast growth factor receptor 1. Hum Reprod 2010; 25 (4): 1076–80.
20. Gorry MC, Preston RA, White GJ et al. Crouzon syndrome: mutations in two spliceoforms of FGFR2 and a common point mutation shared with Jackson-Weiss syndrome. Hum Mol Genet 1995; 4 (8): 1387–90.
21. Katoh M. FGFR2 abnormalities underlie a spectrum of bone, skin, and cancer pathologies. J Invest Dermatol 2009; 129 (8): 1861–7.
22. Mackie EJ, Ahmed YA, Tatarczuch L et al. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 2008; 40 (1): 46–62.
23. Pathak A, Sandhu BK, Radotra BD et al. Histopathological and biochemical changes in the sutural region in craniosynostosis. Childs Nerv Syst 2000; 16 (9): 564–8.
24.De Pollack C, Renier D, Hott M, Marie PJ. Increased bone formation and osteoblastic cell phenotype in premature cranial suture ossification (craniosynostosis). J Bone Miner Res 1996; 11 (3): 401–7.
25. Torshin I.Yu. Bioinformatics in the post-genomic era: sensing the change from molecular genetics to personalized medicine. Nova Biomedical Books, NY, USA, 2009, In «Bioinformatics in the Post-Genomic Era» series, ISBN: 978-1-60692-217-0.
26. Moursi AM, Winnard PL, Winnard AV et al. Fibroblast growth factor 2 induces increased calvarial osteoblast proliferation and cranial suture fusion. Cleft Palate Craniofac J 2002; 39 (5): 487–96.
27. Zhang X, Ibrahimi OA, Olsen SK et al. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 2006; 281 (23): 15694–700.
28. Sun G, Budde RJ. Requirement for an additional divalent metal cation to activate protein tyrosine kinases. Biochemistry 1997; 36 (8): 2139–46.
29. Kato Y, Kravchenko VV, Tapping RI et al. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J 1997; 16 (23): 7054–66.
30. Wu XL, Gu MM, Huang L, Liu XS. Multiple synostoses syndrome is due to a missense mutation in exon 2 of FGF9 gene. Am J Hum Genet 2009; 85 (1): 53–63.
31. Sanford LP, Ormsby I, Gittenberger-de Groot AC et al. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 1997; 124 (13): 2659–70.
32. Yang T, Mendoza-Londono R, Lu H. E-selectin ligand-1 regulates growth plate homeostasis in mice by inhibiting the intracellular processing and secretion of mature TGF-beta. J Clin Invest 2010; 120 (7): 2474–85 doi.
33. Ito Y, Yeo JY, Chytil A et al. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development 2003; 130 (21): 5269–80.
34. Loeys BL, Chen J, Neptune ER. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 2005; 37 (3): 275–81.
35. Ades LC, Sullivan K, Biggin A et al. FBN1, TGFBR1, and the Marfan-craniosynostosis/mental retardation disorders revisited. Am J Med Genet 2006; 140 (10): 1047–58.
36. Whitman M, Downes CP. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 1988; 332 (6165): 644–6.
37. Franke TF, Kaplan DR, Cantley LC, Toker A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 1997; 275 (5300): 665–8.
38. Heinrich PC, Behrmann I, Haan S et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374
(Pt. 1):1–20.
39. Nieminen P, Morgan NV, Fenwick AL, Parmanen S. Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption, and supernumerary teeth. Am J Hum Genet 2011; 89 (1): 67–81.
40. Juppner H. Phosphate and FGF-23. Kidney Int 2011 (Suppl.); 121: S24–7.
41. ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 2000; 26 (3): 345–8.
42. Roy WA, Iorio RJ, Meyer GA. Craniosynostosis in vitamin D-resistant rickets. A mouse model. J Neurosurg 1981; 55 (2): 265–71.
43. Nabeshima Y. Regulation of calcium homeostasis by alpha-Klotho and FGF23. Clin Calcium. 2010; 20 (11): 1677–85.
44. Su AI, Wiltshire T, Batalov S et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 2004; 101 (16): 6062–7.
45. Liu S, Tang W, Fang J et al. Novel regulators of Fgf23 expression and mineralization in Hyp bone. Mol Endocrinol 2009; 23 (9): 1505–18.
46. Tsuji K, Maeda T, Kawane T et al. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1alpha,25-dihydroxyvitamin D3 synthesis in leptin-deficient mice. J Bone Miner Res 2010; 25 (8): 1711–23. 47. Khosravi A, Cutler CM, Kelly MH et al. Determination of the elimination half-life of fibroblast growth factor-23. J Clin Endocrinol Metab 2007; 92 (6): 2374–7.
48. Kato K, Jeanneau C, Tarp MA, Benet-Pages A. Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J Biol Chem 2006; 281 (27): 18370–7.
49. Bowe AE, Finnegan R, Jan de Beur SM. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 2001; 284 (4): 977–81.
50. Sato T, Kudo T, Ikehara Y, Ogawa H. Chondroitin sulfate N-acetylgalactosaminyltransferase 1 is necessary for normal endochondral ossification and aggrecan metabolism. J Biol Chem 2011; 286 (7): 5803–12.
51. Watanabe Y, Takeuchi K, Higa Onaga S. Chondroitin sulfate N-acetylgalactosaminyltransferase-1 is required for normal cartilage development. Biochem J 2010; 432 (1): 47–55.
52. Frishberg Y, Topaz O, Bergman R. Identification of a recurrent mutation in GALNT3 demonstrates that hyperostosis-hyperphosphatemia syndrome and familial tumoral calcinosis are allelic disorders. J Mol Med (Berl) 2005; 83 (1): 33–8.
53. Francis F, Strom TM, Hennig S, Boddrich A. Genomic organization of the human PEX gene mutated in X-linked dominant hypophosphatemic rickets. Genome Res 1997; 7 (6): 573–85.
54. Ребров В.Г., Громова О.А. Витамины и микроэлементы. М.: ГЭОТАР-МЕД, 2008.
55. Gutierrez OM, Smith KT, Barchi-Chung A et al. (1–34) Parathyroid hormone infusion acutely lowers fibroblast growth factor 23 concentrations in adult volunteers. Clin J Am Soc Nephrol 2012; 7 (1): 139–45.
56. Sanchez Alvarez JE, Perez Tamajon L, Hernandez D et al. Efficacy and safety of two vitamin supplement regimens on homocysteine levels in hemodialysis patients. Prospective, randomized clinical trial. Nefrologia 2005; 25 (3): 288–96.
57. Nakamura S, Li H, Adijiang A et al. Pyridoxal phosphate prevents progression of diabetic nephropathy. Nephrol Dial Transplant 2007; 22 (8): 2165–74.
58. Ocak S, Gorur S, Hakverdi S et al. Protective effects of caffeic acid phenethyl ester, vitamin C, vitamin E and N-acetylcysteine on vancomycin-induced nephrotoxicity in rats. Basic Clin Pharmacol Toxicol 2007; 100 (5): 328–33.
59. Emamghorashi F, Owji SM, Motamedifar M. Evaluation of Effectiveness of Vitamins C and E on Prevention of Renal Scar due to Pyelonephritis in Rat. Adv Urol 2011; с. 48949.
60. Huang HS, Ma MC, Chen J. Low-vitamin E diet exacerbates calcium oxalate crystal formation via enhanced oxidative stress in rat hyperoxaluric kidney. Am J Physiol Renal Physiol 2009; 296 (1): F34–45. Epub 2008 Se.
61. Tasanarong A, Piyayotai D, Thitiarchakul S. Protection of radiocontrast induced nephropathy by vitamin E (alpha tocopherol): a randomized controlled pilot study. J Med Assoc Thai 2009; 92 (10): 1273–81.
62. Carmichael SL, Rasmussen SA, Lammer EJ, Ma C, Shaw GM. Craniosynostosis and nutrient intake during pregnancy. Birth Defects Res A Clin Mol Teratol 2010; 88 (12): 1032–9 doi.
63. Laue K, Pogoda HM, Daniel PB et al. Craniosynostosis and multiple skeletal anomalies in humans and zebrafish result from a defect in the localized degradation of retinoic acid. Am J Hum Genet 2011; 89 (5): 595–606.
64. Song HM, Nacamuli RP, Xia W et al. High-dose retinoic acid modulates rat calvarial osteoblast biology. J Cell Physiol 2005; 202 (1): 255–62.
65. James AW, Levi B, Xu Y et al. Retinoic acid enhances osteogenesis in cranial suture-derived mesenchymal cells: potential mechanisms of retinoid-induced craniosynostosis. Plast Reconstr Surg 2010; 125 (5): 1352–61.
1. РСЦ Института микроэлементов ЮНЕСКО, Москва;
2. ГБОУ ВПО Ивановская медицинская академия Минздрава РФ;
3. ФГБУ НЦАГиП им. акад. В.И.Кулакова Минздрава России, Москва;
4. ФГБУ Ивановский НИИ материнства и детства им. В.Н.Городкова Росмедтехнологий