Адекватный фолатный статус – необходимое условие нормального течения беременности, развития плода и ребенка. Современные клинические исследования позволили расширить классические рекомендации по приему фолиевой кислоты для предотвращения акушерских осложнений и пороков развития плода. Дотация фолиевой кислоты на этапе прегравидарной подготовки и во время беременности служит важным фактором профилактики самопроизвольного выкидыша, преждевременных родов, нарушений функции фетоплацентарного комплекса, пороков развития плода и рождения незрелых или маловесных детей. Оптимальная доза фолатов, необходимая для компенсации их недостатка (в дополнение к фолатам, получаемым с продуктами питания), колеблется в пределах от 400 до 800 мкг. Применение фолиевой кислоты в комплексе с другими витаминами и минералами, необходимыми во время беременности, оказывает лучший эффект по сравнению с монотерапией препаратами фолиевой кислоты. В настоящее время существуют препараты, в состав которых вместо фолиевой кислоты входит L-метилфолат. В Европе было проведено сравнительное плацебо-контролируемое исследование, в котором сравнили влияние применения L-метилфолата ([6S]-5-метилтетрагидрофолата) и фолиевой кислоты на концентрацию фолатов в плазме и эритроцитах. Данные исследования свидетельствуют о том, что метилфолат и фолиевая кислота увеличивают концентрацию фолатов в крови на аналогичном уровне, таким образом, не имеет смысла использовать метилфолат вместо фолиевой кислоты, которая имеет широкую доказательную базу. Ключевые слова: фолаты, фолиевая кислота, дефицит фолатов, сравнение фолиевой кислоты и L-метилфолата, гипергомоцистеинемия, невынашивание беременности, витамины у беременных.
________________________________________________
Adequate folate status is a necessary condition for a normal pregnancy, the development of the fetus and child. Recent clinical studies have enhanced the classic recommendations for folic acid intake for the prevention of obstetric complications and fetal malformations. Subsidy of folic acid in the stage of pregravidal preparation and during pregnancy is an important factor in the prevention of miscarriage, premature birth, dysfunction of the fetoplacental complex, fetal malformations and birth weight of infants or immature children. The optimal dose of folate required to compensate for their lack (in addition to folate derived from food), ranges from 400 to 800 micrograms. The use of folic acid in combination with other vitamins and minerals needed during pregnancy has a better effect compared with monotherapy with folic acid. At the moment, there are drugs with structure that, instead of folic acid includes L-methylfolate. In Europe, a comparative, placebo-controlled study, which compared the effects of the use of L-methylfolate ([6S] -5-methyltetrahydrofolate) and folic acid in folate concentration in plasma and erythrocytes was recently held. These studies suggest that folic acid and methylfolate increase the concentration of folate in the blood at the same level, so it makes no sense to use methylfolate instead of folic acid, which has a broad evidence base.
Key words: folate, folic acid, folate deficiency, a comparison of folic acid and L-methylfolate, hyperhomocysteinemia, miscarriage, vitamins in pregnancy.
1. Беременность и роды. Кохрановское руководство, 2010. Под ред. Г.Т.Сухих. М.: Логосфера.
2. Генетический паспорт – основа индивидуальной и предиктивной медицины. Под ред. В.С.Баранова. СПб.: Изд-во Н-Л, 2009.
3. Яковлева Т.В. Причины и динамика перинатальной смертности в Российской Федерации. Здравоохранение Российской Федерации. 2005; 4: 26–8.
4. Howard JA. Recurrent pregnancy loss: causes, controversies and treatment. Informa UK Ltd 2007.
5. Yi Y, Lindemann M, Colligs A, Snowball C. Economic burden of NTDs. Eur J Pediatr 2011; 170: 1391–400.
6. Geissler C, Powers H. (eds) Human Nutrition. Elsevier Churchill Livingstone, Netherlands, 2005.
7. Torshin IY, Gromova OA. Magnesium and pyridoxine: fundamental studies and clinical practice. Nova Sci 2009; ISBN-10: 1-60741-704-9.
8. Hans Konrad Biesalski. Pocket Atlas of Nutrition. Thieme 2006.
9. Nijhout HF, Reed MC, Budu P, Ulrich CM. A mathematical model of the folate cycle: new insights into folate homeostasis. J Biol Chem 2004; 279 (53): 55008–16.
10. Альбертс Б., Брэй В. и др. Молекулярная биология клетки. Изд. 5-е. М., 2008.
11. Finkelstein JD. Metabolic regulatory properties of S-adeno- sylmethionine and S-adenosylhomocysteine. Clin Chem Lab Med 2007; 45: 1694–9.
12. Lennard L. Methyltransferases. In: Guengerich FP (ed) Bio- transformation. Comprehensive toxicology. Elsevier, Oxford, UK 2010; 4 (21).
13. Howe HL, Wu X, Ries LA et al. Annual report to the nation on the status of cancer, 1975–2003, featuring cancer among US Hispanic/Latino populations. Cancer 2006; 107: 1711–42.
14. Wu X, Zou T, Cao N et al. Plasma homocysteine levels and genetic polymorphisms in folate metablism are associated with breast cancer risk in chinese women. Hered Cancer Clin Pract 2014; 12 (1): 2.
15. Родионов Р.Н., Лентц С.Р. Современные представления о гипергомоцистеинемии как факторе риска сердечно-сосудистых заболеваний. Артериальная гипертензия. 2008; 14 (1): 110–5.
16. Berenson AB, Rahman M. Effect of hormonal contraceptives on vitamin B12 level and the association of the latter with bone mineral density. Contraception 2012; 86 (5): 481–7.
17. Monteiro JP, Wise C, Morine MJ et al. Methylation potential associated with diet, genotype, protein, and metabolite levels in the Delta Obesity Vitamin Study. Genes Nutr 2014; 9: 403–22.
18. Baumgartner MR. Vitamin-responsive disorders: cobalamin, folate, biotin, vitamins B1 and E. Handb Clin Neurol 2013; 113: 1799–810.
19. Abe I, Shirato Y, Hashizume Y et al. Folate-deficiency induced cell-specific changes in the distribution of lymphocytes and granulocytes in rats. Environ Health Prev Med 2013; 18: 78–84.
20. Mujawar SA, Patil VW, Daver RG. Study of serum homocysteine, folic acid and vitamin B12 in patients with preeclampsia. Indian J Clin Biochem 2011; 26 (3): 257–60.
21. Emonts P, Seaksan S, Seidel L et al. Prediction of maternal predisposition to preeclampsia. Hypertens Pregnancy 2008; 27 (3): 237–45.
22. Rodriguez-Guillen MR, Torres-Sánchez L, Chen J et al. Dietary consumption of B vitamins, maternal MTHFR polymorphisms and risk for spontaneous abortion. Salud Publica Mex 2009; 51 (1): 19–25.
23. Schmidt RJ, Tancredi DJ, Ozonoff S et al. Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (Childhood Autism Risks from Genetics and Environment) case-control study. Am J Clin Nutr 2012; 96 (1): 80–9.
24. Orjuela MA, Cabrera-Muñoz L, Paul L et al. Risk of retinoblastoma is associated with a maternal polymorphism in dihydrofolatereductase (DHFR) and prenatal folic acid intake. Cancer 2012; 118 (23): 5912–9.
25. Candito M, Rivet R, Herbeth B. Nutritional and genetic determinants of vitamin B and homocysteine metabolisms in neural tube defects: a multicenter case-control study. Am J Med Genet A 2008; 146 A (9): 1128–33.
26. Molloy AM, Kirke PN, Brody LC et al. Effects of folate and vitamin B12 deficiencies during pregnancy on fetal, infant, and child development. Food Nutr Bull 2008; 29 (Suppl. 2): S101–11.
27. Rozen R. Methylenetetrahydrofolate reductase gene polymorphism – clinical implications. Encyclopedia of Medical Genomics and Proteomics 2005; 10.1081/E-EDGP-120030861
28. Bennett GD, Vanwaes J, Moser K et al. Failure of homocysteine to induce neural tube defects in a mouse model. Birth Defects Res B Dev Reprod Toxicol 2006; 77: 89–94.
29. Roy M, Leclerc D, Wu Q et al. Valproic acid increases expression of methylenetetrahydrofolate reductase (MTHFR) and induces lower teratogenicity in MTHFR deficiency. J Cell Biochem 2008; 105 (2): 467–76.
30. Celtikci B, Leclerc D, Lawrance AK et al. Altered expression of methylenetetrahydrofolate reductase modifies response to methotrexate in mice. Pharmacogen Genom 2008; 18 (7): 577–89.
31. Mosley BS, Cleves MA, Siega-Riz AM et al. Neural tube defects and maternal folate intake among pregnancies conceived after folic acid fortification in the United States. Am J Epidemiol 2009; 169: 9–17.
32. Spina bifida and anencephaly before and after folic acid mandate – United States, 1995–1996 and 1999–2000. MMWR Morb Mortal Wkly Rep 2004; 53: 362–5.
33. Busby A, Abramsky L, Dolk H et al. Preventing neural tube defects in Europe: population based study. BMJ 2005; 330: 574–5.
34. Smith AD, Kim YI, Refsum H. Is folic acid good for everyone? Am J Clin Nutr 2008; 87 (3): 517–33.
35. Salerno P, Bianchi F, Pierini A, Baldi F. Folic acid and congenital malformation: scientific evidence and public health strategies. Ann Ig 2008; 20 (6): 519–30.
36. De Walle HE, de Jong-van den Berg LT. Ten years after the Dutch public health campaign on folic acid: the continuing challenge. Eur J Clin Pharmacol 2008; 64: 539–43.
37. Busby A, Abramsky L, Dolk H, Armstrong B. Eurocat Folic Acid Working Group. Preventing neural tube defects in Europe: population based study. Br Med J 2005; 330: 574–5.
38. Patterson D. Folate metabolism and the risk of Down syndrome. Downs Syndr Res Pract 2008; 12 (2): 93–7.
39. Czeizel AE, Puho E. Maternal use of nutritional supplements during the first month of pregnancy and decreased risk of Down's syndrome: case-control study. Nutrition 2005; 21 (6): 698–704.
40. Bailey LB, Berry RJ. Folic acid supplementation and the occurrence of congenital heart defects, orofacial clefts, multiple births, and miscarriage. Am J Clin Nutr 2005; 81 (5): 1213S–17S.
41. Oyama K. Folic acid prevents congenital malformations in the offspring of diabetic mice. Endocr J 2009; 56 (1): 29–37.
42. Громова О.А., Торшин И.Ю., Тетруашвили Н.К., Сидельникова В.М. Нутрициальный подход к профилактике избыточной массы тела новорожденных. Гинекология. 2010; 12 (5): 56–61.
43. Krawinkel MB, Strohm D, Weissenborn A et al. Revised D-A-CH intake recommendations for folate: how much is needed? Eur J Clin Nutr 2014; 68 (6): 719–23.
44. Громова О.А., Торшин И.Ю. Применение фолиевой кислоты в акушерстве и гинекологии. 2009. М.: РСЦ ЮНЕСКО.
45. Yanic CS, Deshpande SS, Jackson AA. Vitamin B12 and folate concentrations during pregnancy and insulin resisstance in the offspring: the Pune Maternal Nutrition Study. Diabetologia 2008; 51 (1): 29–38.
46. Blode H, Klipping C, Richard F et al. Bioequivalence study of an oral contraceptive containing ethinylestradiol/drospirenone/levomefolate calcium relative to Yaz® and to levomefolate calcium alone. Contraception 2012; 85: 177–84.
47. Yoshino K, Nishide M, Sankai T et al. Validity of brief food frequency questionnaire for estimation of dietary intakes of folate, vitamins B6 and B12, and their associations with plasma homocysteine concentrations. Int J Food Sci Nutr 2010; 61 (1): 61–7.
48. Scaglione F, Panzavolta G. Folate, folicacid and 5-methyltetrahydrofolate are notthesamething. Xenobiotica 2014; 44 (5): 480–8.
49. Chen CP. Syndromes, disorders and maternal risk factors associated with neural tube defects (VI). Taiwan J Obstet Gynecol 2008; 47 (3): 267–75.
50. Black MM. Effects of vitamin B12 and folate deficiency on brain development in children. Food Nutr Bull 2008; 29 (Suppl. 2): S126–31.
51. Molloy AM, Kirke PN, Troendle JF. Maternal vitamin B12 status and risk of neural tube defects in a population with high neural tube defect prevalence and no folic Acid fortification. Pediatrics 2009; 123 (3): 917–23.
52. Zhang T, Xin R, Gu X, Wang F. Maternal serum vitamin B12, folate and homocysteine and the risk of neural tube defects in the offspring in a high-risk area of China. Public Health Nutr 2009; 12 (5): 680–6.
53. Verkleij-Hagoort AC, de Vries JH, Ursem NT et al. Dietary intake of B-vitamins in mothers born a child with a congenital heart defect. Eur J Nutr 2006; 45 (8): 478–86.
54. Chan J, Deng L, Mikael LG. Low dietary choline and low dietary riboflavin during pregnancy influence reproductive outcomes and heart development in mice. Am J Clin Nutr 2010; 91 (4): 1035–43.
55. Ronnenberg AG, Venners SA, Xu X et al. Preconception B-vitamin and homocysteine status, conception, and early pregnancy loss. Am J Epidemiol 2007; 166 (3): 304–12.
56. Groenen PM, van Rooij IA, Peer PG. Low maternal dietary intakes of iron, magnesium, and niacin are associated with spina bifida in the offspring. J Nutr 2004; 134 (6): 1516–22.
57. Wallenstein MB, Shaw GM, Yang W, Carmichael SL. Periconceptional nutrient intakes and risks of orofacial clefts in California. Pediatr Res 2013; 74 (4): 457–65.
58. Smedts HP, Rakhshandehroo M, Verkleij-Hagoort AC et al. Maternal intake of fat, riboflavin and nicotinamide and the risk of having offspring with congenital heart defects. Eur J Nutr 2008; 47 (7): 357–65.
59. Nakajima Y, Imanaka-Yoshida K. New insights into the developmental mechanisms of coronary vessels and epicardium. Int Rev Cell Mol Biol 2013; 303: 263–317.
60. Tateya I, Tateya T, Surles RL et al. Prenatal vitamin A deficiency causes laryngeal malformation in rats. Ann Otol Rhinol Laryngol 2007; 116 (10): 785–92.
61. Yang W, Shaw GM. Nutrient intakes in women and congenital diaphragmatic hernia in their offspring. Birth Defects Res A Clin Mol Teratol 2008; 82 (3): 131–8.
62. Dheen ST, Tay SS. Recent studies on neural tube defects in embryos of diabetic pregnancy: an overview. Curr Med Chem 2009; 16 (18): 2345–54.
63. Shaw GM, Carmichael SL, Yang W, Lammer EJ. Periconceptional nutrient intakes and risks of conotruncal heart defects. Birth Defects Res A Clin Mol Teratol 2010; 88 (3): 144–51.
64. Klemmensen A, Tabor A, Osterdal ML. Intake of vitamin C and E in pregnancy and risk of pre-eclampsia: prospective study among 57346 women. BJOG 2009; 116 (7): 964–74.
65. Nilsen RM, Vollset SE, Rasmussen SA. Folic acid and multivitamin supplement use and risk placental abruption: a population-based registered study. Am J Epidemiol 2008; 167 (7): 867–74.
66. Маталыгина О.А. Питание беременных и кормящих женщин. Решенные и нерешенные проблемы. Вопр. соврем. педиатрии. 2008; 7 (5): 23–9.
67. Хорошилов И.Е., Успенский Ю.В. Новые подходы в лечебном питании беременных и кормящих женщин. Гинекология. 2008; 4: 67–77.
68. Bernard J Venn, Timothy J Green, Rudolf Moser et al. Increases in blood folate indices are similar in women of childbearing age supplemented with [6S]-5-methyltetrahydrofolate and folic acid 2002.
________________________________________________
1. Беременность и роды. Кохрановское руководство, 2010. Под ред. Г.Т.Сухих. М.: Логосфера.
2. Генетический паспорт – основа индивидуальной и предиктивной медицины. Под ред. В.С.Баранова. СПб.: Изд-во Н-Л, 2009.
3. Яковлева Т.В. Причины и динамика перинатальной смертности в Российской Федерации. Здравоохранение Российской Федерации. 2005; 4: 26–8.
4. Howard JA. Recurrent pregnancy loss: causes, controversies and treatment. Informa UK Ltd 2007.
5. Yi Y, Lindemann M, Colligs A, Snowball C. Economic burden of NTDs. Eur J Pediatr 2011; 170: 1391–400.
6. Geissler C, Powers H. (eds) Human Nutrition. Elsevier Churchill Livingstone, Netherlands, 2005.
7. Torshin IY, Gromova OA. Magnesium and pyridoxine: fundamental studies and clinical practice. Nova Sci 2009; ISBN-10: 1-60741-704-9.
8. Hans Konrad Biesalski. Pocket Atlas of Nutrition. Thieme 2006.
9. Nijhout HF, Reed MC, Budu P, Ulrich CM. A mathematical model of the folate cycle: new insights into folate homeostasis. J Biol Chem 2004; 279 (53): 55008–16.
10. Альбертс Б., Брэй В. и др. Молекулярная биология клетки. Изд. 5-е. М., 2008.
11. Finkelstein JD. Metabolic regulatory properties of S-adeno- sylmethionine and S-adenosylhomocysteine. Clin Chem Lab Med 2007; 45: 1694–9.
12. Lennard L. Methyltransferases. In: Guengerich FP (ed) Bio- transformation. Comprehensive toxicology. Elsevier, Oxford, UK 2010; 4 (21).
13. Howe HL, Wu X, Ries LA et al. Annual report to the nation on the status of cancer, 1975–2003, featuring cancer among US Hispanic/Latino populations. Cancer 2006; 107: 1711–42.
14. Wu X, Zou T, Cao N et al. Plasma homocysteine levels and genetic polymorphisms in folate metablism are associated with breast cancer risk in chinese women. Hered Cancer Clin Pract 2014; 12 (1): 2.
15. Родионов Р.Н., Лентц С.Р. Современные представления о гипергомоцистеинемии как факторе риска сердечно-сосудистых заболеваний. Артериальная гипертензия. 2008; 14 (1): 110–5.
16. Berenson AB, Rahman M. Effect of hormonal contraceptives on vitamin B12 level and the association of the latter with bone mineral density. Contraception 2012; 86 (5): 481–7.
17. Monteiro JP, Wise C, Morine MJ et al. Methylation potential associated with diet, genotype, protein, and metabolite levels in the Delta Obesity Vitamin Study. Genes Nutr 2014; 9: 403–22.
18. Baumgartner MR. Vitamin-responsive disorders: cobalamin, folate, biotin, vitamins B1 and E. Handb Clin Neurol 2013; 113: 1799–810.
19. Abe I, Shirato Y, Hashizume Y et al. Folate-deficiency induced cell-specific changes in the distribution of lymphocytes and granulocytes in rats. Environ Health Prev Med 2013; 18: 78–84.
20. Mujawar SA, Patil VW, Daver RG. Study of serum homocysteine, folic acid and vitamin B12 in patients with preeclampsia. Indian J Clin Biochem 2011; 26 (3): 257–60.
21. Emonts P, Seaksan S, Seidel L et al. Prediction of maternal predisposition to preeclampsia. Hypertens Pregnancy 2008; 27 (3): 237–45.
22. Rodriguez-Guillen MR, Torres-Sánchez L, Chen J et al. Dietary consumption of B vitamins, maternal MTHFR polymorphisms and risk for spontaneous abortion. Salud Publica Mex 2009; 51 (1): 19–25.
23. Schmidt RJ, Tancredi DJ, Ozonoff S et al. Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (Childhood Autism Risks from Genetics and Environment) case-control study. Am J Clin Nutr 2012; 96 (1): 80–9.
24. Orjuela MA, Cabrera-Muñoz L, Paul L et al. Risk of retinoblastoma is associated with a maternal polymorphism in dihydrofolatereductase (DHFR) and prenatal folic acid intake. Cancer 2012; 118 (23): 5912–9.
25. Candito M, Rivet R, Herbeth B. Nutritional and genetic determinants of vitamin B and homocysteine metabolisms in neural tube defects: a multicenter case-control study. Am J Med Genet A 2008; 146 A (9): 1128–33.
26. Molloy AM, Kirke PN, Brody LC et al. Effects of folate and vitamin B12 deficiencies during pregnancy on fetal, infant, and child development. Food Nutr Bull 2008; 29 (Suppl. 2): S101–11.
27. Rozen R. Methylenetetrahydrofolate reductase gene polymorphism – clinical implications. Encyclopedia of Medical Genomics and Proteomics 2005; 10.1081/E-EDGP-120030861
28. Bennett GD, Vanwaes J, Moser K et al. Failure of homocysteine to induce neural tube defects in a mouse model. Birth Defects Res B Dev Reprod Toxicol 2006; 77: 89–94.
29. Roy M, Leclerc D, Wu Q et al. Valproic acid increases expression of methylenetetrahydrofolate reductase (MTHFR) and induces lower teratogenicity in MTHFR deficiency. J Cell Biochem 2008; 105 (2): 467–76.
30. Celtikci B, Leclerc D, Lawrance AK et al. Altered expression of methylenetetrahydrofolate reductase modifies response to methotrexate in mice. Pharmacogen Genom 2008; 18 (7): 577–89.
31. Mosley BS, Cleves MA, Siega-Riz AM et al. Neural tube defects and maternal folate intake among pregnancies conceived after folic acid fortification in the United States. Am J Epidemiol 2009; 169: 9–17.
32. Spina bifida and anencephaly before and after folic acid mandate – United States, 1995–1996 and 1999–2000. MMWR Morb Mortal Wkly Rep 2004; 53: 362–5.
33. Busby A, Abramsky L, Dolk H et al. Preventing neural tube defects in Europe: population based study. BMJ 2005; 330: 574–5.
34. Smith AD, Kim YI, Refsum H. Is folic acid good for everyone? Am J Clin Nutr 2008; 87 (3): 517–33.
35. Salerno P, Bianchi F, Pierini A, Baldi F. Folic acid and congenital malformation: scientific evidence and public health strategies. Ann Ig 2008; 20 (6): 519–30.
36. De Walle HE, de Jong-van den Berg LT. Ten years after the Dutch public health campaign on folic acid: the continuing challenge. Eur J Clin Pharmacol 2008; 64: 539–43.
37. Busby A, Abramsky L, Dolk H, Armstrong B. Eurocat Folic Acid Working Group. Preventing neural tube defects in Europe: population based study. Br Med J 2005; 330: 574–5.
38. Patterson D. Folate metabolism and the risk of Down syndrome. Downs Syndr Res Pract 2008; 12 (2): 93–7.
39. Czeizel AE, Puho E. Maternal use of nutritional supplements during the first month of pregnancy and decreased risk of Down's syndrome: case-control study. Nutrition 2005; 21 (6): 698–704.
40. Bailey LB, Berry RJ. Folic acid supplementation and the occurrence of congenital heart defects, orofacial clefts, multiple births, and miscarriage. Am J Clin Nutr 2005; 81 (5): 1213S–17S.
41. Oyama K. Folic acid prevents congenital malformations in the offspring of diabetic mice. Endocr J 2009; 56 (1): 29–37.
42. Громова О.А., Торшин И.Ю., Тетруашвили Н.К., Сидельникова В.М. Нутрициальный подход к профилактике избыточной массы тела новорожденных. Гинекология. 2010; 12 (5): 56–61.
43. Krawinkel MB, Strohm D, Weissenborn A et al. Revised D-A-CH intake recommendations for folate: how much is needed? Eur J Clin Nutr 2014; 68 (6): 719–23.
44. Громова О.А., Торшин И.Ю. Применение фолиевой кислоты в акушерстве и гинекологии. 2009. М.: РСЦ ЮНЕСКО.
45. Yanic CS, Deshpande SS, Jackson AA. Vitamin B12 and folate concentrations during pregnancy and insulin resisstance in the offspring: the Pune Maternal Nutrition Study. Diabetologia 2008; 51 (1): 29–38.
46. Blode H, Klipping C, Richard F et al. Bioequivalence study of an oral contraceptive containing ethinylestradiol/drospirenone/levomefolate calcium relative to Yaz® and to levomefolate calcium alone. Contraception 2012; 85: 177–84.
47. Yoshino K, Nishide M, Sankai T et al. Validity of brief food frequency questionnaire for estimation of dietary intakes of folate, vitamins B6 and B12, and their associations with plasma homocysteine concentrations. Int J Food Sci Nutr 2010; 61 (1): 61–7.
48. Scaglione F, Panzavolta G. Folate, folicacid and 5-methyltetrahydrofolate are notthesamething. Xenobiotica 2014; 44 (5): 480–8.
49. Chen CP. Syndromes, disorders and maternal risk factors associated with neural tube defects (VI). Taiwan J Obstet Gynecol 2008; 47 (3): 267–75.
50. Black MM. Effects of vitamin B12 and folate deficiency on brain development in children. Food Nutr Bull 2008; 29 (Suppl. 2): S126–31.
51. Molloy AM, Kirke PN, Troendle JF. Maternal vitamin B12 status and risk of neural tube defects in a population with high neural tube defect prevalence and no folic Acid fortification. Pediatrics 2009; 123 (3): 917–23.
52. Zhang T, Xin R, Gu X, Wang F. Maternal serum vitamin B12, folate and homocysteine and the risk of neural tube defects in the offspring in a high-risk area of China. Public Health Nutr 2009; 12 (5): 680–6.
53. Verkleij-Hagoort AC, de Vries JH, Ursem NT et al. Dietary intake of B-vitamins in mothers born a child with a congenital heart defect. Eur J Nutr 2006; 45 (8): 478–86.
54. Chan J, Deng L, Mikael LG. Low dietary choline and low dietary riboflavin during pregnancy influence reproductive outcomes and heart development in mice. Am J Clin Nutr 2010; 91 (4): 1035–43.
55. Ronnenberg AG, Venners SA, Xu X et al. Preconception B-vitamin and homocysteine status, conception, and early pregnancy loss. Am J Epidemiol 2007; 166 (3): 304–12.
56. Groenen PM, van Rooij IA, Peer PG. Low maternal dietary intakes of iron, magnesium, and niacin are associated with spina bifida in the offspring. J Nutr 2004; 134 (6): 1516–22.
57. Wallenstein MB, Shaw GM, Yang W, Carmichael SL. Periconceptional nutrient intakes and risks of orofacial clefts in California. Pediatr Res 2013; 74 (4): 457–65.
58. Smedts HP, Rakhshandehroo M, Verkleij-Hagoort AC et al. Maternal intake of fat, riboflavin and nicotinamide and the risk of having offspring with congenital heart defects. Eur J Nutr 2008; 47 (7): 357–65.
59. Nakajima Y, Imanaka-Yoshida K. New insights into the developmental mechanisms of coronary vessels and epicardium. Int Rev Cell Mol Biol 2013; 303: 263–317.
60. Tateya I, Tateya T, Surles RL et al. Prenatal vitamin A deficiency causes laryngeal malformation in rats. Ann Otol Rhinol Laryngol 2007; 116 (10): 785–92.
61. Yang W, Shaw GM. Nutrient intakes in women and congenital diaphragmatic hernia in their offspring. Birth Defects Res A Clin Mol Teratol 2008; 82 (3): 131–8.
62. Dheen ST, Tay SS. Recent studies on neural tube defects in embryos of diabetic pregnancy: an overview. Curr Med Chem 2009; 16 (18): 2345–54.
63. Shaw GM, Carmichael SL, Yang W, Lammer EJ. Periconceptional nutrient intakes and risks of conotruncal heart defects. Birth Defects Res A Clin Mol Teratol 2010; 88 (3): 144–51.
64. Klemmensen A, Tabor A, Osterdal ML. Intake of vitamin C and E in pregnancy and risk of pre-eclampsia: prospective study among 57346 women. BJOG 2009; 116 (7): 964–74.
65. Nilsen RM, Vollset SE, Rasmussen SA. Folic acid and multivitamin supplement use and risk placental abruption: a population-based registered study. Am J Epidemiol 2008; 167 (7): 867–74.
66. Маталыгина О.А. Питание беременных и кормящих женщин. Решенные и нерешенные проблемы. Вопр. соврем. педиатрии. 2008; 7 (5): 23–9.
67. Хорошилов И.Е., Успенский Ю.В. Новые подходы в лечебном питании беременных и кормящих женщин. Гинекология. 2008; 4: 67–77.
68. Bernard J Venn, Timothy J Green, Rudolf Moser et al. Increases in blood folate indices are similar in women of childbearing age supplemented with [6S]-5-methyltetrahydrofolate and folic acid 2002.
Авторы
И.В.Кузнецова1, 2, В.А.Коновалов3, 4
1. ГБОУ ВПО Первый Московский государственный медицинский университет им. И.М.Сеченова Минздрава России;
2. ФГБОУ ВПО Российский университет дружбы народов, Москва
3. ФДПО ГБОУ ВПО Рязанский государственный медицинский университет им. акад. И.П.Павлова Минздрава России;
4. ГБУ РО Женская консультация №1