В настоящей работе рассмотрены результаты экспериментальных и клинических исследований, указывающие на важность компенсации дефицита микроэлементов в профилактике и терапии остеопороза, остеопении и рахита.
Ключевые слова: кальций, магний, бор, цинк, марганец, медь, поддержка структуры соединительной и костной ткани.
________________________________________________
In this paper the results of experimental and clinical studies indicating the importance of compensation micronutrient in the prevention and treatment of osteoporosis, osteopenia and rachitis are discussed.
Key words: calcium, magnesium, boron, zinc, manganese, copper, support structure connective tissue and bone.
1. Zofkova I, Nemcikova P, Matucha P. Trace elements and bone health. Clin Chem Lab Med 2013; 51 (8): 1555–61.
2. Zittermann A, Schleithoff SS, Koerfer R. Vitamin D and vascular calcification. Curr Opin Lipidol 2007; 18 (1): 41–6.
3. Schaafsma A, de Vries PJ, Saris WH. Delay of natural bone loss by higher intakes of specific minerals and vitamins. Crit Rev Food Sci Nutr 2001; 41 (4): 225–49.
4. Lakhkar NJ, Lee IH, Kim HW et al. Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses. Adv Drug Deliv Rev 2013; 65 (4): 405–20.
5. De Francisco AL, Rodriguez M. Magnesium – its role in CKD. Nefrologia 2013; 33 (3): 389–99.
6. Торшин И.Ю., Громова О.А. Молекулярные механизмы дефицита магния в недифференцированной дисплазии соединительной ткани. Рос. мед. журн. 2008; 2: 62–7.
7. Swaminathan R. Nutritional factors in osteoporosis. Int J Clin Pract 1999; 53 (7): 540.
8. Parlier R, Hioco D, Leblanc R. Metabolism of magnesium and its relation to that of calcium. I. Apropos of a study of magnesium balance in the normal man, in osteopathies and nephropathies. Rev Fr Endocrinol Clin 1963; 4: 93–135.
9. Ryder KM, Shorr RI, Bush AJ et al. Magnesium intake from food and supplements is associated with bone mineral density in healthy older white subjects. J Am Geriatr Soc 2005; 53: 1875–80.
10. Jones G, Riley MD, Dwyer T. Maternal diet during pregnancy is associated with bone mineral density in children: a longitudinal study. Eur J Clin Nutr 2000; 54 (10): 749–56.
11. Smoliar VI. Effect of iron-deficient diets on the formation of bone tissue. Vopr Pitan 1984; 5: 55–9.
12. Diaz-Castro J, Lopez-Frias MR, Campos MS et al. Severe nutritional iron-deficiency anaemia has a negative effect on some bone turnover biomarkers in rats. Eur J Nutr 2012; 51 (2): 241–7.
13. Jorgensen L, Skjelbakken T, Lochen ML et al. Anemia and the risk of non-vertebral fractures: the Tromso Study. Osteoporos Int 2010; 21 (10): 1761–8.
14. Kaitila I, Peltonen L, Kuivaniemi H et al. A skeletal and connective tissue disorder associated with lysyl oxidase deficiency and abnormal copper metabolism. Prog Clin Biol Res 1982; 104: 307–15.
15. Smoliar VI, Biniashevskii EV. Effect of copper deficiency on growth and bone tissue formation. Vopr Pitan 1988; 6: 28–32.
16. Jonas J, Burns J, Abel EW et al. Impaired mechanical strength of bone in experimental copper deficiency. Ann Nutr Metab 1993; 37 (5): 245–52.
17. Opsahl W, Zeronian H, Ellison M et al. Role of copper in collagen cross-linking and its influence on selected mechanical properties of chick bone and tendon. J Nutr 1982; 112 (4): 708–16.
18. O'Dell BL. Roles for iron and copper in connective tissue biosynthesis. Philos Trans R Soc Lond B Biol Sci 1981; 294 (1071): 91–104.
19. Lowe NM, Fraser WD, Jackson MJ. Is there a potential therapeutic value of copper and zinc for osteoporosis? Proc Nutr Soc 2002; 61 (2): 181–5.
20. Gallup WD, Norris LC. The essentialness of manganese for the normal development of bone. Science 1938; 87 (2245): 18–9.
21. Strause LG, Hegenauer J, Saltman P et al. Effects of long-term dietary manganese and copper deficiency on rat skeleton. J Nutr 1986; 116 (1): 135–41.
22. Керимкулова Н.В., Торшин И.Ю., Громова О.А. и др. Систематический анализ молекулярно-физиологических эффектов синергидного воздействия железа, марганца и меди на соединительную ткань. Гинекология. 2012; 6: 51–60.
23. Jugdaohsingh R. Silicon and bone health. J Nutr Health Aging 2007; 11: 99–110.
24. Jugdaohsingh R, Tucker KL, Qiao N et al. Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort. J Bone Miner Res 2004;
19: 297–307.
25. Meunier PJ, Roux C, Seeman E et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 2004; 350: 459–68.
26. Reginster JY, Felsenberg D, Boonen S et al. Effects of long-term strontium ranelate treatment on the risk of nonvertebral and vertebral fractures in postmenopausal osteoporosis: results of a five-year, randomized, placebo-controlled trial. Arthritis Rheum 2008; 58: 1687–95.
27. Naghii MR, Samman S. The role of boron in nutrition and metabolism. Prog Food Nutr Sci 1993; 17 (4): 331–49.
28. Ребров В.Г., Громова О.А. Витамины, макро- и микроэлементы. М.: ГЭОТАР-МЕД, 2008.
29. Newnham RE. Essentiality of boron for healthy bones and joints. Environ Health Perspect 1994; (Suppl. 102): 83–5.
30. Devirian TA, Volpe SL. The physiological effects of dietary boron. Crit Rev Food Sci Nutr 2003; 43 (2): 219–31.
31. Penland JG. The importance of boron nutrition for brain and psychological function. Biol Trace Elem Res 1998; 66 (1–3): 299–317.
32. Murray FJ. A comparative review of the pharmacokinetics of boric acid in rodents and humans. Biol Trace Elem Res 1998; 66 (1–3): 331–41.
33. Liao SF, Monegue JS, Lindemann MD et al. Dietary supplementation of boron differentially alters expression of borate transporter (NaBCl) mRNA by jejunum and kidney of growing pigs. Biol Trace Elem Res 2011; 143 (2): 901–12.
34. Tasli PN, Dogan A, Demirci S, Sahin F. Boron enhances odontogenic and osteogenic differentiation of human tooth germ stem cells (hTGSCs) in vitro. Biol Trace Elem Res 2013; 153 (1–3): 419–27.
35. Ying X, Cheng S, Wang W et al. Effect of boron on osteogenic differentiation of human bone marrow stromal cells. Biol Trace Elem Res 2011; 144 (1–3): 306–15.
36. Hakki SS, Bozkurt BS, Hakki EE. Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). J Trace Elem Med Biol 2010; 24 (4): 243–50.
37. Naghii MR, Torkaman G, Mofid M. Effects of boron and calcium supplementation on mechanical properties of bone in rats. Biofactors 2006; 28 (3–4): 195–201.
38. Lanoue L, Taubeneck MW, Muniz J et al. Assessing the effects of low boron diets on embryonic and fetal development in rodents using in vitro and in vivo model systems. Biol Trace Elem Res 1998; 66 (1–3): 271–98.
39. Gorustovich AA, Steimetz T, Nielsen FH, Guglielmotti MB. A histomorphometric study of alveolar bone modelling and remodelling in mice fed a boron-deficient diet. Arch Oral Biol 2008; 53 (7): 677–82.
40. Gorustovich AA, Steimetz T, Nielsen FH, Guglielmotti MB. Histomorphometric study of alveolar bone healing in rats fed a boron-deficient diet. Anat Rec (Hoboken) 2008; 291 (4): 441–7.
41. Nielsen FH. Biochemical and physiologic consequences of boron deprivation in humans. Environ Health Perspect 1994; (Suppl. 102): 59–63.
42. Naghii MR, Ebrahimpour Y, Darvishi P et al. Effect of consumption of fatty acids, calcium, vitamin D and boron with regular physical activity on bone mechanical properties and corresponding metabolic hormones in rats. Indian J Exp Biol 2012; 50 (3): 223–31.
43. Hakki SS, Dundar N, Kayis SA et al. Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet. J Trace Elem Med Biol 2013; 27 (2): 148–53.
44. Ghanizadeh G, Babaei M, Naghii MR et al. The effect of supplementation of calcium, vitamin D, boron, and increased fluoride intake on bone mechanical properties and metabolic hormones in rat. Toxicol Ind Health 2014; 30 (3): 211–7.
45. Rico H, Crespo E, Hernandez ER et al. Influence of boron supplementation on vertebral and femoral bone mass in rats on strenuous treadmill exercise. A morphometric, densitometric, and histomorphometric study. J Clin Densitom 2002; 5 (2): 187–92.
46. Sheng MH, Taper LJ, Veit H et al. Dietary boron supplementation enhanced the action of estrogen, but not that of parathyroid hormone, to improve trabecular bone quality in ovariectomized rats. Biol Trace Elem Res 2001; 82 (1–3): 109–23.
47. Sheng MH, Taper LJ, Veit H et al. Dietary boron supplementation enhances the effects of estrogen on bone mineral balance in ovariectomized rats. Biol Trace Elem Res 2001; 81 (1): 29–45.
48. Wilson JH, Ruszler PL. Effects of boron on growing pullets. Biol Trace Elem Res 1997; 56 (3): 287–94.
49. Qin X, Klandorf H. Effect of dietary boron supplementation on egg production, shell quality, and calcium metabolism in aged broiler breeder hens. Poult Sci 1991; 70 (10): 2131–8.
50. King N, Odom TW, Sampson HW, Yersin AG. The effect of in ovo boron supplementation on bone mineralization of the vitamin D-deficient chicken embryo. Biol Trace Elem Res 1991; 31 (3): 223–33.
51. Scorei ID, Scorei RI. Calcium fructoborate helps control inflammation associated with diminished bone health. Biol Trace Elem Res 2013; 155 (3): 315–21.
52. Naghii MR, Samman S. The effect of boron supplementation on its urinary excretion and selected cardiovascular risk factors in healthy male subjects. Biol Trace Elem Res 1997; 56 (3): 273–86.
53. Gjesdal CG, Vollset SE, Ueland PM et al. Plasma total homocysteine level and bone mineral density: the Hordaland Homocysteine Study. Arch Intern Med 2006; 166: 88–94.
54. Ravaglia G, Forti P, Maioli F et al. Folate, but not homocysteine, predicts the risk of fracture in elderly persons. J Gerontol A Biol Sci Med Sci 2005; 60: 1458–62.
55. McLean RR, Jacques PF, Selhub J et al. Plasma B vitamins, homocysteine, and their relation with bone loss and hip fracture in elderly men and women. J Clin Endocrinol Metab 2008; 93: 2206–12.
56. Tucker KL, Hannan MT, Qiao N et al. Low plasma vitamin B12 is associated with lower BMD: the Framingham Osteoporosis Study. J Bone Miner Res 2005; 20: 152–8.
57. Baines M, Kredan MB, Davison A et al. The association between cysteine, bone turnover, and low bone mass. Calcif Tissue Int 2007; 81: 450–4.
58. Goerss JB, Kim CH, Atkinson EJ et al. Risk of fractures in patients with pernicious anemia. J Bone Miner Res 1992; 7 (5): 573–9.
59. New SA, Bolton-Smith C, Grubb DA, Reid DM. Nutritional influences on bone mineral density: a cross-sectional study in premenopausal women. Am J Clin Nutr 1997; 65: 1831–9.
60. Tucker KL, Chen H, Hannan MT et al. Bone mineral density and dietary patterns in older adults: the Framingham Osteoporosis Study. Am J Clin Nutr 2002; 76: 245–52.
61. Sahni S, Hannan MT, Gagnon D et al. High vitamin C intake is associated with lower 4-year bone loss in elderly men. J Nutr 2008; 138: 1931–8.
62. Sahni S, Hannan MT, Blumberg J et al. Protective effect of total carotenoid and lycopene intake on the risk of hip fracture: a 17-year follow-up from the Framingham Osteoporosis Study. J Bone Miner Res 2009; 24: 1086–94.
63. Pasco JA, Henry MJ, Wilkinson LK et al. Antioxidant vitamin supplements and markers of bone turnover in a community sample of nonsmoking women. J Womens Health (Larchmt) 2006; 15: 295–300.
64. Binkley N, Harke J, Krueger D et al. Vitamin K treatment reduces undercarboxylated osteocalcin but does not alter bone turnover, density, or geometry in healthy postmenopausal North American women. J Bone Miner Res 2009; 24: 983–91.
65. Bolton-Smith C, McMurdo ME, Paterson CR et al. Two year randomized controlled trial of vitamin K1 (phylloquinone) and vitamin D3 plus calcium on the bone health of older women. J Bone Miner Res 2007; 22: 509–19.
66. Cockayne S, Adamson J, Lanham-New S et al. Vitamin K and the prevention of fractures: systematic review and meta-analysis of randomized controlled trials. Arch Intern Med 2006; 166: 1256–61.
67. Yang Z, Zhang Z, Penniston KL et al. Serum carotenoid concentrations in postmenopausal women from the United States with and without osteoporosis. Int J Vitam Nutr Res 2008; 78: 105–11.
68. Wolf RL, Cauley JA, Pettinger M et al. Lack of a relation between vitamin and mineral antioxidants and bone mineral density: results from the Women’s Health Initiative. Am J Clin Nutr 2005; 82: 581–8.
69. Woo JT, Nakagawa H, Notoya M et al. Quercetin suppresses bone resorption by inhibiting the differentiation and activation of osteoclasts. Biol Pharm Bull 2004; 27: 504–9.
70. Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 2008; 585: 325–37.
71. Wattel A, Kamel S, Prouillet C et al. Flavonoid quercetin decreases osteoclastic differentiation induced by RANKL via a mechanism involving NF kappa B and AP-1. J Cell Biochem 2004; 92: 285–95.
72. Hardcastle AC, Aucott L, Reid DM, Macdonald HM. Associations between dietary flavonoid intakes and bone health in a Scottish population. J Bone Miner Res 2011; 26: 941–7.
73. Miggiano GA, Gagliardi L. Diet, nutrition and bone health. Clin Ter 2005; 156 (1–2): 47–56.
74. Salari P, Rezaie A, Larijani B, Abdollahi M. A systematic review of the impact of n-3 fatty acids in bone health and osteoporosis. Med Sci Monit 2008; 14: 37–44.
75. Jarvinen R, Tuppurainen M, Erkkila AT et al. Associations of dietary polyunsaturated fatty acids with bone mineral density in elderly women. Eur J Clin Nutr 2012; 66: 496–503.
76. Hogstrom M, Nordstrom P, Nordstrom A. n-3 Fatty acids are positively associated with peak bone mineral density and bone accrual in healthy men: the NO2 Study. Am J Clin Nutr 2007; 85: 803–7.
77. Eriksson S, Mellstrom D, Strandvik B. Fatty acid pattern in serum is associated with bone mineralisation in healthy 8-year- old children. Br J Nutr 2009; 102: 407–12.
78. Weiss LA, Barrett-Connor E, von Muhlen D. Ratio of n-6 to n-3 fatty acids and bone mineral density in older adults: the Rancho Bernardo Study. Am J Clin Nutr 2005; 81: 934–8.
79. Дыдыкина И.С., Дыдыкина П.С., Алексеева О.Г. Вклад микроэлементов (меди, марганца, цинка, бора) в здоровье кости: вопросы профилактики и лечения остеопении и остеопороза. Эффективная фармакотерапия. 2013; 38.
________________________________________________
1. Zofkova I, Nemcikova P, Matucha P. Trace elements and bone health. Clin Chem Lab Med 2013; 51 (8): 1555–61.
2. Zittermann A, Schleithoff SS, Koerfer R. Vitamin D and vascular calcification. Curr Opin Lipidol 2007; 18 (1): 41–6.
3. Schaafsma A, de Vries PJ, Saris WH. Delay of natural bone loss by higher intakes of specific minerals and vitamins. Crit Rev Food Sci Nutr 2001; 41 (4): 225–49.
4. Lakhkar NJ, Lee IH, Kim HW et al. Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses. Adv Drug Deliv Rev 2013; 65 (4): 405–20.
5. De Francisco AL, Rodriguez M. Magnesium – its role in CKD. Nefrologia 2013; 33 (3): 389–99.
6. Торшин И.Ю., Громова О.А. Молекулярные механизмы дефицита магния в недифференцированной дисплазии соединительной ткани. Рос. мед. журн. 2008; 2: 62–7.
7. Swaminathan R. Nutritional factors in osteoporosis. Int J Clin Pract 1999; 53 (7): 540.
8. Parlier R, Hioco D, Leblanc R. Metabolism of magnesium and its relation to that of calcium. I. Apropos of a study of magnesium balance in the normal man, in osteopathies and nephropathies. Rev Fr Endocrinol Clin 1963; 4: 93–135.
9. Ryder KM, Shorr RI, Bush AJ et al. Magnesium intake from food and supplements is associated with bone mineral density in healthy older white subjects. J Am Geriatr Soc 2005; 53: 1875–80.
10. Jones G, Riley MD, Dwyer T. Maternal diet during pregnancy is associated with bone mineral density in children: a longitudinal study. Eur J Clin Nutr 2000; 54 (10): 749–56.
11. Smoliar VI. Effect of iron-deficient diets on the formation of bone tissue. Vopr Pitan 1984; 5: 55–9.
12. Diaz-Castro J, Lopez-Frias MR, Campos MS et al. Severe nutritional iron-deficiency anaemia has a negative effect on some bone turnover biomarkers in rats. Eur J Nutr 2012; 51 (2): 241–7.
13. Jorgensen L, Skjelbakken T, Lochen ML et al. Anemia and the risk of non-vertebral fractures: the Tromso Study. Osteoporos Int 2010; 21 (10): 1761–8.
14. Kaitila I, Peltonen L, Kuivaniemi H et al. A skeletal and connective tissue disorder associated with lysyl oxidase deficiency and abnormal copper metabolism. Prog Clin Biol Res 1982; 104: 307–15.
15. Smoliar VI, Biniashevskii EV. Effect of copper deficiency on growth and bone tissue formation. Vopr Pitan 1988; 6: 28–32.
16. Jonas J, Burns J, Abel EW et al. Impaired mechanical strength of bone in experimental copper deficiency. Ann Nutr Metab 1993; 37 (5): 245–52.
17. Opsahl W, Zeronian H, Ellison M et al. Role of copper in collagen cross-linking and its influence on selected mechanical properties of chick bone and tendon. J Nutr 1982; 112 (4): 708–16.
18. O'Dell BL. Roles for iron and copper in connective tissue biosynthesis. Philos Trans R Soc Lond B Biol Sci 1981; 294 (1071): 91–104.
19. Lowe NM, Fraser WD, Jackson MJ. Is there a potential therapeutic value of copper and zinc for osteoporosis? Proc Nutr Soc 2002; 61 (2): 181–5.
20. Gallup WD, Norris LC. The essentialness of manganese for the normal development of bone. Science 1938; 87 (2245): 18–9.
21. Strause LG, Hegenauer J, Saltman P et al. Effects of long-term dietary manganese and copper deficiency on rat skeleton. J Nutr 1986; 116 (1): 135–41.
22. Керимкулова Н.В., Торшин И.Ю., Громова О.А. и др. Систематический анализ молекулярно-физиологических эффектов синергидного воздействия железа, марганца и меди на соединительную ткань. Гинекология. 2012; 6: 51–60.
23. Jugdaohsingh R. Silicon and bone health. J Nutr Health Aging 2007; 11: 99–110.
24. Jugdaohsingh R, Tucker KL, Qiao N et al. Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort. J Bone Miner Res 2004;
19: 297–307.
25. Meunier PJ, Roux C, Seeman E et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 2004; 350: 459–68.
26. Reginster JY, Felsenberg D, Boonen S et al. Effects of long-term strontium ranelate treatment on the risk of nonvertebral and vertebral fractures in postmenopausal osteoporosis: results of a five-year, randomized, placebo-controlled trial. Arthritis Rheum 2008; 58: 1687–95.
27. Naghii MR, Samman S. The role of boron in nutrition and metabolism. Prog Food Nutr Sci 1993; 17 (4): 331–49.
28. Ребров В.Г., Громова О.А. Витамины, макро- и микроэлементы. М.: ГЭОТАР-МЕД, 2008.
29. Newnham RE. Essentiality of boron for healthy bones and joints. Environ Health Perspect 1994; (Suppl. 102): 83–5.
30. Devirian TA, Volpe SL. The physiological effects of dietary boron. Crit Rev Food Sci Nutr 2003; 43 (2): 219–31.
31. Penland JG. The importance of boron nutrition for brain and psychological function. Biol Trace Elem Res 1998; 66 (1–3): 299–317.
32. Murray FJ. A comparative review of the pharmacokinetics of boric acid in rodents and humans. Biol Trace Elem Res 1998; 66 (1–3): 331–41.
33. Liao SF, Monegue JS, Lindemann MD et al. Dietary supplementation of boron differentially alters expression of borate transporter (NaBCl) mRNA by jejunum and kidney of growing pigs. Biol Trace Elem Res 2011; 143 (2): 901–12.
34. Tasli PN, Dogan A, Demirci S, Sahin F. Boron enhances odontogenic and osteogenic differentiation of human tooth germ stem cells (hTGSCs) in vitro. Biol Trace Elem Res 2013; 153 (1–3): 419–27.
35. Ying X, Cheng S, Wang W et al. Effect of boron on osteogenic differentiation of human bone marrow stromal cells. Biol Trace Elem Res 2011; 144 (1–3): 306–15.
36. Hakki SS, Bozkurt BS, Hakki EE. Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). J Trace Elem Med Biol 2010; 24 (4): 243–50.
37. Naghii MR, Torkaman G, Mofid M. Effects of boron and calcium supplementation on mechanical properties of bone in rats. Biofactors 2006; 28 (3–4): 195–201.
38. Lanoue L, Taubeneck MW, Muniz J et al. Assessing the effects of low boron diets on embryonic and fetal development in rodents using in vitro and in vivo model systems. Biol Trace Elem Res 1998; 66 (1–3): 271–98.
39. Gorustovich AA, Steimetz T, Nielsen FH, Guglielmotti MB. A histomorphometric study of alveolar bone modelling and remodelling in mice fed a boron-deficient diet. Arch Oral Biol 2008; 53 (7): 677–82.
40. Gorustovich AA, Steimetz T, Nielsen FH, Guglielmotti MB. Histomorphometric study of alveolar bone healing in rats fed a boron-deficient diet. Anat Rec (Hoboken) 2008; 291 (4): 441–7.
41. Nielsen FH. Biochemical and physiologic consequences of boron deprivation in humans. Environ Health Perspect 1994; (Suppl. 102): 59–63.
42. Naghii MR, Ebrahimpour Y, Darvishi P et al. Effect of consumption of fatty acids, calcium, vitamin D and boron with regular physical activity on bone mechanical properties and corresponding metabolic hormones in rats. Indian J Exp Biol 2012; 50 (3): 223–31.
43. Hakki SS, Dundar N, Kayis SA et al. Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet. J Trace Elem Med Biol 2013; 27 (2): 148–53.
44. Ghanizadeh G, Babaei M, Naghii MR et al. The effect of supplementation of calcium, vitamin D, boron, and increased fluoride intake on bone mechanical properties and metabolic hormones in rat. Toxicol Ind Health 2014; 30 (3): 211–7.
45. Rico H, Crespo E, Hernandez ER et al. Influence of boron supplementation on vertebral and femoral bone mass in rats on strenuous treadmill exercise. A morphometric, densitometric, and histomorphometric study. J Clin Densitom 2002; 5 (2): 187–92.
46. Sheng MH, Taper LJ, Veit H et al. Dietary boron supplementation enhanced the action of estrogen, but not that of parathyroid hormone, to improve trabecular bone quality in ovariectomized rats. Biol Trace Elem Res 2001; 82 (1–3): 109–23.
47. Sheng MH, Taper LJ, Veit H et al. Dietary boron supplementation enhances the effects of estrogen on bone mineral balance in ovariectomized rats. Biol Trace Elem Res 2001; 81 (1): 29–45.
48. Wilson JH, Ruszler PL. Effects of boron on growing pullets. Biol Trace Elem Res 1997; 56 (3): 287–94.
49. Qin X, Klandorf H. Effect of dietary boron supplementation on egg production, shell quality, and calcium metabolism in aged broiler breeder hens. Poult Sci 1991; 70 (10): 2131–8.
50. King N, Odom TW, Sampson HW, Yersin AG. The effect of in ovo boron supplementation on bone mineralization of the vitamin D-deficient chicken embryo. Biol Trace Elem Res 1991; 31 (3): 223–33.
51. Scorei ID, Scorei RI. Calcium fructoborate helps control inflammation associated with diminished bone health. Biol Trace Elem Res 2013; 155 (3): 315–21.
52. Naghii MR, Samman S. The effect of boron supplementation on its urinary excretion and selected cardiovascular risk factors in healthy male subjects. Biol Trace Elem Res 1997; 56 (3): 273–86.
53. Gjesdal CG, Vollset SE, Ueland PM et al. Plasma total homocysteine level and bone mineral density: the Hordaland Homocysteine Study. Arch Intern Med 2006; 166: 88–94.
54. Ravaglia G, Forti P, Maioli F et al. Folate, but not homocysteine, predicts the risk of fracture in elderly persons. J Gerontol A Biol Sci Med Sci 2005; 60: 1458–62.
55. McLean RR, Jacques PF, Selhub J et al. Plasma B vitamins, homocysteine, and their relation with bone loss and hip fracture in elderly men and women. J Clin Endocrinol Metab 2008; 93: 2206–12.
56. Tucker KL, Hannan MT, Qiao N et al. Low plasma vitamin B12 is associated with lower BMD: the Framingham Osteoporosis Study. J Bone Miner Res 2005; 20: 152–8.
57. Baines M, Kredan MB, Davison A et al. The association between cysteine, bone turnover, and low bone mass. Calcif Tissue Int 2007; 81: 450–4.
58. Goerss JB, Kim CH, Atkinson EJ et al. Risk of fractures in patients with pernicious anemia. J Bone Miner Res 1992; 7 (5): 573–9.
59. New SA, Bolton-Smith C, Grubb DA, Reid DM. Nutritional influences on bone mineral density: a cross-sectional study in premenopausal women. Am J Clin Nutr 1997; 65: 1831–9.
60. Tucker KL, Chen H, Hannan MT et al. Bone mineral density and dietary patterns in older adults: the Framingham Osteoporosis Study. Am J Clin Nutr 2002; 76: 245–52.
61. Sahni S, Hannan MT, Gagnon D et al. High vitamin C intake is associated with lower 4-year bone loss in elderly men. J Nutr 2008; 138: 1931–8.
62. Sahni S, Hannan MT, Blumberg J et al. Protective effect of total carotenoid and lycopene intake on the risk of hip fracture: a 17-year follow-up from the Framingham Osteoporosis Study. J Bone Miner Res 2009; 24: 1086–94.
63. Pasco JA, Henry MJ, Wilkinson LK et al. Antioxidant vitamin supplements and markers of bone turnover in a community sample of nonsmoking women. J Womens Health (Larchmt) 2006; 15: 295–300.
64. Binkley N, Harke J, Krueger D et al. Vitamin K treatment reduces undercarboxylated osteocalcin but does not alter bone turnover, density, or geometry in healthy postmenopausal North American women. J Bone Miner Res 2009; 24: 983–91.
65. Bolton-Smith C, McMurdo ME, Paterson CR et al. Two year randomized controlled trial of vitamin K1 (phylloquinone) and vitamin D3 plus calcium on the bone health of older women. J Bone Miner Res 2007; 22: 509–19.
66. Cockayne S, Adamson J, Lanham-New S et al. Vitamin K and the prevention of fractures: systematic review and meta-analysis of randomized controlled trials. Arch Intern Med 2006; 166: 1256–61.
67. Yang Z, Zhang Z, Penniston KL et al. Serum carotenoid concentrations in postmenopausal women from the United States with and without osteoporosis. Int J Vitam Nutr Res 2008; 78: 105–11.
68. Wolf RL, Cauley JA, Pettinger M et al. Lack of a relation between vitamin and mineral antioxidants and bone mineral density: results from the Women’s Health Initiative. Am J Clin Nutr 2005; 82: 581–8.
69. Woo JT, Nakagawa H, Notoya M et al. Quercetin suppresses bone resorption by inhibiting the differentiation and activation of osteoclasts. Biol Pharm Bull 2004; 27: 504–9.
70. Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 2008; 585: 325–37.
71. Wattel A, Kamel S, Prouillet C et al. Flavonoid quercetin decreases osteoclastic differentiation induced by RANKL via a mechanism involving NF kappa B and AP-1. J Cell Biochem 2004; 92: 285–95.
72. Hardcastle AC, Aucott L, Reid DM, Macdonald HM. Associations between dietary flavonoid intakes and bone health in a Scottish population. J Bone Miner Res 2011; 26: 941–7.
73. Miggiano GA, Gagliardi L. Diet, nutrition and bone health. Clin Ter 2005; 156 (1–2): 47–56.
74. Salari P, Rezaie A, Larijani B, Abdollahi M. A systematic review of the impact of n-3 fatty acids in bone health and osteoporosis. Med Sci Monit 2008; 14: 37–44.
75. Jarvinen R, Tuppurainen M, Erkkila AT et al. Associations of dietary polyunsaturated fatty acids with bone mineral density in elderly women. Eur J Clin Nutr 2012; 66: 496–503.
76. Hogstrom M, Nordstrom P, Nordstrom A. n-3 Fatty acids are positively associated with peak bone mineral density and bone accrual in healthy men: the NO2 Study. Am J Clin Nutr 2007; 85: 803–7.
77. Eriksson S, Mellstrom D, Strandvik B. Fatty acid pattern in serum is associated with bone mineralisation in healthy 8-year- old children. Br J Nutr 2009; 102: 407–12.
78. Weiss LA, Barrett-Connor E, von Muhlen D. Ratio of n-6 to n-3 fatty acids and bone mineral density in older adults: the Rancho Bernardo Study. Am J Clin Nutr 2005; 81: 934–8.
79. Дыдыкина И.С., Дыдыкина П.С., Алексеева О.Г. Вклад микроэлементов (меди, марганца, цинка, бора) в здоровье кости: вопросы профилактики и лечения остеопении и остеопороза. Эффективная фармакотерапия. 2013; 38.
Авторы
О.А.Громова1, 2, И.Ю.Торшин2, О.А.Лиманова1
1. ГБОУ ВПО Ивановская государственная медицинская академия Минздрава России;
2. Российский сателлитный центр Института микроэлементов ЮНЕСКО