За последние десятилетия значительно расширились ключевые представления о модулирующем действии половых гормонов на структуру и функции мозга в течение жизни человека. Трофические эффекты половых гормонов возникают на раннем этапе развития мозга, влияют на половую дифференциацию и сохраняются на протяжении подросткового периода и взрослой жизни. Половые стероиды участвуют в регуляции функции гипоталамо-гипофизарно-гонадной оси. Нейростероиды синтезируются в коре головного мозга, гиппокампе и миндалине и являются эндогенными модуляторами нервной возбудимости; существует все больше доказательств седативных, анксиолитических, обезболивающих и противосудорожных свойств нейростероидов. Прогестерон и аллопрегнанолон участвуют в адаптации к стрессу, имеют иммуномодулирующую активность и цитопротекторные свойства. Нейростероиды обладают потенциальными терапевтическими возможностями, связанными с молекулярными механизмами прерывания эпилептогенеза и модуляцией нейровоспаления и нейрогенеза в головном мозге.
Neurosteroids are endogenous modulators of nervous excitability. There is increasing evidence of sedative, anxiolytic, analgesic and anticonvulsant properties of neurosteroids. Progesterone and allopregnanolol participate in adaptation to stress, and also have immunomodulating activity and cytoprotective properties. Neurosteroids have the potential therapeutic possibilities associated with molecular mechanisms of the epileptogenesis interruption and modulation of neuroinflammation and neurogenesis in the brain.
1. McHenry JA, Otis JM, Rossi MA et al. Hormonal control of a medial preoptic area social reward circuit. Nat Neurosci 2017; 20: 449–58. DOI: 10.1038/nn.4487.
2. Tyborowska A, Volman I, Smeekens S et al. Testosterone during Puberty Shifts Emotional Control from Pulvinar to Anterior Prefrontal Cortex.
J Neurosci 2016; 36 (23): 6156–64. DOI: 10.1523/JNEUROSCI.3874-15.2016.
3. Bender RA, Zhou L, Vierk R et al. Sex-Dependent Regulation of Aromatase-Mediated Synaptic Plasticity in the Basolateral Amygdala. J Neurosci 2017; 37 (6): 1532–45. DOI: 10.1523/JNEUROSCI.1532-16.2016.
4. Herting MM, Sowell ER. Puberty and structural brain development in humans. Front Neuroendocrinol 2017; 44: 122–37. DOI: 10.1016/j.yfrne.2016.12.003.
5. Ma J, Huang S, Qin S et al. Progesterone for acute traumatic brain injury. Cochrane Database Syst Rev 2016; 12: CD008409. DOI: 10.1002/14651858.CD008409.pub4.
6. Csaba G. The Present and Future of Human Sexuality: Impact of Faulty Perinatal Hormonal Imprinting. Sex Med Rev 2017; 5 (2): 163–9. DOI: 10.1016/j.sxmr.2016.10.002.
7. Juraska JM, Sisk CL, DonCarlos LL. Sexual differentiation of the adolescent rodent brain: hormonal influences and developmental mechanisms. Horm Behav 2013; 64 (2): 203–10. DOI: 10.1016/j.yhbeh.2013.05.010.
8. Sakaki M, Mather M. How reward and emotional stimuli induce different reactions across the menstrual cycle. Soc Personal Psychol Compass 2012; 6 (1): 1–17. DOI: 10.1111/j.1751-9004.2011.00415.x.
9. Barber SJ, Opitz PC, Martins B et al. Thinking about a limited future enhances the positivity of younger and older adults’ recall: support for socioemotional selectivity theory. Memory Cognition 2016; 44 (6): 869–82. DOI: 10.3758/s13421-016-0612-0.
10. Nashiro, K, Sakaki, M, Braskie MN, Mather M. Resting-state networks associated with cognitive processing show more age-related decline than those associated with emotional processing. Neurobiol Aging 2017.
11. Duarte-Guterman P, Yagi S, Chow C, Galea LA. Hippocampal learning, memory, and neurogenesis: Effects of sex and estrogens across the lifespan in adults. Horm Behav 2015; 74: 37–52. DOI: 10.1016/j.yhbeh.2015.05.024.
12. Li M, Lu S, Wang G et al. Emotion, working memory, and cognitive control in patients with first-onset and previously untreated minor depressive disorders. J Int Med Res 2016; 44 (3): 529–41. DOI: 10.1177/0300060516639169.
13. Losecaat Vermeer AB, Riečanský I, Eisenegger C. Competition, testosterone, and adult neurobehavioral plasticity. Prog Brain Res 2016; 229: 213–38. DOI: 10.1016/bs.pbr.2016.05.004.
14. Opendak M, Briones BA, Gould E. Social behavior, hormones and adult neurogenesis. Front Neuroendocrinol 2016; 41: 71–86. DOI: 10.1016/j.yfrne.2016.02.002.
15. Chen Z, Xi G, Mao Y et al. Effects of progesterone and testosterone on ICH-induced brain injury in rats. Acta Neurochir (Suppl.) 2011; 111: 289–93. DOI: 10.1007/978-3-7091-0693-8_48.
16. De Sousa MB, Galvão AC, Sales CJ et al. Endocrine and Cognitive Adaptations to Cope with Stress in Immature Common Marmosets (Callithrix jacchus): Sex and Age Matter. Front Psychiatry 2015; 6: 160. DOI: 10.3389/fpsyt.2015.00160.
17. Akdis D, Saguner AM, Shah K et al. Sex hormones affect outcome in arrhythmogenic right ventricular cardiomyopathy/dysplasia: from a stem cell derived cardiomyocyte-based model to clinical biomarkers of disease outcome. Eur Heart J 2017. DOI: 10.1093/eurheartj/ehx011.
18. Clegg D, Hevener AL, Moreau KL et al. Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors. Endocrinology 2017. DOI: 10.1210/en.2016-1677.
19. Pompili A, Arnone B, D'Amico M et al. Evidence of estrogen modulation on memory processes for emotional content in healthy young women. Psychoneuroendocrinology 2016; 65: 94–101. DOI: 10.1016/j.psyneuen.2015.12.013.
20. Halaris A. Inflammation-Associated Co-morbidity Between Depression and Cardiovascular Disease. Curr Top Behav Neurosci 2017; 31: 45–70. DOI: 10.1007/7854_2016_28.
21. Handa RJ, Burgess LH, Kerr JE, O'Keefe JA. Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Horm Behav 1994; 28 (4): 464–76.
22. Goel N, Workman JL, Lee TT et al. Sex differences in the HPA axis. Compr Physiol 2014; 4 (3): 1121–55. DOI: 10.1002/cphy.c130054.
23. Wang F, Pereira A. Neuromodulation, Emotional Feelings and Affective Disorders. Mens Sana Monogr 2016; 14 (1): 5–29. DOI: 10.4103/0973-1229.154533.
24. Pinilla L, Aguilar E, Dieguez C et al. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev 2012; 92 (3): 1235–316. DOI: 10.1152/physrev.00037.2010.
25. Herde MK, Iremonger KJ, Constantin S, Herbison AE. GnRH neurons elaborate a long-range projection with shared axonal and dendritic functions. J Neurosci 2013; 33 (31): 12689–97. DOI: 10.1523/JNEUROSCI.0579-13.2013.
26. Goodman RL, Coolen LM, Lehman MN. A role for neurokinin B in pulsatile GnRH secretion in the ewe. Neuroendocrinology 2014; 9 (1): 18–32. DOI: 10.1159/000355285.
27. Roa J, Tena-Sempere M. Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators. Mol Cell Endocrinol 2014; 397 (1–2): 4–14. DOI: 10.1016/j.mce.2014.09.027.
28. Beijers R, Buitelaar JK, de Weerth C. Mechanisms underlying the effects of prenatal psychosocial stress on child outcomes: beyond the HPA axis. Eur Child Adolesc Psychiatry 2014; 23 (10): 943–56. DOI: 10.1007/s00787-014-0566-3.
29. Wood CE, Walker CD. Fetal and Neonatal HPA Axis. Compr Physiol 2015; 6 (1): 33–62. DOI: 10.1002/cphy.c150005.
30. Sharpley CF, Bitsika V, Andronicos NM, Agnew LL. Further evidence of HPA-axis dysregulation and its correlation with depression in Autism Spectrum Disorders: Data from girls. Physiol Behav 2016; 167: 110–7. DOI: 10.1016/j.physbeh.2016.09.003.
31. Keller J, Gomez R, Williams G et al. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry 2017; 22 (4): 527–36. DOI: 10.1038/mp.2016.120.
32. Dalvie S, Fabbri C, Ramesar R et al. Glutamatergic and HPA-axis pathway genes in bipolar disorder comorbid with alcohol- and substance use disorders. Metab Brain Dis 2016; 31 (1): 183–9. DOI: 10.1007/s11011-015-9762-1.
33. Uzunova G, Pallanti S, Hollander E. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. World J Biol Psychiatry 2016; 17 (3): 174–86. DOI: 10.3109/15622975.2015.1085597.
34. Belda X, Fuentes S, Daviu N et al. Stress-induced sensitization: the hypothalamic-pituitary-adrenal axis and beyond. Stress 2015; 18 (3): 269–79. DOI: 10.3109/10253890.2015.1067678.
35. Häggström M, Richfield D. Diagram of the pathways of human steroidogenesis. Wiki J Med 2014; 1 (1). DOI:10.15347/wjm/2014.005.
36. Schumacher M, Mattern C, Ghoumari A et al. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 2014; 113: 6–39. DOI: 10.1016/j.pneurobio.2013.09.004.
37. Gunn BG, Brown AR, Lambert JJ, Belelli D. Neurosteroids and GABAA receptor interactions: a focus on stress. Front Neurosci 2011; 131 (5). DOI: 10.3389/fnins.2011.00131.
38. Patte-Mensah C, Kappes V, Freund-Mercier MJ et al. Cellular distribution and bioactivity of the key steroidogenic enzyme, cytochrome P450side chain cleavage, in sensory neural pathways. J Neurochem 2003; 86 (5): 1233–46. DOI: 10.1046/j.1471-4159.2003.01935.x.
39. Rossetti MF, Cambiasso MJ, Holschbach MA, Cabrera R. Oestrogens and Progestagens: Synthesis and Action in the Brain. J Neuroendocrinol 2016; 28 (7). DOI: 10.1111/jne.12402.
40. Carta MG, Bhat KM, Preti A. GABAergic neuroactive steroids: a new frontier in bipolar disorders? Behav Brain Funct 2012; 8: 61. DOI: 10.1186/1744-9081-8-61.
41. Reddy DS, Estes WA. Clinical Potential of Neurosteroids for CNS Disorders. Trends Pharmacol Sci 2016; 37 (7): 543–61. DOI: 10.1016/j.tips.2016.04.003.
42. Tang FR, Loke WK, Ling EA. Comparison of status epilepticus models induced by pilocarpine and nerve agents – a systematic review of the underlying aetiology and adopted therapeutic approaches. Curr Med Chem 2011; 18 (6): 886–99. DOI: 10.2174/092986711794927720.
43. Wang Y, Oguntayo S, Wei Y et al. Neuroprotective effects of imidazenil against chemical warfare nerve agent soman toxicity in guinea pigs. Neurotoxicology 2012; 33 (2): 169–77. DOI: 10.1016/j.neuro.2011.12.018.
44. Wright DW, Yeatts SD. Very early administration of progesterone for acute traumatic brain injury. N Engl J Med 2014; 371 (26): 2457–66. DOI: 10.1056/NEJMoa1404304.
45. Crowley T, Cryan JF, Downer EJ, O'Leary OF. Inhibiting neuroinflammation: The role and therapeutic potential of GABA in neuro-immune interactions. Brain Behav Immun 2016; 54: 260–77. DOI: 10.1016/j.bbi.2016.02.001.
46. Sieghart W. Allosteric modulation of GABAA receptors via multiple drug-binding sites. Adv Pharmacol 2015; 72: 53–96. DOI: 10.1016/bs.apha.2014.10.002.
47. Labombarda F, Garcia-Ovejero D. Give progesterone a chance. Neural Regen Res 2014; 9 (15): 1422-4. DOI: 10.4103/1673-5374.139456.
48. Selye H. Stress and disease. Science 1955; 122: 625–31. DOI: 10.1126/science.122.3171.625.
49. Harrison NL, Simmonds MA. Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res 1984; 323 (2): 287–92.
50. Olsen RW, Sieghart W. GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 2009; 56 (1): 141–8. DOI: 10.1016/j.neuropharm.2008.07.045.
51. Longone P, di Michele F, D'Agati E et al. Neurosteroids as neuromodulators in the treatment of anxiety disorders. Front Endocrinol (Lausanne) 2011; 2: 55. DOI: 10.3389/fendo.2011.00055.
52. Wirth MM. Beyond the HPA axis: progesterone-derived neuroactive steroids in human stress and emotion Front. Endocrinol 2011. https://DOI.org/10.3389/fendo.2011.00019
53. Kinch MS. An analysis of FDA-approved drugs for pain and anesthesia. Drug Discov Today 2015; 20: 3–6. http://dx.DOI.org/10.1016/j.drudis.2014.09.002
54. Tvrdeić A, Poljak L. Neurosteroids, GABAA receptors and neurosteroid based drugs: are we witnessing the dawn of the new psychiatric drugs? Endocrine Oncol Metabolism 2016; 2 (1): 60–71. DOI: 10.21040/eom/2016.2.7.
55. Skolnick P. Anxioselective anxiolytics: On a quest of holly grail. Trends Pharmacol Sci 2012; 33: 611–20. http://dx.DOI.org/10.1016/
j.tips.2012.08.003
56. Choi YM, Kim KH. Etifoxine for pain patients with anxiety. Korean J Pain 2015; 28: 4–10. http://dx.DOI.org/10.3344/kjp.2015.28.1.4
57. Wang D, Tian Z, Guo Y et al. Anxiolytic-like effects of translocator protein (TSPO) ligand ZBD-2 in an animal model of chronic pain. Mol Pain 2015; 11: 1–10. http://dx.DOI.org/10.1186/s12990-015-0013-6
58. Barron AM, Garcia-Segura LM, Caruso D et al. Ligand for translocator protein reverses pathology in a mouse model of Alzheimer’s disease. J Neurosci 2013; 33: 8891–7. http://dx.DOI.org/10.1523/JNEUROSCI.1350-13.2013
59. Scholz R, Caramoy A, Bhuckory MB et al. Targeting translocator protein (18 kDa) (TSPO) dampens pro- inflammatory microglia reactivity in the retina and protects from degeneration. J Neuroinflammation 2015; 12: 201. http://dx.DOI.org/10.1186/s12974-015-0422-5
60. Reddy DS. Neurosteroids: Endogenous Role in the Human Brian and Therapeutic Potentials. Prog Brain Res 2010; 186: 113–37. DOI: 10.1016/B978-0-444-53630-3.00008-7.
61. Svob Strac D, Vlainic J, Samardzic J et al. Effects of acute and chronic administration of neurosteroid dehydroepiandrosterone sulfate on neuronal excitability in mice. Drug Des Devel Ther 2016; 10: 1201–15. DOI: 10.2147/DDDT.S102102. eCollection 2016.
62. Toy D, Namgung U. Role of Glial Cells in Axonal Regeneration. Exp Neurobiol 2013; 22 (2): 68–76. DOI: 10.5607/en.2013.22.2.68.
63. Robertson CL, Fidan E, Stanley RM et al. Progesterone for Neuroprotection in Pediatric Traumatic Brain Injury. Pediatr Crit Care Med 2015; 16 (3): 236–44. DOI: 10.1097/PCC.0000000000000323.
64. Skolnick BE, Maas AI, Narayan RK et al. A Clinical Trial of Progesterone for Severe Traumatic Brain Injury. N Engl J Med 2014; 371: 2467–76. DOI: 10.1056/NEJMoa1411090.
65. Shen L, Saykin AJ, Kim S et al. Comparison of manual and automated determination of hippocampal volumes in MCI and early AD. Brain Imaging Behav 2010; 4 (1): 86–95. DOI: 10.1007/s11682-010-9088-x.
66. Maguire J, Mody I. Steroid Hormone Fluctuations and GABAAR Plasticity. Psychoneuroendocrinology 2009; 34 (Suppl. 1): S84–S90. DOI: 10.1016/ j.psyneuen.2009.06.019.
67. Longone P, di Michele F, D’Agati E et al. Neurosteroids as Neuromodulators in the Treatment of Anxiety Disorders. Front Endocrinol (Lausanne) 2011; 2: 55. DOI: 10.3389/fendo.2011.00055.
68. Licheri V, Talani G, Gorule AA et al. Plasticity of GABAA Receptors during Pregnancy and Postpartum Period: From Gene to Function. Neural Plast 2015; 2015: 170435. DOI: 10.1155/2015/170435.
69. Uzunova V, Sampson L, Uzunov DP. Relevance of endogenous 3alpha-reduced neurosteroids to depression and antidepressant action. Psychopharmacology (Berl) 2006; 186 (3): 351–61. DOI: 10.1007/s00213-005-0201-6.
70. Carta MG, Bhat KM, Preti A. GABAergic neuroactive steroids: a new frontier in bipolar disorders? Behav Brain Funct 2012; 8: 61. DOI: 10.1186/1744-9081-8-61.
71. Liu W, Ge T, Leng Y et al. The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plasticity 2017. Art. ID 6871089, 11 phttps://DOI.org/10.1155/2017/6871089.
72. Velíšková J, DeSantis KA. Sex and Hormonal influences on Seizures and Epilepsy Horm Behav 2013; 63 (2): 267–77. DOI: 10.1016/j.yhbeh.2012.03.018.
73. Bramble MS, Roach L, Lipson A et al. Sex-Specific Effects of Testosterone on the Sexually Dimorphic Transcriptome and Epigenome of Embryonic Neural Stem/Progenitor Cells. Sci Reports 2016; 6. Art: 36916. DOI: 10.1038/srep36916.
74. Blaschko SD, Cunha GR, Baskin LS. Molecular Mechanisms of External Genitalia Development. Differentiation 2012; 84 (3): 261–8. DOI: 10.1016/j.diff.2012.06.003.
75. Bartke A, Klemcke H, Amador A. Effects of testosterone, pregnenolone, progesterone and cortisol on pituitary and testicular function in male golden hamsters with gonadal atrophy induced by short photoperiods. J Endocrinol 1981; 90 (1): 97–102.
76. Stuart Tobet SJ, Gabriel Knoll JG, Hartshorn C et al. Brain sex differences and hormone influences. A moving experience? J Neuroendocrinol 2009; 21 (4): 387–92. DOI: 10.1111/j.1365-2826.2009.01834.x.
77. Webster KM, Sun M, Crack P et al. Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflam 2017; 14: 10. DOI: 10.1186/s12974-016-0786-1.
78. Reddy DS. Role of hormones and neurosteroids in epileptogenesis. Front Cell Neurosci 2013; 7: 115. DOI: 10.3389/fncel.2013.00115.
79. Zeng Y, Zhang Y, Ma J, Xu J. Progesterone for Acute Traumatic Brain Injury: A Systematic Review of Randomized Controlled Trials. Published: October 16, 2015. http://dx.DOI.org/10.1371/journal.pone.0140624
80. De Nicola AF, Labombarda F, Deniselle MC et al. Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration. Front Neuroendocrinol 2009; 30: 173–87. DOI: 10.1016/j.yfrne.2009.03.001.
81. Cheng G, Kong R, Zhang L, Zhang J. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies Br J Pharmacol 2012; 167 (4): 699–719. DOI: 10.1111/j.1476-5381.2012.02025.x.
82. Singh M, Chang Su C, Selena NS. Non-genomic mechanisms of progesterone action in the brain Front Neurosci 2013; 7: 159. DOI: 10.3389/fnins.2013.00159.
83. Nin MS, Martinez LA, Pibiri F et al. Neurosteroids reduce social isolation-induced behavioral deficits: a proposed link with neurosteroid-mediated upregulation of BDNF expression. Front Endocrinol (Lausanne) 2011; 2: 73. DOI: 10.3389/fendo.2011.00073.
________________________________________________
1. McHenry JA, Otis JM, Rossi MA et al. Hormonal control of a medial preoptic area social reward circuit. Nat Neurosci 2017; 20: 449–58. DOI: 10.1038/nn.4487.
2. Tyborowska A, Volman I, Smeekens S et al. Testosterone during Puberty Shifts Emotional Control from Pulvinar to Anterior Prefrontal Cortex. J Neurosci 2016; 36 (23): 6156–64. DOI: 10.1523/JNEUROSCI.3874-15.2016.
3. Bender RA, Zhou L, Vierk R et al. Sex-Dependent Regulation of Aromatase-Mediated Synaptic Plasticity in the Basolateral Amygdala. J Neurosci 2017; 37 (6): 1532–45. DOI: 10.1523/JNEUROSCI.1532-16.2016.
4. Herting MM, Sowell ER. Puberty and structural brain development in humans. Front Neuroendocrinol 2017; 44: 122–37. DOI: 10.1016/j.yfrne.2016.12.003.
5. Ma J, Huang S, Qin S et al. Progesterone for acute traumatic brain injury. Cochrane Database Syst Rev 2016; 12: CD008409. DOI: 10.1002/14651858.CD008409.pub4.
6. Csaba G. The Present and Future of Human Sexuality: Impact of Faulty Perinatal Hormonal Imprinting. Sex Med Rev 2017; 5 (2): 163–9. DOI: 10.1016/j.sxmr.2016.10.002.
7. Juraska JM, Sisk CL, DonCarlos LL. Sexual differentiation of the adolescent rodent brain: hormonal influences and developmental mechanisms. Horm Behav 2013; 64 (2): 203–10. DOI: 10.1016/j.yhbeh.2013.05.010.
8. Sakaki M, Mather M. How reward and emotional stimuli induce different reactions across the menstrual cycle. Soc Personal Psychol Compass 2012; 6 (1): 1–17. DOI: 10.1111/j.1751-9004.2011.00415.x.
9. Barber SJ, Opitz PC, Martins B et al. Thinking about a limited future enhances the positivity of younger and older adults’ recall: support for socioemotional selectivity theory. Memory Cognition 2016; 44 (6): 869–82. DOI: 10.3758/s13421-016-0612-0.
10. Nashiro, K, Sakaki, M, Braskie MN, Mather M. Resting-state networks associated with cognitive processing show more age-related decline than those associated with emotional processing. Neurobiol Aging 2017.
11. Duarte-Guterman P, Yagi S, Chow C, Galea LA. Hippocampal learning, memory, and neurogenesis: Effects of sex and estrogens across the lifespan in adults. Horm Behav 2015; 74: 37–52. DOI: 10.1016/j.yhbeh.2015.05.024.
12. Li M, Lu S, Wang G et al. Emotion, working memory, and cognitive control in patients with first-onset and previously untreated minor depressive disorders. J Int Med Res 2016; 44 (3): 529–41. DOI: 10.1177/0300060516639169.
13. Losecaat Vermeer AB, Riečanský I, Eisenegger C. Competition, testosterone, and adult neurobehavioral plasticity. Prog Brain Res 2016; 229: 213–38. DOI: 10.1016/bs.pbr.2016.05.004.
14. Opendak M, Briones BA, Gould E. Social behavior, hormones and adult neurogenesis. Front Neuroendocrinol 2016; 41: 71–86. DOI: 10.1016/j.yfrne.2016.02.002.
15. Chen Z, Xi G, Mao Y et al. Effects of progesterone and testosterone on ICH-induced brain injury in rats. Acta Neurochir (Suppl.) 2011; 111: 289–93. DOI: 10.1007/978-3-7091-0693-8_48.
16. De Sousa MB, Galvão AC, Sales CJ et al. Endocrine and Cognitive Adaptations to Cope with Stress in Immature Common Marmosets (Callithrix jacchus): Sex and Age Matter. Front Psychiatry 2015; 6: 160. DOI: 10.3389/fpsyt.2015.00160.
17. Akdis D, Saguner AM, Shah K et al. Sex hormones affect outcome in arrhythmogenic right ventricular cardiomyopathy/dysplasia: from a stem cell derived cardiomyocyte-based model to clinical biomarkers of disease outcome. Eur Heart J 2017. DOI: 10.1093/eurheartj/ehx011.
18. Clegg D, Hevener AL, Moreau KL et al. Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors. Endocrinology 2017. DOI: 10.1210/en.2016-1677.
19. Pompili A, Arnone B, D'Amico M et al. Evidence of estrogen modulation on memory processes for emotional content in healthy young women. Psychoneuroendocrinology 2016; 65: 94–101. DOI: 10.1016/j.psyneuen.2015.12.013.
20. Halaris A. Inflammation-Associated Co-morbidity Between Depression and Cardiovascular Disease. Curr Top Behav Neurosci 2017; 31: 45–70. DOI: 10.1007/7854_2016_28.
21. Handa RJ, Burgess LH, Kerr JE, O'Keefe JA. Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Horm Behav 1994; 28 (4): 464–76.
22. Goel N, Workman JL, Lee TT et al. Sex differences in the HPA axis. Compr Physiol 2014; 4 (3): 1121–55. DOI: 10.1002/cphy.c130054.
23. Wang F, Pereira A. Neuromodulation, Emotional Feelings and Affective Disorders. Mens Sana Monogr 2016; 14 (1): 5–29. DOI: 10.4103/0973-1229.154533.
24. Pinilla L, Aguilar E, Dieguez C et al. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev 2012; 92 (3): 1235–316. DOI: 10.1152/physrev.00037.2010.
25. Herde MK, Iremonger KJ, Constantin S, Herbison AE. GnRH neurons elaborate a long-range projection with shared axonal and dendritic functions. J Neurosci 2013; 33 (31): 12689–97. DOI: 10.1523/JNEUROSCI.0579-13.2013.
26. Goodman RL, Coolen LM, Lehman MN. A role for neurokinin B in pulsatile GnRH secretion in the ewe. Neuroendocrinology 2014; 9 (1): 18–32. DOI: 10.1159/000355285.
27. Roa J, Tena-Sempere M. Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators. Mol Cell Endocrinol 2014; 397 (1–2): 4–14. DOI: 10.1016/j.mce.2014.09.027.
28. Beijers R, Buitelaar JK, de Weerth C. Mechanisms underlying the effects of prenatal psychosocial stress on child outcomes: beyond the HPA axis. Eur Child Adolesc Psychiatry 2014; 23 (10): 943–56. DOI: 10.1007/s00787-014-0566-3.
29. Wood CE, Walker CD. Fetal and Neonatal HPA Axis. Compr Physiol 2015; 6 (1): 33–62. DOI: 10.1002/cphy.c150005.
30. Sharpley CF, Bitsika V, Andronicos NM, Agnew LL. Further evidence of HPA-axis dysregulation and its correlation with depression in Autism Spectrum Disorders: Data from girls. Physiol Behav 2016; 167: 110–7. DOI: 10.1016/j.physbeh.2016.09.003.
31. Keller J, Gomez R, Williams G et al. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry 2017; 22 (4): 527–36. DOI: 10.1038/mp.2016.120.
32. Dalvie S, Fabbri C, Ramesar R et al. Glutamatergic and HPA-axis pathway genes in bipolar disorder comorbid with alcohol- and substance use disorders. Metab Brain Dis 2016; 31 (1): 183–9. DOI: 10.1007/s11011-015-9762-1.
33. Uzunova G, Pallanti S, Hollander E. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. World J Biol Psychiatry 2016; 17 (3): 174–86. DOI: 10.3109/15622975.2015.1085597.
34. Belda X, Fuentes S, Daviu N et al. Stress-induced sensitization: the hypothalamic-pituitary-adrenal axis and beyond. Stress 2015; 18 (3): 269–79. DOI: 10.3109/10253890.2015.1067678.
35. Häggström M, Richfield D. Diagram of the pathways of human steroidogenesis. Wiki J Med 2014; 1 (1). DOI:10.15347/wjm/2014.005.
36. Schumacher M, Mattern C, Ghoumari A et al. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 2014; 113: 6–39. DOI: 10.1016/j.pneurobio.2013.09.004.
37. Gunn BG, Brown AR, Lambert JJ, Belelli D. Neurosteroids and GABAA receptor interactions: a focus on stress. Front Neurosci 2011; 131 (5). DOI: 10.3389/fnins.2011.00131.
38. Patte-Mensah C, Kappes V, Freund-Mercier MJ et al. Cellular distribution and bioactivity of the key steroidogenic enzyme, cytochrome P450side chain cleavage, in sensory neural pathways. J Neurochem 2003; 86 (5): 1233–46. DOI: 10.1046/j.1471-4159.2003.01935.x.
39. Rossetti MF, Cambiasso MJ, Holschbach MA, Cabrera R. Oestrogens and Progestagens: Synthesis and Action in the Brain. J Neuroendocrinol 2016; 28 (7). DOI: 10.1111/jne.12402.
40. Carta MG, Bhat KM, Preti A. GABAergic neuroactive steroids: a new frontier in bipolar disorders? Behav Brain Funct 2012; 8: 61. DOI: 10.1186/1744-9081-8-61.
41. Reddy DS, Estes WA. Clinical Potential of Neurosteroids for CNS Disorders. Trends Pharmacol Sci 2016; 37 (7): 543–61. DOI: 10.1016/j.tips.2016.04.003.
42. Tang FR, Loke WK, Ling EA. Comparison of status epilepticus models induced by pilocarpine and nerve agents – a systematic review of the underlying aetiology and adopted therapeutic approaches. Curr Med Chem 2011; 18 (6): 886–99. DOI: 10.2174/092986711794927720.
43. Wang Y, Oguntayo S, Wei Y et al. Neuroprotective effects of imidazenil against chemical warfare nerve agent soman toxicity in guinea pigs. Neurotoxicology 2012; 33 (2): 169–77. DOI: 10.1016/j.neuro.2011.12.018.
44. Wright DW, Yeatts SD. Very early administration of progesterone for acute traumatic brain injury. N Engl J Med 2014; 371 (26): 2457–66. DOI: 10.1056/NEJMoa1404304.
45. Crowley T, Cryan JF, Downer EJ, O'Leary OF. Inhibiting neuroinflammation: The role and therapeutic potential of GABA in neuro-immune interactions. Brain Behav Immun 2016; 54: 260–77. DOI: 10.1016/j.bbi.2016.02.001.
46. Sieghart W. Allosteric modulation of GABAA receptors via multiple drug-binding sites. Adv Pharmacol 2015; 72: 53–96. DOI: 10.1016/bs.apha.2014.10.002.
47. Labombarda F, Garcia-Ovejero D. Give progesterone a chance. Neural Regen Res 2014; 9 (15): 1422-4. DOI: 10.4103/1673-5374.139456.
48. Selye H. Stress and disease. Science 1955; 122: 625–31. DOI: 10.1126/science.122.3171.625.
49. Harrison NL, Simmonds MA. Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res 1984; 323 (2): 287–92.
50. Olsen RW, Sieghart W. GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 2009; 56 (1): 141–8. DOI: 10.1016/j.neuropharm.2008.07.045.
51. Longone P, di Michele F, D'Agati E et al. Neurosteroids as neuromodulators in the treatment of anxiety disorders. Front Endocrinol (Lausanne) 2011; 2: 55. DOI: 10.3389/fendo.2011.00055.
52. Wirth MM. Beyond the HPA axis: progesterone-derived neuroactive steroids in human stress and emotion Front. Endocrinol 2011. https://DOI.org/10.3389/fendo.2011.00019
53. Kinch MS. An analysis of FDA-approved drugs for pain and anesthesia. Drug Discov Today 2015; 20: 3–6. http://dx.DOI.org/10.1016/j.drudis.2014.09.002
54. Tvrdeić A, Poljak L. Neurosteroids, GABAA receptors and neurosteroid based drugs: are we witnessing the dawn of the new psychiatric drugs? Endocrine Oncol Metabolism 2016; 2 (1): 60–71. DOI: 10.21040/eom/2016.2.7.
55. Skolnick P. Anxioselective anxiolytics: On a quest of holly grail. Trends Pharmacol Sci 2012; 33: 611–20. http://dx.DOI.org/10.1016/
j.tips.2012.08.003
56. Choi YM, Kim KH. Etifoxine for pain patients with anxiety. Korean J Pain 2015; 28: 4–10. http://dx.DOI.org/10.3344/kjp.2015.28.1.4
57. Wang D, Tian Z, Guo Y et al. Anxiolytic-like effects of translocator protein (TSPO) ligand ZBD-2 in an animal model of chronic pain. Mol Pain 2015; 11: 1–10. http://dx.DOI.org/10.1186/s12990-015-0013-6
58. Barron AM, Garcia-Segura LM, Caruso D et al. Ligand for translocator protein reverses pathology in a mouse model of Alzheimer’s disease. J Neurosci 2013; 33: 8891–7. http://dx.DOI.org/10.1523/JNEUROSCI.1350-13.2013
59. Scholz R, Caramoy A, Bhuckory MB et al. Targeting translocator protein (18 kDa) (TSPO) dampens pro- inflammatory microglia reactivity in the retina and protects from degeneration. J Neuroinflammation 2015; 12: 201. http://dx.DOI.org/10.1186/s12974-015-0422-5
60. Reddy DS. Neurosteroids: Endogenous Role in the Human Brian and Therapeutic Potentials. Prog Brain Res 2010; 186: 113–37. DOI: 10.1016/B978-0-444-53630-3.00008-7.
61. Svob Strac D, Vlainic J, Samardzic J et al. Effects of acute and chronic administration of neurosteroid dehydroepiandrosterone sulfate on neuronal excitability in mice. Drug Des Devel Ther 2016; 10: 1201–15. DOI: 10.2147/DDDT.S102102. eCollection 2016.
62. Toy D, Namgung U. Role of Glial Cells in Axonal Regeneration. Exp Neurobiol 2013; 22 (2): 68–76. DOI: 10.5607/en.2013.22.2.68.
63. Robertson CL, Fidan E, Stanley RM et al. Progesterone for Neuroprotection in Pediatric Traumatic Brain Injury. Pediatr Crit Care Med 2015; 16 (3): 236–44. DOI: 10.1097/PCC.0000000000000323.
64. Skolnick BE, Maas AI, Narayan RK et al. A Clinical Trial of Progesterone for Severe Traumatic Brain Injury. N Engl J Med 2014; 371: 2467–76. DOI: 10.1056/NEJMoa1411090.
65. Shen L, Saykin AJ, Kim S et al. Comparison of manual and automated determination of hippocampal volumes in MCI and early AD. Brain Imaging Behav 2010; 4 (1): 86–95. DOI: 10.1007/s11682-010-9088-x.
66. Maguire J, Mody I. Steroid Hormone Fluctuations and GABAAR Plasticity. Psychoneuroendocrinology 2009; 34 (Suppl. 1): S84–S90. DOI: 10.1016/ j.psyneuen.2009.06.019.
67. Longone P, di Michele F, D’Agati E et al. Neurosteroids as Neuromodulators in the Treatment of Anxiety Disorders. Front Endocrinol (Lausanne) 2011; 2: 55. DOI: 10.3389/fendo.2011.00055.
68. Licheri V, Talani G, Gorule AA et al. Plasticity of GABAA Receptors during Pregnancy and Postpartum Period: From Gene to Function. Neural Plast 2015; 2015: 170435. DOI: 10.1155/2015/170435.
69. Uzunova V, Sampson L, Uzunov DP. Relevance of endogenous 3alpha-reduced neurosteroids to depression and antidepressant action. Psychopharmacology (Berl) 2006; 186 (3): 351–61. DOI: 10.1007/s00213-005-0201-6.
70. Carta MG, Bhat KM, Preti A. GABAergic neuroactive steroids: a new frontier in bipolar disorders? Behav Brain Funct 2012; 8: 61. DOI: 10.1186/1744-9081-8-61.
71. Liu W, Ge T, Leng Y et al. The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plasticity 2017. Art. ID 6871089, 11 phttps://DOI.org/10.1155/2017/6871089.
72. Velíšková J, DeSantis KA. Sex and Hormonal influences on Seizures and Epilepsy Horm Behav 2013; 63 (2): 267–77. DOI: 10.1016/j.yhbeh.2012.03.018.
73. Bramble MS, Roach L, Lipson A et al. Sex-Specific Effects of Testosterone on the Sexually Dimorphic Transcriptome and Epigenome of Embryonic Neural Stem/Progenitor Cells. Sci Reports 2016; 6. Art: 36916. DOI: 10.1038/srep36916.
74. Blaschko SD, Cunha GR, Baskin LS. Molecular Mechanisms of External Genitalia Development. Differentiation 2012; 84 (3): 261–8. DOI: 10.1016/j.diff.2012.06.003.
75. Bartke A, Klemcke H, Amador A. Effects of testosterone, pregnenolone, progesterone and cortisol on pituitary and testicular function in male golden hamsters with gonadal atrophy induced by short photoperiods. J Endocrinol 1981; 90 (1): 97–102.
76. Stuart Tobet SJ, Gabriel Knoll JG, Hartshorn C et al. Brain sex differences and hormone influences. A moving experience? J Neuroendocrinol 2009; 21 (4): 387–92. DOI: 10.1111/j.1365-2826.2009.01834.x.
77. Webster KM, Sun M, Crack P et al. Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflam 2017; 14: 10. DOI: 10.1186/s12974-016-0786-1.
78. Reddy DS. Role of hormones and neurosteroids in epileptogenesis. Front Cell Neurosci 2013; 7: 115. DOI: 10.3389/fncel.2013.00115.
79. Zeng Y, Zhang Y, Ma J, Xu J. Progesterone for Acute Traumatic Brain Injury: A Systematic Review of Randomized Controlled Trials. Published: October 16, 2015. http://dx.DOI.org/10.1371/journal.pone.0140624
80. De Nicola AF, Labombarda F, Deniselle MC et al. Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration. Front Neuroendocrinol 2009; 30: 173–87. DOI: 10.1016/j.yfrne.2009.03.001.
81. Cheng G, Kong R, Zhang L, Zhang J. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies Br J Pharmacol 2012; 167 (4): 699–719. DOI: 10.1111/j.1476-5381.2012.02025.x.
82. Singh M, Chang Su C, Selena NS. Non-genomic mechanisms of progesterone action in the brain Front Neurosci 2013; 7: 159. DOI: 10.3389/fnins.2013.00159.
83. Nin MS, Martinez LA, Pibiri F et al. Neurosteroids reduce social isolation-induced behavioral deficits: a proposed link with neurosteroid-mediated upregulation of BDNF expression. Front Endocrinol (Lausanne) 2011; 2: 73. DOI: 10.3389/fendo.2011.00073.
1. ФГБУ «Научный центр акушерства, гинекологии и перинатологии им. акад. В.И.Кулакова» Минздрава России. 117997, Россия, Москва, ул. Академика Опарина, д. 4;
2. ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М.Сеченова» Минздрава России. 119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2
*nataliasten@mail.ru
1. Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation. 117997, Russian Federation, Moscow, ul. Akademika Oparina, d. 4;
2. I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation. 119991, Russian Federation, Moscow, ul. Trubetskaia, d. 8, str. 2
*nataliasten@mail.ru