Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Половые стероиды и функции головного мозга
Половые стероиды и функции головного мозга
Стеняева Н.Н., Хритинин Д.Ф., Григорьев В.Ю., Куземин А.А. Половые стероиды и функции головного мозга. Гинекология. 2017; 19 (2): 9–14.
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
За последние десятилетия значительно расширились ключевые представления о модулирующем действии половых гормонов на структуру и функции мозга в течение жизни человека. Трофические эффекты половых гормонов возникают на раннем этапе развития мозга, влияют на половую дифференциацию и сохраняются на протяжении подросткового периода и взрослой жизни. Половые стероиды участвуют в регуляции функции гипоталамо-гипофизарно-гонадной оси. Нейростероиды синтезируются в коре головного мозга, гиппокампе и миндалине и являются эндогенными модуляторами нервной возбудимости; существует все больше доказательств седативных, анксиолитических, обезболивающих и противосудорожных свойств нейростероидов. Прогестерон и аллопрегнанолон участвуют в адаптации к стрессу, имеют иммуномодулирующую активность и цитопротекторные свойства. Нейростероиды обладают потенциальными терапевтическими возможностями, связанными с молекулярными механизмами прерывания эпилептогенеза и модуляцией нейровоспаления и нейрогенеза в головном мозге.
Ключевые слова: нейростероиды, прогестерон, мозг, стресс, депрессия, нейровоспаление.
Key words: neurosteroids, progesterone, brain, stress, depression, neuroinflammation.
Ключевые слова: нейростероиды, прогестерон, мозг, стресс, депрессия, нейровоспаление.
________________________________________________
Key words: neurosteroids, progesterone, brain, stress, depression, neuroinflammation.
Полный текст
Список литературы
1. McHenry JA, Otis JM, Rossi MA et al. Hormonal control of a medial preoptic area social reward circuit. Nat Neurosci 2017; 20: 449–58. DOI: 10.1038/nn.4487.
2. Tyborowska A, Volman I, Smeekens S et al. Testosterone during Puberty Shifts Emotional Control from Pulvinar to Anterior Prefrontal Cortex.
J Neurosci 2016; 36 (23): 6156–64. DOI: 10.1523/JNEUROSCI.3874-15.2016.
3. Bender RA, Zhou L, Vierk R et al. Sex-Dependent Regulation of Aromatase-Mediated Synaptic Plasticity in the Basolateral Amygdala. J Neurosci 2017; 37 (6): 1532–45. DOI: 10.1523/JNEUROSCI.1532-16.2016.
4. Herting MM, Sowell ER. Puberty and structural brain development in humans. Front Neuroendocrinol 2017; 44: 122–37. DOI: 10.1016/j.yfrne.2016.12.003.
5. Ma J, Huang S, Qin S et al. Progesterone for acute traumatic brain injury. Cochrane Database Syst Rev 2016; 12: CD008409. DOI: 10.1002/14651858.CD008409.pub4.
6. Csaba G. The Present and Future of Human Sexuality: Impact of Faulty Perinatal Hormonal Imprinting. Sex Med Rev 2017; 5 (2): 163–9. DOI: 10.1016/j.sxmr.2016.10.002.
7. Juraska JM, Sisk CL, DonCarlos LL. Sexual differentiation of the adolescent rodent brain: hormonal influences and developmental mechanisms. Horm Behav 2013; 64 (2): 203–10. DOI: 10.1016/j.yhbeh.2013.05.010.
8. Sakaki M, Mather M. How reward and emotional stimuli induce different reactions across the menstrual cycle. Soc Personal Psychol Compass 2012; 6 (1): 1–17. DOI: 10.1111/j.1751-9004.2011.00415.x.
9. Barber SJ, Opitz PC, Martins B et al. Thinking about a limited future enhances the positivity of younger and older adults’ recall: support for socioemotional selectivity theory. Memory Cognition 2016; 44 (6): 869–82. DOI: 10.3758/s13421-016-0612-0.
10. Nashiro, K, Sakaki, M, Braskie MN, Mather M. Resting-state networks associated with cognitive processing show more age-related decline than those associated with emotional processing. Neurobiol Aging 2017.
11. Duarte-Guterman P, Yagi S, Chow C, Galea LA. Hippocampal learning, memory, and neurogenesis: Effects of sex and estrogens across the lifespan in adults. Horm Behav 2015; 74: 37–52. DOI: 10.1016/j.yhbeh.2015.05.024.
12. Li M, Lu S, Wang G et al. Emotion, working memory, and cognitive control in patients with first-onset and previously untreated minor depressive disorders. J Int Med Res 2016; 44 (3): 529–41. DOI: 10.1177/0300060516639169.
13. Losecaat Vermeer AB, Riečanský I, Eisenegger C. Competition, testosterone, and adult neurobehavioral plasticity. Prog Brain Res 2016; 229: 213–38. DOI: 10.1016/bs.pbr.2016.05.004.
14. Opendak M, Briones BA, Gould E. Social behavior, hormones and adult neurogenesis. Front Neuroendocrinol 2016; 41: 71–86. DOI: 10.1016/j.yfrne.2016.02.002.
15. Chen Z, Xi G, Mao Y et al. Effects of progesterone and testosterone on ICH-induced brain injury in rats. Acta Neurochir (Suppl.) 2011; 111: 289–93. DOI: 10.1007/978-3-7091-0693-8_48.
16. De Sousa MB, Galvão AC, Sales CJ et al. Endocrine and Cognitive Adaptations to Cope with Stress in Immature Common Marmosets (Callithrix jacchus): Sex and Age Matter. Front Psychiatry 2015; 6: 160. DOI: 10.3389/fpsyt.2015.00160.
17. Akdis D, Saguner AM, Shah K et al. Sex hormones affect outcome in arrhythmogenic right ventricular cardiomyopathy/dysplasia: from a stem cell derived cardiomyocyte-based model to clinical biomarkers of disease outcome. Eur Heart J 2017. DOI: 10.1093/eurheartj/ehx011.
18. Clegg D, Hevener AL, Moreau KL et al. Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors. Endocrinology 2017. DOI: 10.1210/en.2016-1677.
19. Pompili A, Arnone B, D'Amico M et al. Evidence of estrogen modulation on memory processes for emotional content in healthy young women. Psychoneuroendocrinology 2016; 65: 94–101. DOI: 10.1016/j.psyneuen.2015.12.013.
20. Halaris A. Inflammation-Associated Co-morbidity Between Depression and Cardiovascular Disease. Curr Top Behav Neurosci 2017; 31: 45–70. DOI: 10.1007/7854_2016_28.
21. Handa RJ, Burgess LH, Kerr JE, O'Keefe JA. Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Horm Behav 1994; 28 (4): 464–76.
22. Goel N, Workman JL, Lee TT et al. Sex differences in the HPA axis. Compr Physiol 2014; 4 (3): 1121–55. DOI: 10.1002/cphy.c130054.
23. Wang F, Pereira A. Neuromodulation, Emotional Feelings and Affective Disorders. Mens Sana Monogr 2016; 14 (1): 5–29. DOI: 10.4103/0973-1229.154533.
24. Pinilla L, Aguilar E, Dieguez C et al. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev 2012; 92 (3): 1235–316. DOI: 10.1152/physrev.00037.2010.
25. Herde MK, Iremonger KJ, Constantin S, Herbison AE. GnRH neurons elaborate a long-range projection with shared axonal and dendritic functions. J Neurosci 2013; 33 (31): 12689–97. DOI: 10.1523/JNEUROSCI.0579-13.2013.
26. Goodman RL, Coolen LM, Lehman MN. A role for neurokinin B in pulsatile GnRH secretion in the ewe. Neuroendocrinology 2014; 9 (1): 18–32. DOI: 10.1159/000355285.
27. Roa J, Tena-Sempere M. Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators. Mol Cell Endocrinol 2014; 397 (1–2): 4–14. DOI: 10.1016/j.mce.2014.09.027.
28. Beijers R, Buitelaar JK, de Weerth C. Mechanisms underlying the effects of prenatal psychosocial stress on child outcomes: beyond the HPA axis. Eur Child Adolesc Psychiatry 2014; 23 (10): 943–56. DOI: 10.1007/s00787-014-0566-3.
29. Wood CE, Walker CD. Fetal and Neonatal HPA Axis. Compr Physiol 2015; 6 (1): 33–62. DOI: 10.1002/cphy.c150005.
30. Sharpley CF, Bitsika V, Andronicos NM, Agnew LL. Further evidence of HPA-axis dysregulation and its correlation with depression in Autism Spectrum Disorders: Data from girls. Physiol Behav 2016; 167: 110–7. DOI: 10.1016/j.physbeh.2016.09.003.
31. Keller J, Gomez R, Williams G et al. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry 2017; 22 (4): 527–36. DOI: 10.1038/mp.2016.120.
32. Dalvie S, Fabbri C, Ramesar R et al. Glutamatergic and HPA-axis pathway genes in bipolar disorder comorbid with alcohol- and substance use disorders. Metab Brain Dis 2016; 31 (1): 183–9. DOI: 10.1007/s11011-015-9762-1.
33. Uzunova G, Pallanti S, Hollander E. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. World J Biol Psychiatry 2016; 17 (3): 174–86. DOI: 10.3109/15622975.2015.1085597.
34. Belda X, Fuentes S, Daviu N et al. Stress-induced sensitization: the hypothalamic-pituitary-adrenal axis and beyond. Stress 2015; 18 (3): 269–79. DOI: 10.3109/10253890.2015.1067678.
35. Häggström M, Richfield D. Diagram of the pathways of human steroidogenesis. Wiki J Med 2014; 1 (1). DOI:10.15347/wjm/2014.005.
36. Schumacher M, Mattern C, Ghoumari A et al. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 2014; 113: 6–39. DOI: 10.1016/j.pneurobio.2013.09.004.
37. Gunn BG, Brown AR, Lambert JJ, Belelli D. Neurosteroids and GABAA receptor interactions: a focus on stress. Front Neurosci 2011; 131 (5). DOI: 10.3389/fnins.2011.00131.
38. Patte-Mensah C, Kappes V, Freund-Mercier MJ et al. Cellular distribution and bioactivity of the key steroidogenic enzyme, cytochrome P450side chain cleavage, in sensory neural pathways. J Neurochem 2003; 86 (5): 1233–46. DOI: 10.1046/j.1471-4159.2003.01935.x.
39. Rossetti MF, Cambiasso MJ, Holschbach MA, Cabrera R. Oestrogens and Progestagens: Synthesis and Action in the Brain. J Neuroendocrinol 2016; 28 (7). DOI: 10.1111/jne.12402.
40. Carta MG, Bhat KM, Preti A. GABAergic neuroactive steroids: a new frontier in bipolar disorders? Behav Brain Funct 2012; 8: 61. DOI: 10.1186/1744-9081-8-61.
41. Reddy DS, Estes WA. Clinical Potential of Neurosteroids for CNS Disorders. Trends Pharmacol Sci 2016; 37 (7): 543–61. DOI: 10.1016/j.tips.2016.04.003.
42. Tang FR, Loke WK, Ling EA. Comparison of status epilepticus models induced by pilocarpine and nerve agents – a systematic review of the underlying aetiology and adopted therapeutic approaches. Curr Med Chem 2011; 18 (6): 886–99. DOI: 10.2174/092986711794927720.
43. Wang Y, Oguntayo S, Wei Y et al. Neuroprotective effects of imidazenil against chemical warfare nerve agent soman toxicity in guinea pigs. Neurotoxicology 2012; 33 (2): 169–77. DOI: 10.1016/j.neuro.2011.12.018.
44. Wright DW, Yeatts SD. Very early administration of progesterone for acute traumatic brain injury. N Engl J Med 2014; 371 (26): 2457–66. DOI: 10.1056/NEJMoa1404304.
45. Crowley T, Cryan JF, Downer EJ, O'Leary OF. Inhibiting neuroinflammation: The role and therapeutic potential of GABA in neuro-immune interactions. Brain Behav Immun 2016; 54: 260–77. DOI: 10.1016/j.bbi.2016.02.001.
46. Sieghart W. Allosteric modulation of GABAA receptors via multiple drug-binding sites. Adv Pharmacol 2015; 72: 53–96. DOI: 10.1016/bs.apha.2014.10.002.
47. Labombarda F, Garcia-Ovejero D. Give progesterone a chance. Neural Regen Res 2014; 9 (15): 1422-4. DOI: 10.4103/1673-5374.139456.
48. Selye H. Stress and disease. Science 1955; 122: 625–31. DOI: 10.1126/science.122.3171.625.
49. Harrison NL, Simmonds MA. Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res 1984; 323 (2): 287–92.
50. Olsen RW, Sieghart W. GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 2009; 56 (1): 141–8. DOI: 10.1016/j.neuropharm.2008.07.045.
51. Longone P, di Michele F, D'Agati E et al. Neurosteroids as neuromodulators in the treatment of anxiety disorders. Front Endocrinol (Lausanne) 2011; 2: 55. DOI: 10.3389/fendo.2011.00055.
52. Wirth MM. Beyond the HPA axis: progesterone-derived neuroactive steroids in human stress and emotion Front. Endocrinol 2011. https://DOI.org/10.3389/fendo.2011.00019
53. Kinch MS. An analysis of FDA-approved drugs for pain and anesthesia. Drug Discov Today 2015; 20: 3–6. http://dx.DOI.org/10.1016/j.drudis.2014.09.002
54. Tvrdeić A, Poljak L. Neurosteroids, GABAA receptors and neurosteroid based drugs: are we witnessing the dawn of the new psychiatric drugs? Endocrine Oncol Metabolism 2016; 2 (1): 60–71. DOI: 10.21040/eom/2016.2.7.
55. Skolnick P. Anxioselective anxiolytics: On a quest of holly grail. Trends Pharmacol Sci 2012; 33: 611–20. http://dx.DOI.org/10.1016/
j.tips.2012.08.003
56. Choi YM, Kim KH. Etifoxine for pain patients with anxiety. Korean J Pain 2015; 28: 4–10. http://dx.DOI.org/10.3344/kjp.2015.28.1.4
57. Wang D, Tian Z, Guo Y et al. Anxiolytic-like effects of translocator protein (TSPO) ligand ZBD-2 in an animal model of chronic pain. Mol Pain 2015; 11: 1–10. http://dx.DOI.org/10.1186/s12990-015-0013-6
58. Barron AM, Garcia-Segura LM, Caruso D et al. Ligand for translocator protein reverses pathology in a mouse model of Alzheimer’s disease. J Neurosci 2013; 33: 8891–7. http://dx.DOI.org/10.1523/JNEUROSCI.1350-13.2013
59. Scholz R, Caramoy A, Bhuckory MB et al. Targeting translocator protein (18 kDa) (TSPO) dampens pro- inflammatory microglia reactivity in the retina and protects from degeneration. J Neuroinflammation 2015; 12: 201. http://dx.DOI.org/10.1186/s12974-015-0422-5
60. Reddy DS. Neurosteroids: Endogenous Role in the Human Brian and Therapeutic Potentials. Prog Brain Res 2010; 186: 113–37. DOI: 10.1016/B978-0-444-53630-3.00008-7.
61. Svob Strac D, Vlainic J, Samardzic J et al. Effects of acute and chronic administration of neurosteroid dehydroepiandrosterone sulfate on neuronal excitability in mice. Drug Des Devel Ther 2016; 10: 1201–15. DOI: 10.2147/DDDT.S102102. eCollection 2016.
62. Toy D, Namgung U. Role of Glial Cells in Axonal Regeneration. Exp Neurobiol 2013; 22 (2): 68–76. DOI: 10.5607/en.2013.22.2.68.
63. Robertson CL, Fidan E, Stanley RM et al. Progesterone for Neuroprotection in Pediatric Traumatic Brain Injury. Pediatr Crit Care Med 2015; 16 (3): 236–44. DOI: 10.1097/PCC.0000000000000323.
64. Skolnick BE, Maas AI, Narayan RK et al. A Clinical Trial of Progesterone for Severe Traumatic Brain Injury. N Engl J Med 2014; 371: 2467–76. DOI: 10.1056/NEJMoa1411090.
65. Shen L, Saykin AJ, Kim S et al. Comparison of manual and automated determination of hippocampal volumes in MCI and early AD. Brain Imaging Behav 2010; 4 (1): 86–95. DOI: 10.1007/s11682-010-9088-x.
66. Maguire J, Mody I. Steroid Hormone Fluctuations and GABAAR Plasticity. Psychoneuroendocrinology 2009; 34 (Suppl. 1): S84–S90. DOI: 10.1016/ j.psyneuen.2009.06.019.
67. Longone P, di Michele F, D’Agati E et al. Neurosteroids as Neuromodulators in the Treatment of Anxiety Disorders. Front Endocrinol (Lausanne) 2011; 2: 55. DOI: 10.3389/fendo.2011.00055.
68. Licheri V, Talani G, Gorule AA et al. Plasticity of GABAA Receptors during Pregnancy and Postpartum Period: From Gene to Function. Neural Plast 2015; 2015: 170435. DOI: 10.1155/2015/170435.
69. Uzunova V, Sampson L, Uzunov DP. Relevance of endogenous 3alpha-reduced neurosteroids to depression and antidepressant action. Psychopharmacology (Berl) 2006; 186 (3): 351–61. DOI: 10.1007/s00213-005-0201-6.
70. Carta MG, Bhat KM, Preti A. GABAergic neuroactive steroids: a new frontier in bipolar disorders? Behav Brain Funct 2012; 8: 61. DOI: 10.1186/1744-9081-8-61.
71. Liu W, Ge T, Leng Y et al. The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plasticity 2017. Art. ID 6871089, 11 phttps://DOI.org/10.1155/2017/6871089.
72. Velíšková J, DeSantis KA. Sex and Hormonal influences on Seizures and Epilepsy Horm Behav 2013; 63 (2): 267–77. DOI: 10.1016/j.yhbeh.2012.03.018.
73. Bramble MS, Roach L, Lipson A et al. Sex-Specific Effects of Testosterone on the Sexually Dimorphic Transcriptome and Epigenome of Embryonic Neural Stem/Progenitor Cells. Sci Reports 2016; 6. Art: 36916. DOI: 10.1038/srep36916.
74. Blaschko SD, Cunha GR, Baskin LS. Molecular Mechanisms of External Genitalia Development. Differentiation 2012; 84 (3): 261–8. DOI: 10.1016/j.diff.2012.06.003.
75. Bartke A, Klemcke H, Amador A. Effects of testosterone, pregnenolone, progesterone and cortisol on pituitary and testicular function in male golden hamsters with gonadal atrophy induced by short photoperiods. J Endocrinol 1981; 90 (1): 97–102.
76. Stuart Tobet SJ, Gabriel Knoll JG, Hartshorn C et al. Brain sex differences and hormone influences. A moving experience? J Neuroendocrinol 2009; 21 (4): 387–92. DOI: 10.1111/j.1365-2826.2009.01834.x.
77. Webster KM, Sun M, Crack P et al. Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflam 2017; 14: 10. DOI: 10.1186/s12974-016-0786-1.
78. Reddy DS. Role of hormones and neurosteroids in epileptogenesis. Front Cell Neurosci 2013; 7: 115. DOI: 10.3389/fncel.2013.00115.
79. Zeng Y, Zhang Y, Ma J, Xu J. Progesterone for Acute Traumatic Brain Injury: A Systematic Review of Randomized Controlled Trials. Published: October 16, 2015. http://dx.DOI.org/10.1371/journal.pone.0140624
80. De Nicola AF, Labombarda F, Deniselle MC et al. Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration. Front Neuroendocrinol 2009; 30: 173–87. DOI: 10.1016/j.yfrne.2009.03.001.
81. Cheng G, Kong R, Zhang L, Zhang J. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies Br J Pharmacol 2012; 167 (4): 699–719. DOI: 10.1111/j.1476-5381.2012.02025.x.
82. Singh M, Chang Su C, Selena NS. Non-genomic mechanisms of progesterone action in the brain Front Neurosci 2013; 7: 159. DOI: 10.3389/fnins.2013.00159.
83. Nin MS, Martinez LA, Pibiri F et al. Neurosteroids reduce social isolation-induced behavioral deficits: a proposed link with neurosteroid-mediated upregulation of BDNF expression. Front Endocrinol (Lausanne) 2011; 2: 73. DOI: 10.3389/fendo.2011.00073.
2. Tyborowska A, Volman I, Smeekens S et al. Testosterone during Puberty Shifts Emotional Control from Pulvinar to Anterior Prefrontal Cortex. J Neurosci 2016; 36 (23): 6156–64. DOI: 10.1523/JNEUROSCI.3874-15.2016.
3. Bender RA, Zhou L, Vierk R et al. Sex-Dependent Regulation of Aromatase-Mediated Synaptic Plasticity in the Basolateral Amygdala. J Neurosci 2017; 37 (6): 1532–45. DOI: 10.1523/JNEUROSCI.1532-16.2016.
4. Herting MM, Sowell ER. Puberty and structural brain development in humans. Front Neuroendocrinol 2017; 44: 122–37. DOI: 10.1016/j.yfrne.2016.12.003.
5. Ma J, Huang S, Qin S et al. Progesterone for acute traumatic brain injury. Cochrane Database Syst Rev 2016; 12: CD008409. DOI: 10.1002/14651858.CD008409.pub4.
6. Csaba G. The Present and Future of Human Sexuality: Impact of Faulty Perinatal Hormonal Imprinting. Sex Med Rev 2017; 5 (2): 163–9. DOI: 10.1016/j.sxmr.2016.10.002.
7. Juraska JM, Sisk CL, DonCarlos LL. Sexual differentiation of the adolescent rodent brain: hormonal influences and developmental mechanisms. Horm Behav 2013; 64 (2): 203–10. DOI: 10.1016/j.yhbeh.2013.05.010.
8. Sakaki M, Mather M. How reward and emotional stimuli induce different reactions across the menstrual cycle. Soc Personal Psychol Compass 2012; 6 (1): 1–17. DOI: 10.1111/j.1751-9004.2011.00415.x.
9. Barber SJ, Opitz PC, Martins B et al. Thinking about a limited future enhances the positivity of younger and older adults’ recall: support for socioemotional selectivity theory. Memory Cognition 2016; 44 (6): 869–82. DOI: 10.3758/s13421-016-0612-0.
10. Nashiro, K, Sakaki, M, Braskie MN, Mather M. Resting-state networks associated with cognitive processing show more age-related decline than those associated with emotional processing. Neurobiol Aging 2017.
11. Duarte-Guterman P, Yagi S, Chow C, Galea LA. Hippocampal learning, memory, and neurogenesis: Effects of sex and estrogens across the lifespan in adults. Horm Behav 2015; 74: 37–52. DOI: 10.1016/j.yhbeh.2015.05.024.
12. Li M, Lu S, Wang G et al. Emotion, working memory, and cognitive control in patients with first-onset and previously untreated minor depressive disorders. J Int Med Res 2016; 44 (3): 529–41. DOI: 10.1177/0300060516639169.
13. Losecaat Vermeer AB, Riečanský I, Eisenegger C. Competition, testosterone, and adult neurobehavioral plasticity. Prog Brain Res 2016; 229: 213–38. DOI: 10.1016/bs.pbr.2016.05.004.
14. Opendak M, Briones BA, Gould E. Social behavior, hormones and adult neurogenesis. Front Neuroendocrinol 2016; 41: 71–86. DOI: 10.1016/j.yfrne.2016.02.002.
15. Chen Z, Xi G, Mao Y et al. Effects of progesterone and testosterone on ICH-induced brain injury in rats. Acta Neurochir (Suppl.) 2011; 111: 289–93. DOI: 10.1007/978-3-7091-0693-8_48.
16. De Sousa MB, Galvão AC, Sales CJ et al. Endocrine and Cognitive Adaptations to Cope with Stress in Immature Common Marmosets (Callithrix jacchus): Sex and Age Matter. Front Psychiatry 2015; 6: 160. DOI: 10.3389/fpsyt.2015.00160.
17. Akdis D, Saguner AM, Shah K et al. Sex hormones affect outcome in arrhythmogenic right ventricular cardiomyopathy/dysplasia: from a stem cell derived cardiomyocyte-based model to clinical biomarkers of disease outcome. Eur Heart J 2017. DOI: 10.1093/eurheartj/ehx011.
18. Clegg D, Hevener AL, Moreau KL et al. Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors. Endocrinology 2017. DOI: 10.1210/en.2016-1677.
19. Pompili A, Arnone B, D'Amico M et al. Evidence of estrogen modulation on memory processes for emotional content in healthy young women. Psychoneuroendocrinology 2016; 65: 94–101. DOI: 10.1016/j.psyneuen.2015.12.013.
20. Halaris A. Inflammation-Associated Co-morbidity Between Depression and Cardiovascular Disease. Curr Top Behav Neurosci 2017; 31: 45–70. DOI: 10.1007/7854_2016_28.
21. Handa RJ, Burgess LH, Kerr JE, O'Keefe JA. Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Horm Behav 1994; 28 (4): 464–76.
22. Goel N, Workman JL, Lee TT et al. Sex differences in the HPA axis. Compr Physiol 2014; 4 (3): 1121–55. DOI: 10.1002/cphy.c130054.
23. Wang F, Pereira A. Neuromodulation, Emotional Feelings and Affective Disorders. Mens Sana Monogr 2016; 14 (1): 5–29. DOI: 10.4103/0973-1229.154533.
24. Pinilla L, Aguilar E, Dieguez C et al. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev 2012; 92 (3): 1235–316. DOI: 10.1152/physrev.00037.2010.
25. Herde MK, Iremonger KJ, Constantin S, Herbison AE. GnRH neurons elaborate a long-range projection with shared axonal and dendritic functions. J Neurosci 2013; 33 (31): 12689–97. DOI: 10.1523/JNEUROSCI.0579-13.2013.
26. Goodman RL, Coolen LM, Lehman MN. A role for neurokinin B in pulsatile GnRH secretion in the ewe. Neuroendocrinology 2014; 9 (1): 18–32. DOI: 10.1159/000355285.
27. Roa J, Tena-Sempere M. Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators. Mol Cell Endocrinol 2014; 397 (1–2): 4–14. DOI: 10.1016/j.mce.2014.09.027.
28. Beijers R, Buitelaar JK, de Weerth C. Mechanisms underlying the effects of prenatal psychosocial stress on child outcomes: beyond the HPA axis. Eur Child Adolesc Psychiatry 2014; 23 (10): 943–56. DOI: 10.1007/s00787-014-0566-3.
29. Wood CE, Walker CD. Fetal and Neonatal HPA Axis. Compr Physiol 2015; 6 (1): 33–62. DOI: 10.1002/cphy.c150005.
30. Sharpley CF, Bitsika V, Andronicos NM, Agnew LL. Further evidence of HPA-axis dysregulation and its correlation with depression in Autism Spectrum Disorders: Data from girls. Physiol Behav 2016; 167: 110–7. DOI: 10.1016/j.physbeh.2016.09.003.
31. Keller J, Gomez R, Williams G et al. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry 2017; 22 (4): 527–36. DOI: 10.1038/mp.2016.120.
32. Dalvie S, Fabbri C, Ramesar R et al. Glutamatergic and HPA-axis pathway genes in bipolar disorder comorbid with alcohol- and substance use disorders. Metab Brain Dis 2016; 31 (1): 183–9. DOI: 10.1007/s11011-015-9762-1.
33. Uzunova G, Pallanti S, Hollander E. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. World J Biol Psychiatry 2016; 17 (3): 174–86. DOI: 10.3109/15622975.2015.1085597.
34. Belda X, Fuentes S, Daviu N et al. Stress-induced sensitization: the hypothalamic-pituitary-adrenal axis and beyond. Stress 2015; 18 (3): 269–79. DOI: 10.3109/10253890.2015.1067678.
35. Häggström M, Richfield D. Diagram of the pathways of human steroidogenesis. Wiki J Med 2014; 1 (1). DOI:10.15347/wjm/2014.005.
36. Schumacher M, Mattern C, Ghoumari A et al. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 2014; 113: 6–39. DOI: 10.1016/j.pneurobio.2013.09.004.
37. Gunn BG, Brown AR, Lambert JJ, Belelli D. Neurosteroids and GABAA receptor interactions: a focus on stress. Front Neurosci 2011; 131 (5). DOI: 10.3389/fnins.2011.00131.
38. Patte-Mensah C, Kappes V, Freund-Mercier MJ et al. Cellular distribution and bioactivity of the key steroidogenic enzyme, cytochrome P450side chain cleavage, in sensory neural pathways. J Neurochem 2003; 86 (5): 1233–46. DOI: 10.1046/j.1471-4159.2003.01935.x.
39. Rossetti MF, Cambiasso MJ, Holschbach MA, Cabrera R. Oestrogens and Progestagens: Synthesis and Action in the Brain. J Neuroendocrinol 2016; 28 (7). DOI: 10.1111/jne.12402.
40. Carta MG, Bhat KM, Preti A. GABAergic neuroactive steroids: a new frontier in bipolar disorders? Behav Brain Funct 2012; 8: 61. DOI: 10.1186/1744-9081-8-61.
41. Reddy DS, Estes WA. Clinical Potential of Neurosteroids for CNS Disorders. Trends Pharmacol Sci 2016; 37 (7): 543–61. DOI: 10.1016/j.tips.2016.04.003.
42. Tang FR, Loke WK, Ling EA. Comparison of status epilepticus models induced by pilocarpine and nerve agents – a systematic review of the underlying aetiology and adopted therapeutic approaches. Curr Med Chem 2011; 18 (6): 886–99. DOI: 10.2174/092986711794927720.
43. Wang Y, Oguntayo S, Wei Y et al. Neuroprotective effects of imidazenil against chemical warfare nerve agent soman toxicity in guinea pigs. Neurotoxicology 2012; 33 (2): 169–77. DOI: 10.1016/j.neuro.2011.12.018.
44. Wright DW, Yeatts SD. Very early administration of progesterone for acute traumatic brain injury. N Engl J Med 2014; 371 (26): 2457–66. DOI: 10.1056/NEJMoa1404304.
45. Crowley T, Cryan JF, Downer EJ, O'Leary OF. Inhibiting neuroinflammation: The role and therapeutic potential of GABA in neuro-immune interactions. Brain Behav Immun 2016; 54: 260–77. DOI: 10.1016/j.bbi.2016.02.001.
46. Sieghart W. Allosteric modulation of GABAA receptors via multiple drug-binding sites. Adv Pharmacol 2015; 72: 53–96. DOI: 10.1016/bs.apha.2014.10.002.
47. Labombarda F, Garcia-Ovejero D. Give progesterone a chance. Neural Regen Res 2014; 9 (15): 1422-4. DOI: 10.4103/1673-5374.139456.
48. Selye H. Stress and disease. Science 1955; 122: 625–31. DOI: 10.1126/science.122.3171.625.
49. Harrison NL, Simmonds MA. Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res 1984; 323 (2): 287–92.
50. Olsen RW, Sieghart W. GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 2009; 56 (1): 141–8. DOI: 10.1016/j.neuropharm.2008.07.045.
51. Longone P, di Michele F, D'Agati E et al. Neurosteroids as neuromodulators in the treatment of anxiety disorders. Front Endocrinol (Lausanne) 2011; 2: 55. DOI: 10.3389/fendo.2011.00055.
52. Wirth MM. Beyond the HPA axis: progesterone-derived neuroactive steroids in human stress and emotion Front. Endocrinol 2011. https://DOI.org/10.3389/fendo.2011.00019
53. Kinch MS. An analysis of FDA-approved drugs for pain and anesthesia. Drug Discov Today 2015; 20: 3–6. http://dx.DOI.org/10.1016/j.drudis.2014.09.002
54. Tvrdeić A, Poljak L. Neurosteroids, GABAA receptors and neurosteroid based drugs: are we witnessing the dawn of the new psychiatric drugs? Endocrine Oncol Metabolism 2016; 2 (1): 60–71. DOI: 10.21040/eom/2016.2.7.
55. Skolnick P. Anxioselective anxiolytics: On a quest of holly grail. Trends Pharmacol Sci 2012; 33: 611–20. http://dx.DOI.org/10.1016/
j.tips.2012.08.003
56. Choi YM, Kim KH. Etifoxine for pain patients with anxiety. Korean J Pain 2015; 28: 4–10. http://dx.DOI.org/10.3344/kjp.2015.28.1.4
57. Wang D, Tian Z, Guo Y et al. Anxiolytic-like effects of translocator protein (TSPO) ligand ZBD-2 in an animal model of chronic pain. Mol Pain 2015; 11: 1–10. http://dx.DOI.org/10.1186/s12990-015-0013-6
58. Barron AM, Garcia-Segura LM, Caruso D et al. Ligand for translocator protein reverses pathology in a mouse model of Alzheimer’s disease. J Neurosci 2013; 33: 8891–7. http://dx.DOI.org/10.1523/JNEUROSCI.1350-13.2013
59. Scholz R, Caramoy A, Bhuckory MB et al. Targeting translocator protein (18 kDa) (TSPO) dampens pro- inflammatory microglia reactivity in the retina and protects from degeneration. J Neuroinflammation 2015; 12: 201. http://dx.DOI.org/10.1186/s12974-015-0422-5
60. Reddy DS. Neurosteroids: Endogenous Role in the Human Brian and Therapeutic Potentials. Prog Brain Res 2010; 186: 113–37. DOI: 10.1016/B978-0-444-53630-3.00008-7.
61. Svob Strac D, Vlainic J, Samardzic J et al. Effects of acute and chronic administration of neurosteroid dehydroepiandrosterone sulfate on neuronal excitability in mice. Drug Des Devel Ther 2016; 10: 1201–15. DOI: 10.2147/DDDT.S102102. eCollection 2016.
62. Toy D, Namgung U. Role of Glial Cells in Axonal Regeneration. Exp Neurobiol 2013; 22 (2): 68–76. DOI: 10.5607/en.2013.22.2.68.
63. Robertson CL, Fidan E, Stanley RM et al. Progesterone for Neuroprotection in Pediatric Traumatic Brain Injury. Pediatr Crit Care Med 2015; 16 (3): 236–44. DOI: 10.1097/PCC.0000000000000323.
64. Skolnick BE, Maas AI, Narayan RK et al. A Clinical Trial of Progesterone for Severe Traumatic Brain Injury. N Engl J Med 2014; 371: 2467–76. DOI: 10.1056/NEJMoa1411090.
65. Shen L, Saykin AJ, Kim S et al. Comparison of manual and automated determination of hippocampal volumes in MCI and early AD. Brain Imaging Behav 2010; 4 (1): 86–95. DOI: 10.1007/s11682-010-9088-x.
66. Maguire J, Mody I. Steroid Hormone Fluctuations and GABAAR Plasticity. Psychoneuroendocrinology 2009; 34 (Suppl. 1): S84–S90. DOI: 10.1016/ j.psyneuen.2009.06.019.
67. Longone P, di Michele F, D’Agati E et al. Neurosteroids as Neuromodulators in the Treatment of Anxiety Disorders. Front Endocrinol (Lausanne) 2011; 2: 55. DOI: 10.3389/fendo.2011.00055.
68. Licheri V, Talani G, Gorule AA et al. Plasticity of GABAA Receptors during Pregnancy and Postpartum Period: From Gene to Function. Neural Plast 2015; 2015: 170435. DOI: 10.1155/2015/170435.
69. Uzunova V, Sampson L, Uzunov DP. Relevance of endogenous 3alpha-reduced neurosteroids to depression and antidepressant action. Psychopharmacology (Berl) 2006; 186 (3): 351–61. DOI: 10.1007/s00213-005-0201-6.
70. Carta MG, Bhat KM, Preti A. GABAergic neuroactive steroids: a new frontier in bipolar disorders? Behav Brain Funct 2012; 8: 61. DOI: 10.1186/1744-9081-8-61.
71. Liu W, Ge T, Leng Y et al. The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plasticity 2017. Art. ID 6871089, 11 phttps://DOI.org/10.1155/2017/6871089.
72. Velíšková J, DeSantis KA. Sex and Hormonal influences on Seizures and Epilepsy Horm Behav 2013; 63 (2): 267–77. DOI: 10.1016/j.yhbeh.2012.03.018.
73. Bramble MS, Roach L, Lipson A et al. Sex-Specific Effects of Testosterone on the Sexually Dimorphic Transcriptome and Epigenome of Embryonic Neural Stem/Progenitor Cells. Sci Reports 2016; 6. Art: 36916. DOI: 10.1038/srep36916.
74. Blaschko SD, Cunha GR, Baskin LS. Molecular Mechanisms of External Genitalia Development. Differentiation 2012; 84 (3): 261–8. DOI: 10.1016/j.diff.2012.06.003.
75. Bartke A, Klemcke H, Amador A. Effects of testosterone, pregnenolone, progesterone and cortisol on pituitary and testicular function in male golden hamsters with gonadal atrophy induced by short photoperiods. J Endocrinol 1981; 90 (1): 97–102.
76. Stuart Tobet SJ, Gabriel Knoll JG, Hartshorn C et al. Brain sex differences and hormone influences. A moving experience? J Neuroendocrinol 2009; 21 (4): 387–92. DOI: 10.1111/j.1365-2826.2009.01834.x.
77. Webster KM, Sun M, Crack P et al. Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflam 2017; 14: 10. DOI: 10.1186/s12974-016-0786-1.
78. Reddy DS. Role of hormones and neurosteroids in epileptogenesis. Front Cell Neurosci 2013; 7: 115. DOI: 10.3389/fncel.2013.00115.
79. Zeng Y, Zhang Y, Ma J, Xu J. Progesterone for Acute Traumatic Brain Injury: A Systematic Review of Randomized Controlled Trials. Published: October 16, 2015. http://dx.DOI.org/10.1371/journal.pone.0140624
80. De Nicola AF, Labombarda F, Deniselle MC et al. Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration. Front Neuroendocrinol 2009; 30: 173–87. DOI: 10.1016/j.yfrne.2009.03.001.
81. Cheng G, Kong R, Zhang L, Zhang J. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies Br J Pharmacol 2012; 167 (4): 699–719. DOI: 10.1111/j.1476-5381.2012.02025.x.
82. Singh M, Chang Su C, Selena NS. Non-genomic mechanisms of progesterone action in the brain Front Neurosci 2013; 7: 159. DOI: 10.3389/fnins.2013.00159.
83. Nin MS, Martinez LA, Pibiri F et al. Neurosteroids reduce social isolation-induced behavioral deficits: a proposed link with neurosteroid-mediated upregulation of BDNF expression. Front Endocrinol (Lausanne) 2011; 2: 73. DOI: 10.3389/fendo.2011.00073.
2. Tyborowska A, Volman I, Smeekens S et al. Testosterone during Puberty Shifts Emotional Control from Pulvinar to Anterior Prefrontal Cortex.
J Neurosci 2016; 36 (23): 6156–64. DOI: 10.1523/JNEUROSCI.3874-15.2016.
3. Bender RA, Zhou L, Vierk R et al. Sex-Dependent Regulation of Aromatase-Mediated Synaptic Plasticity in the Basolateral Amygdala. J Neurosci 2017; 37 (6): 1532–45. DOI: 10.1523/JNEUROSCI.1532-16.2016.
4. Herting MM, Sowell ER. Puberty and structural brain development in humans. Front Neuroendocrinol 2017; 44: 122–37. DOI: 10.1016/j.yfrne.2016.12.003.
5. Ma J, Huang S, Qin S et al. Progesterone for acute traumatic brain injury. Cochrane Database Syst Rev 2016; 12: CD008409. DOI: 10.1002/14651858.CD008409.pub4.
6. Csaba G. The Present and Future of Human Sexuality: Impact of Faulty Perinatal Hormonal Imprinting. Sex Med Rev 2017; 5 (2): 163–9. DOI: 10.1016/j.sxmr.2016.10.002.
7. Juraska JM, Sisk CL, DonCarlos LL. Sexual differentiation of the adolescent rodent brain: hormonal influences and developmental mechanisms. Horm Behav 2013; 64 (2): 203–10. DOI: 10.1016/j.yhbeh.2013.05.010.
8. Sakaki M, Mather M. How reward and emotional stimuli induce different reactions across the menstrual cycle. Soc Personal Psychol Compass 2012; 6 (1): 1–17. DOI: 10.1111/j.1751-9004.2011.00415.x.
9. Barber SJ, Opitz PC, Martins B et al. Thinking about a limited future enhances the positivity of younger and older adults’ recall: support for socioemotional selectivity theory. Memory Cognition 2016; 44 (6): 869–82. DOI: 10.3758/s13421-016-0612-0.
10. Nashiro, K, Sakaki, M, Braskie MN, Mather M. Resting-state networks associated with cognitive processing show more age-related decline than those associated with emotional processing. Neurobiol Aging 2017.
11. Duarte-Guterman P, Yagi S, Chow C, Galea LA. Hippocampal learning, memory, and neurogenesis: Effects of sex and estrogens across the lifespan in adults. Horm Behav 2015; 74: 37–52. DOI: 10.1016/j.yhbeh.2015.05.024.
12. Li M, Lu S, Wang G et al. Emotion, working memory, and cognitive control in patients with first-onset and previously untreated minor depressive disorders. J Int Med Res 2016; 44 (3): 529–41. DOI: 10.1177/0300060516639169.
13. Losecaat Vermeer AB, Riečanský I, Eisenegger C. Competition, testosterone, and adult neurobehavioral plasticity. Prog Brain Res 2016; 229: 213–38. DOI: 10.1016/bs.pbr.2016.05.004.
14. Opendak M, Briones BA, Gould E. Social behavior, hormones and adult neurogenesis. Front Neuroendocrinol 2016; 41: 71–86. DOI: 10.1016/j.yfrne.2016.02.002.
15. Chen Z, Xi G, Mao Y et al. Effects of progesterone and testosterone on ICH-induced brain injury in rats. Acta Neurochir (Suppl.) 2011; 111: 289–93. DOI: 10.1007/978-3-7091-0693-8_48.
16. De Sousa MB, Galvão AC, Sales CJ et al. Endocrine and Cognitive Adaptations to Cope with Stress in Immature Common Marmosets (Callithrix jacchus): Sex and Age Matter. Front Psychiatry 2015; 6: 160. DOI: 10.3389/fpsyt.2015.00160.
17. Akdis D, Saguner AM, Shah K et al. Sex hormones affect outcome in arrhythmogenic right ventricular cardiomyopathy/dysplasia: from a stem cell derived cardiomyocyte-based model to clinical biomarkers of disease outcome. Eur Heart J 2017. DOI: 10.1093/eurheartj/ehx011.
18. Clegg D, Hevener AL, Moreau KL et al. Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors. Endocrinology 2017. DOI: 10.1210/en.2016-1677.
19. Pompili A, Arnone B, D'Amico M et al. Evidence of estrogen modulation on memory processes for emotional content in healthy young women. Psychoneuroendocrinology 2016; 65: 94–101. DOI: 10.1016/j.psyneuen.2015.12.013.
20. Halaris A. Inflammation-Associated Co-morbidity Between Depression and Cardiovascular Disease. Curr Top Behav Neurosci 2017; 31: 45–70. DOI: 10.1007/7854_2016_28.
21. Handa RJ, Burgess LH, Kerr JE, O'Keefe JA. Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Horm Behav 1994; 28 (4): 464–76.
22. Goel N, Workman JL, Lee TT et al. Sex differences in the HPA axis. Compr Physiol 2014; 4 (3): 1121–55. DOI: 10.1002/cphy.c130054.
23. Wang F, Pereira A. Neuromodulation, Emotional Feelings and Affective Disorders. Mens Sana Monogr 2016; 14 (1): 5–29. DOI: 10.4103/0973-1229.154533.
24. Pinilla L, Aguilar E, Dieguez C et al. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev 2012; 92 (3): 1235–316. DOI: 10.1152/physrev.00037.2010.
25. Herde MK, Iremonger KJ, Constantin S, Herbison AE. GnRH neurons elaborate a long-range projection with shared axonal and dendritic functions. J Neurosci 2013; 33 (31): 12689–97. DOI: 10.1523/JNEUROSCI.0579-13.2013.
26. Goodman RL, Coolen LM, Lehman MN. A role for neurokinin B in pulsatile GnRH secretion in the ewe. Neuroendocrinology 2014; 9 (1): 18–32. DOI: 10.1159/000355285.
27. Roa J, Tena-Sempere M. Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators. Mol Cell Endocrinol 2014; 397 (1–2): 4–14. DOI: 10.1016/j.mce.2014.09.027.
28. Beijers R, Buitelaar JK, de Weerth C. Mechanisms underlying the effects of prenatal psychosocial stress on child outcomes: beyond the HPA axis. Eur Child Adolesc Psychiatry 2014; 23 (10): 943–56. DOI: 10.1007/s00787-014-0566-3.
29. Wood CE, Walker CD. Fetal and Neonatal HPA Axis. Compr Physiol 2015; 6 (1): 33–62. DOI: 10.1002/cphy.c150005.
30. Sharpley CF, Bitsika V, Andronicos NM, Agnew LL. Further evidence of HPA-axis dysregulation and its correlation with depression in Autism Spectrum Disorders: Data from girls. Physiol Behav 2016; 167: 110–7. DOI: 10.1016/j.physbeh.2016.09.003.
31. Keller J, Gomez R, Williams G et al. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry 2017; 22 (4): 527–36. DOI: 10.1038/mp.2016.120.
32. Dalvie S, Fabbri C, Ramesar R et al. Glutamatergic and HPA-axis pathway genes in bipolar disorder comorbid with alcohol- and substance use disorders. Metab Brain Dis 2016; 31 (1): 183–9. DOI: 10.1007/s11011-015-9762-1.
33. Uzunova G, Pallanti S, Hollander E. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. World J Biol Psychiatry 2016; 17 (3): 174–86. DOI: 10.3109/15622975.2015.1085597.
34. Belda X, Fuentes S, Daviu N et al. Stress-induced sensitization: the hypothalamic-pituitary-adrenal axis and beyond. Stress 2015; 18 (3): 269–79. DOI: 10.3109/10253890.2015.1067678.
35. Häggström M, Richfield D. Diagram of the pathways of human steroidogenesis. Wiki J Med 2014; 1 (1). DOI:10.15347/wjm/2014.005.
36. Schumacher M, Mattern C, Ghoumari A et al. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 2014; 113: 6–39. DOI: 10.1016/j.pneurobio.2013.09.004.
37. Gunn BG, Brown AR, Lambert JJ, Belelli D. Neurosteroids and GABAA receptor interactions: a focus on stress. Front Neurosci 2011; 131 (5). DOI: 10.3389/fnins.2011.00131.
38. Patte-Mensah C, Kappes V, Freund-Mercier MJ et al. Cellular distribution and bioactivity of the key steroidogenic enzyme, cytochrome P450side chain cleavage, in sensory neural pathways. J Neurochem 2003; 86 (5): 1233–46. DOI: 10.1046/j.1471-4159.2003.01935.x.
39. Rossetti MF, Cambiasso MJ, Holschbach MA, Cabrera R. Oestrogens and Progestagens: Synthesis and Action in the Brain. J Neuroendocrinol 2016; 28 (7). DOI: 10.1111/jne.12402.
40. Carta MG, Bhat KM, Preti A. GABAergic neuroactive steroids: a new frontier in bipolar disorders? Behav Brain Funct 2012; 8: 61. DOI: 10.1186/1744-9081-8-61.
41. Reddy DS, Estes WA. Clinical Potential of Neurosteroids for CNS Disorders. Trends Pharmacol Sci 2016; 37 (7): 543–61. DOI: 10.1016/j.tips.2016.04.003.
42. Tang FR, Loke WK, Ling EA. Comparison of status epilepticus models induced by pilocarpine and nerve agents – a systematic review of the underlying aetiology and adopted therapeutic approaches. Curr Med Chem 2011; 18 (6): 886–99. DOI: 10.2174/092986711794927720.
43. Wang Y, Oguntayo S, Wei Y et al. Neuroprotective effects of imidazenil against chemical warfare nerve agent soman toxicity in guinea pigs. Neurotoxicology 2012; 33 (2): 169–77. DOI: 10.1016/j.neuro.2011.12.018.
44. Wright DW, Yeatts SD. Very early administration of progesterone for acute traumatic brain injury. N Engl J Med 2014; 371 (26): 2457–66. DOI: 10.1056/NEJMoa1404304.
45. Crowley T, Cryan JF, Downer EJ, O'Leary OF. Inhibiting neuroinflammation: The role and therapeutic potential of GABA in neuro-immune interactions. Brain Behav Immun 2016; 54: 260–77. DOI: 10.1016/j.bbi.2016.02.001.
46. Sieghart W. Allosteric modulation of GABAA receptors via multiple drug-binding sites. Adv Pharmacol 2015; 72: 53–96. DOI: 10.1016/bs.apha.2014.10.002.
47. Labombarda F, Garcia-Ovejero D. Give progesterone a chance. Neural Regen Res 2014; 9 (15): 1422-4. DOI: 10.4103/1673-5374.139456.
48. Selye H. Stress and disease. Science 1955; 122: 625–31. DOI: 10.1126/science.122.3171.625.
49. Harrison NL, Simmonds MA. Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res 1984; 323 (2): 287–92.
50. Olsen RW, Sieghart W. GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 2009; 56 (1): 141–8. DOI: 10.1016/j.neuropharm.2008.07.045.
51. Longone P, di Michele F, D'Agati E et al. Neurosteroids as neuromodulators in the treatment of anxiety disorders. Front Endocrinol (Lausanne) 2011; 2: 55. DOI: 10.3389/fendo.2011.00055.
52. Wirth MM. Beyond the HPA axis: progesterone-derived neuroactive steroids in human stress and emotion Front. Endocrinol 2011. https://DOI.org/10.3389/fendo.2011.00019
53. Kinch MS. An analysis of FDA-approved drugs for pain and anesthesia. Drug Discov Today 2015; 20: 3–6. http://dx.DOI.org/10.1016/j.drudis.2014.09.002
54. Tvrdeić A, Poljak L. Neurosteroids, GABAA receptors and neurosteroid based drugs: are we witnessing the dawn of the new psychiatric drugs? Endocrine Oncol Metabolism 2016; 2 (1): 60–71. DOI: 10.21040/eom/2016.2.7.
55. Skolnick P. Anxioselective anxiolytics: On a quest of holly grail. Trends Pharmacol Sci 2012; 33: 611–20. http://dx.DOI.org/10.1016/
j.tips.2012.08.003
56. Choi YM, Kim KH. Etifoxine for pain patients with anxiety. Korean J Pain 2015; 28: 4–10. http://dx.DOI.org/10.3344/kjp.2015.28.1.4
57. Wang D, Tian Z, Guo Y et al. Anxiolytic-like effects of translocator protein (TSPO) ligand ZBD-2 in an animal model of chronic pain. Mol Pain 2015; 11: 1–10. http://dx.DOI.org/10.1186/s12990-015-0013-6
58. Barron AM, Garcia-Segura LM, Caruso D et al. Ligand for translocator protein reverses pathology in a mouse model of Alzheimer’s disease. J Neurosci 2013; 33: 8891–7. http://dx.DOI.org/10.1523/JNEUROSCI.1350-13.2013
59. Scholz R, Caramoy A, Bhuckory MB et al. Targeting translocator protein (18 kDa) (TSPO) dampens pro- inflammatory microglia reactivity in the retina and protects from degeneration. J Neuroinflammation 2015; 12: 201. http://dx.DOI.org/10.1186/s12974-015-0422-5
60. Reddy DS. Neurosteroids: Endogenous Role in the Human Brian and Therapeutic Potentials. Prog Brain Res 2010; 186: 113–37. DOI: 10.1016/B978-0-444-53630-3.00008-7.
61. Svob Strac D, Vlainic J, Samardzic J et al. Effects of acute and chronic administration of neurosteroid dehydroepiandrosterone sulfate on neuronal excitability in mice. Drug Des Devel Ther 2016; 10: 1201–15. DOI: 10.2147/DDDT.S102102. eCollection 2016.
62. Toy D, Namgung U. Role of Glial Cells in Axonal Regeneration. Exp Neurobiol 2013; 22 (2): 68–76. DOI: 10.5607/en.2013.22.2.68.
63. Robertson CL, Fidan E, Stanley RM et al. Progesterone for Neuroprotection in Pediatric Traumatic Brain Injury. Pediatr Crit Care Med 2015; 16 (3): 236–44. DOI: 10.1097/PCC.0000000000000323.
64. Skolnick BE, Maas AI, Narayan RK et al. A Clinical Trial of Progesterone for Severe Traumatic Brain Injury. N Engl J Med 2014; 371: 2467–76. DOI: 10.1056/NEJMoa1411090.
65. Shen L, Saykin AJ, Kim S et al. Comparison of manual and automated determination of hippocampal volumes in MCI and early AD. Brain Imaging Behav 2010; 4 (1): 86–95. DOI: 10.1007/s11682-010-9088-x.
66. Maguire J, Mody I. Steroid Hormone Fluctuations and GABAAR Plasticity. Psychoneuroendocrinology 2009; 34 (Suppl. 1): S84–S90. DOI: 10.1016/ j.psyneuen.2009.06.019.
67. Longone P, di Michele F, D’Agati E et al. Neurosteroids as Neuromodulators in the Treatment of Anxiety Disorders. Front Endocrinol (Lausanne) 2011; 2: 55. DOI: 10.3389/fendo.2011.00055.
68. Licheri V, Talani G, Gorule AA et al. Plasticity of GABAA Receptors during Pregnancy and Postpartum Period: From Gene to Function. Neural Plast 2015; 2015: 170435. DOI: 10.1155/2015/170435.
69. Uzunova V, Sampson L, Uzunov DP. Relevance of endogenous 3alpha-reduced neurosteroids to depression and antidepressant action. Psychopharmacology (Berl) 2006; 186 (3): 351–61. DOI: 10.1007/s00213-005-0201-6.
70. Carta MG, Bhat KM, Preti A. GABAergic neuroactive steroids: a new frontier in bipolar disorders? Behav Brain Funct 2012; 8: 61. DOI: 10.1186/1744-9081-8-61.
71. Liu W, Ge T, Leng Y et al. The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plasticity 2017. Art. ID 6871089, 11 phttps://DOI.org/10.1155/2017/6871089.
72. Velíšková J, DeSantis KA. Sex and Hormonal influences on Seizures and Epilepsy Horm Behav 2013; 63 (2): 267–77. DOI: 10.1016/j.yhbeh.2012.03.018.
73. Bramble MS, Roach L, Lipson A et al. Sex-Specific Effects of Testosterone on the Sexually Dimorphic Transcriptome and Epigenome of Embryonic Neural Stem/Progenitor Cells. Sci Reports 2016; 6. Art: 36916. DOI: 10.1038/srep36916.
74. Blaschko SD, Cunha GR, Baskin LS. Molecular Mechanisms of External Genitalia Development. Differentiation 2012; 84 (3): 261–8. DOI: 10.1016/j.diff.2012.06.003.
75. Bartke A, Klemcke H, Amador A. Effects of testosterone, pregnenolone, progesterone and cortisol on pituitary and testicular function in male golden hamsters with gonadal atrophy induced by short photoperiods. J Endocrinol 1981; 90 (1): 97–102.
76. Stuart Tobet SJ, Gabriel Knoll JG, Hartshorn C et al. Brain sex differences and hormone influences. A moving experience? J Neuroendocrinol 2009; 21 (4): 387–92. DOI: 10.1111/j.1365-2826.2009.01834.x.
77. Webster KM, Sun M, Crack P et al. Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflam 2017; 14: 10. DOI: 10.1186/s12974-016-0786-1.
78. Reddy DS. Role of hormones and neurosteroids in epileptogenesis. Front Cell Neurosci 2013; 7: 115. DOI: 10.3389/fncel.2013.00115.
79. Zeng Y, Zhang Y, Ma J, Xu J. Progesterone for Acute Traumatic Brain Injury: A Systematic Review of Randomized Controlled Trials. Published: October 16, 2015. http://dx.DOI.org/10.1371/journal.pone.0140624
80. De Nicola AF, Labombarda F, Deniselle MC et al. Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration. Front Neuroendocrinol 2009; 30: 173–87. DOI: 10.1016/j.yfrne.2009.03.001.
81. Cheng G, Kong R, Zhang L, Zhang J. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies Br J Pharmacol 2012; 167 (4): 699–719. DOI: 10.1111/j.1476-5381.2012.02025.x.
82. Singh M, Chang Su C, Selena NS. Non-genomic mechanisms of progesterone action in the brain Front Neurosci 2013; 7: 159. DOI: 10.3389/fnins.2013.00159.
83. Nin MS, Martinez LA, Pibiri F et al. Neurosteroids reduce social isolation-induced behavioral deficits: a proposed link with neurosteroid-mediated upregulation of BDNF expression. Front Endocrinol (Lausanne) 2011; 2: 73. DOI: 10.3389/fendo.2011.00073.
________________________________________________
2. Tyborowska A, Volman I, Smeekens S et al. Testosterone during Puberty Shifts Emotional Control from Pulvinar to Anterior Prefrontal Cortex. J Neurosci 2016; 36 (23): 6156–64. DOI: 10.1523/JNEUROSCI.3874-15.2016.
3. Bender RA, Zhou L, Vierk R et al. Sex-Dependent Regulation of Aromatase-Mediated Synaptic Plasticity in the Basolateral Amygdala. J Neurosci 2017; 37 (6): 1532–45. DOI: 10.1523/JNEUROSCI.1532-16.2016.
4. Herting MM, Sowell ER. Puberty and structural brain development in humans. Front Neuroendocrinol 2017; 44: 122–37. DOI: 10.1016/j.yfrne.2016.12.003.
5. Ma J, Huang S, Qin S et al. Progesterone for acute traumatic brain injury. Cochrane Database Syst Rev 2016; 12: CD008409. DOI: 10.1002/14651858.CD008409.pub4.
6. Csaba G. The Present and Future of Human Sexuality: Impact of Faulty Perinatal Hormonal Imprinting. Sex Med Rev 2017; 5 (2): 163–9. DOI: 10.1016/j.sxmr.2016.10.002.
7. Juraska JM, Sisk CL, DonCarlos LL. Sexual differentiation of the adolescent rodent brain: hormonal influences and developmental mechanisms. Horm Behav 2013; 64 (2): 203–10. DOI: 10.1016/j.yhbeh.2013.05.010.
8. Sakaki M, Mather M. How reward and emotional stimuli induce different reactions across the menstrual cycle. Soc Personal Psychol Compass 2012; 6 (1): 1–17. DOI: 10.1111/j.1751-9004.2011.00415.x.
9. Barber SJ, Opitz PC, Martins B et al. Thinking about a limited future enhances the positivity of younger and older adults’ recall: support for socioemotional selectivity theory. Memory Cognition 2016; 44 (6): 869–82. DOI: 10.3758/s13421-016-0612-0.
10. Nashiro, K, Sakaki, M, Braskie MN, Mather M. Resting-state networks associated with cognitive processing show more age-related decline than those associated with emotional processing. Neurobiol Aging 2017.
11. Duarte-Guterman P, Yagi S, Chow C, Galea LA. Hippocampal learning, memory, and neurogenesis: Effects of sex and estrogens across the lifespan in adults. Horm Behav 2015; 74: 37–52. DOI: 10.1016/j.yhbeh.2015.05.024.
12. Li M, Lu S, Wang G et al. Emotion, working memory, and cognitive control in patients with first-onset and previously untreated minor depressive disorders. J Int Med Res 2016; 44 (3): 529–41. DOI: 10.1177/0300060516639169.
13. Losecaat Vermeer AB, Riečanský I, Eisenegger C. Competition, testosterone, and adult neurobehavioral plasticity. Prog Brain Res 2016; 229: 213–38. DOI: 10.1016/bs.pbr.2016.05.004.
14. Opendak M, Briones BA, Gould E. Social behavior, hormones and adult neurogenesis. Front Neuroendocrinol 2016; 41: 71–86. DOI: 10.1016/j.yfrne.2016.02.002.
15. Chen Z, Xi G, Mao Y et al. Effects of progesterone and testosterone on ICH-induced brain injury in rats. Acta Neurochir (Suppl.) 2011; 111: 289–93. DOI: 10.1007/978-3-7091-0693-8_48.
16. De Sousa MB, Galvão AC, Sales CJ et al. Endocrine and Cognitive Adaptations to Cope with Stress in Immature Common Marmosets (Callithrix jacchus): Sex and Age Matter. Front Psychiatry 2015; 6: 160. DOI: 10.3389/fpsyt.2015.00160.
17. Akdis D, Saguner AM, Shah K et al. Sex hormones affect outcome in arrhythmogenic right ventricular cardiomyopathy/dysplasia: from a stem cell derived cardiomyocyte-based model to clinical biomarkers of disease outcome. Eur Heart J 2017. DOI: 10.1093/eurheartj/ehx011.
18. Clegg D, Hevener AL, Moreau KL et al. Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors. Endocrinology 2017. DOI: 10.1210/en.2016-1677.
19. Pompili A, Arnone B, D'Amico M et al. Evidence of estrogen modulation on memory processes for emotional content in healthy young women. Psychoneuroendocrinology 2016; 65: 94–101. DOI: 10.1016/j.psyneuen.2015.12.013.
20. Halaris A. Inflammation-Associated Co-morbidity Between Depression and Cardiovascular Disease. Curr Top Behav Neurosci 2017; 31: 45–70. DOI: 10.1007/7854_2016_28.
21. Handa RJ, Burgess LH, Kerr JE, O'Keefe JA. Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Horm Behav 1994; 28 (4): 464–76.
22. Goel N, Workman JL, Lee TT et al. Sex differences in the HPA axis. Compr Physiol 2014; 4 (3): 1121–55. DOI: 10.1002/cphy.c130054.
23. Wang F, Pereira A. Neuromodulation, Emotional Feelings and Affective Disorders. Mens Sana Monogr 2016; 14 (1): 5–29. DOI: 10.4103/0973-1229.154533.
24. Pinilla L, Aguilar E, Dieguez C et al. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev 2012; 92 (3): 1235–316. DOI: 10.1152/physrev.00037.2010.
25. Herde MK, Iremonger KJ, Constantin S, Herbison AE. GnRH neurons elaborate a long-range projection with shared axonal and dendritic functions. J Neurosci 2013; 33 (31): 12689–97. DOI: 10.1523/JNEUROSCI.0579-13.2013.
26. Goodman RL, Coolen LM, Lehman MN. A role for neurokinin B in pulsatile GnRH secretion in the ewe. Neuroendocrinology 2014; 9 (1): 18–32. DOI: 10.1159/000355285.
27. Roa J, Tena-Sempere M. Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators. Mol Cell Endocrinol 2014; 397 (1–2): 4–14. DOI: 10.1016/j.mce.2014.09.027.
28. Beijers R, Buitelaar JK, de Weerth C. Mechanisms underlying the effects of prenatal psychosocial stress on child outcomes: beyond the HPA axis. Eur Child Adolesc Psychiatry 2014; 23 (10): 943–56. DOI: 10.1007/s00787-014-0566-3.
29. Wood CE, Walker CD. Fetal and Neonatal HPA Axis. Compr Physiol 2015; 6 (1): 33–62. DOI: 10.1002/cphy.c150005.
30. Sharpley CF, Bitsika V, Andronicos NM, Agnew LL. Further evidence of HPA-axis dysregulation and its correlation with depression in Autism Spectrum Disorders: Data from girls. Physiol Behav 2016; 167: 110–7. DOI: 10.1016/j.physbeh.2016.09.003.
31. Keller J, Gomez R, Williams G et al. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry 2017; 22 (4): 527–36. DOI: 10.1038/mp.2016.120.
32. Dalvie S, Fabbri C, Ramesar R et al. Glutamatergic and HPA-axis pathway genes in bipolar disorder comorbid with alcohol- and substance use disorders. Metab Brain Dis 2016; 31 (1): 183–9. DOI: 10.1007/s11011-015-9762-1.
33. Uzunova G, Pallanti S, Hollander E. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. World J Biol Psychiatry 2016; 17 (3): 174–86. DOI: 10.3109/15622975.2015.1085597.
34. Belda X, Fuentes S, Daviu N et al. Stress-induced sensitization: the hypothalamic-pituitary-adrenal axis and beyond. Stress 2015; 18 (3): 269–79. DOI: 10.3109/10253890.2015.1067678.
35. Häggström M, Richfield D. Diagram of the pathways of human steroidogenesis. Wiki J Med 2014; 1 (1). DOI:10.15347/wjm/2014.005.
36. Schumacher M, Mattern C, Ghoumari A et al. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 2014; 113: 6–39. DOI: 10.1016/j.pneurobio.2013.09.004.
37. Gunn BG, Brown AR, Lambert JJ, Belelli D. Neurosteroids and GABAA receptor interactions: a focus on stress. Front Neurosci 2011; 131 (5). DOI: 10.3389/fnins.2011.00131.
38. Patte-Mensah C, Kappes V, Freund-Mercier MJ et al. Cellular distribution and bioactivity of the key steroidogenic enzyme, cytochrome P450side chain cleavage, in sensory neural pathways. J Neurochem 2003; 86 (5): 1233–46. DOI: 10.1046/j.1471-4159.2003.01935.x.
39. Rossetti MF, Cambiasso MJ, Holschbach MA, Cabrera R. Oestrogens and Progestagens: Synthesis and Action in the Brain. J Neuroendocrinol 2016; 28 (7). DOI: 10.1111/jne.12402.
40. Carta MG, Bhat KM, Preti A. GABAergic neuroactive steroids: a new frontier in bipolar disorders? Behav Brain Funct 2012; 8: 61. DOI: 10.1186/1744-9081-8-61.
41. Reddy DS, Estes WA. Clinical Potential of Neurosteroids for CNS Disorders. Trends Pharmacol Sci 2016; 37 (7): 543–61. DOI: 10.1016/j.tips.2016.04.003.
42. Tang FR, Loke WK, Ling EA. Comparison of status epilepticus models induced by pilocarpine and nerve agents – a systematic review of the underlying aetiology and adopted therapeutic approaches. Curr Med Chem 2011; 18 (6): 886–99. DOI: 10.2174/092986711794927720.
43. Wang Y, Oguntayo S, Wei Y et al. Neuroprotective effects of imidazenil against chemical warfare nerve agent soman toxicity in guinea pigs. Neurotoxicology 2012; 33 (2): 169–77. DOI: 10.1016/j.neuro.2011.12.018.
44. Wright DW, Yeatts SD. Very early administration of progesterone for acute traumatic brain injury. N Engl J Med 2014; 371 (26): 2457–66. DOI: 10.1056/NEJMoa1404304.
45. Crowley T, Cryan JF, Downer EJ, O'Leary OF. Inhibiting neuroinflammation: The role and therapeutic potential of GABA in neuro-immune interactions. Brain Behav Immun 2016; 54: 260–77. DOI: 10.1016/j.bbi.2016.02.001.
46. Sieghart W. Allosteric modulation of GABAA receptors via multiple drug-binding sites. Adv Pharmacol 2015; 72: 53–96. DOI: 10.1016/bs.apha.2014.10.002.
47. Labombarda F, Garcia-Ovejero D. Give progesterone a chance. Neural Regen Res 2014; 9 (15): 1422-4. DOI: 10.4103/1673-5374.139456.
48. Selye H. Stress and disease. Science 1955; 122: 625–31. DOI: 10.1126/science.122.3171.625.
49. Harrison NL, Simmonds MA. Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res 1984; 323 (2): 287–92.
50. Olsen RW, Sieghart W. GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 2009; 56 (1): 141–8. DOI: 10.1016/j.neuropharm.2008.07.045.
51. Longone P, di Michele F, D'Agati E et al. Neurosteroids as neuromodulators in the treatment of anxiety disorders. Front Endocrinol (Lausanne) 2011; 2: 55. DOI: 10.3389/fendo.2011.00055.
52. Wirth MM. Beyond the HPA axis: progesterone-derived neuroactive steroids in human stress and emotion Front. Endocrinol 2011. https://DOI.org/10.3389/fendo.2011.00019
53. Kinch MS. An analysis of FDA-approved drugs for pain and anesthesia. Drug Discov Today 2015; 20: 3–6. http://dx.DOI.org/10.1016/j.drudis.2014.09.002
54. Tvrdeić A, Poljak L. Neurosteroids, GABAA receptors and neurosteroid based drugs: are we witnessing the dawn of the new psychiatric drugs? Endocrine Oncol Metabolism 2016; 2 (1): 60–71. DOI: 10.21040/eom/2016.2.7.
55. Skolnick P. Anxioselective anxiolytics: On a quest of holly grail. Trends Pharmacol Sci 2012; 33: 611–20. http://dx.DOI.org/10.1016/
j.tips.2012.08.003
56. Choi YM, Kim KH. Etifoxine for pain patients with anxiety. Korean J Pain 2015; 28: 4–10. http://dx.DOI.org/10.3344/kjp.2015.28.1.4
57. Wang D, Tian Z, Guo Y et al. Anxiolytic-like effects of translocator protein (TSPO) ligand ZBD-2 in an animal model of chronic pain. Mol Pain 2015; 11: 1–10. http://dx.DOI.org/10.1186/s12990-015-0013-6
58. Barron AM, Garcia-Segura LM, Caruso D et al. Ligand for translocator protein reverses pathology in a mouse model of Alzheimer’s disease. J Neurosci 2013; 33: 8891–7. http://dx.DOI.org/10.1523/JNEUROSCI.1350-13.2013
59. Scholz R, Caramoy A, Bhuckory MB et al. Targeting translocator protein (18 kDa) (TSPO) dampens pro- inflammatory microglia reactivity in the retina and protects from degeneration. J Neuroinflammation 2015; 12: 201. http://dx.DOI.org/10.1186/s12974-015-0422-5
60. Reddy DS. Neurosteroids: Endogenous Role in the Human Brian and Therapeutic Potentials. Prog Brain Res 2010; 186: 113–37. DOI: 10.1016/B978-0-444-53630-3.00008-7.
61. Svob Strac D, Vlainic J, Samardzic J et al. Effects of acute and chronic administration of neurosteroid dehydroepiandrosterone sulfate on neuronal excitability in mice. Drug Des Devel Ther 2016; 10: 1201–15. DOI: 10.2147/DDDT.S102102. eCollection 2016.
62. Toy D, Namgung U. Role of Glial Cells in Axonal Regeneration. Exp Neurobiol 2013; 22 (2): 68–76. DOI: 10.5607/en.2013.22.2.68.
63. Robertson CL, Fidan E, Stanley RM et al. Progesterone for Neuroprotection in Pediatric Traumatic Brain Injury. Pediatr Crit Care Med 2015; 16 (3): 236–44. DOI: 10.1097/PCC.0000000000000323.
64. Skolnick BE, Maas AI, Narayan RK et al. A Clinical Trial of Progesterone for Severe Traumatic Brain Injury. N Engl J Med 2014; 371: 2467–76. DOI: 10.1056/NEJMoa1411090.
65. Shen L, Saykin AJ, Kim S et al. Comparison of manual and automated determination of hippocampal volumes in MCI and early AD. Brain Imaging Behav 2010; 4 (1): 86–95. DOI: 10.1007/s11682-010-9088-x.
66. Maguire J, Mody I. Steroid Hormone Fluctuations and GABAAR Plasticity. Psychoneuroendocrinology 2009; 34 (Suppl. 1): S84–S90. DOI: 10.1016/ j.psyneuen.2009.06.019.
67. Longone P, di Michele F, D’Agati E et al. Neurosteroids as Neuromodulators in the Treatment of Anxiety Disorders. Front Endocrinol (Lausanne) 2011; 2: 55. DOI: 10.3389/fendo.2011.00055.
68. Licheri V, Talani G, Gorule AA et al. Plasticity of GABAA Receptors during Pregnancy and Postpartum Period: From Gene to Function. Neural Plast 2015; 2015: 170435. DOI: 10.1155/2015/170435.
69. Uzunova V, Sampson L, Uzunov DP. Relevance of endogenous 3alpha-reduced neurosteroids to depression and antidepressant action. Psychopharmacology (Berl) 2006; 186 (3): 351–61. DOI: 10.1007/s00213-005-0201-6.
70. Carta MG, Bhat KM, Preti A. GABAergic neuroactive steroids: a new frontier in bipolar disorders? Behav Brain Funct 2012; 8: 61. DOI: 10.1186/1744-9081-8-61.
71. Liu W, Ge T, Leng Y et al. The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plasticity 2017. Art. ID 6871089, 11 phttps://DOI.org/10.1155/2017/6871089.
72. Velíšková J, DeSantis KA. Sex and Hormonal influences on Seizures and Epilepsy Horm Behav 2013; 63 (2): 267–77. DOI: 10.1016/j.yhbeh.2012.03.018.
73. Bramble MS, Roach L, Lipson A et al. Sex-Specific Effects of Testosterone on the Sexually Dimorphic Transcriptome and Epigenome of Embryonic Neural Stem/Progenitor Cells. Sci Reports 2016; 6. Art: 36916. DOI: 10.1038/srep36916.
74. Blaschko SD, Cunha GR, Baskin LS. Molecular Mechanisms of External Genitalia Development. Differentiation 2012; 84 (3): 261–8. DOI: 10.1016/j.diff.2012.06.003.
75. Bartke A, Klemcke H, Amador A. Effects of testosterone, pregnenolone, progesterone and cortisol on pituitary and testicular function in male golden hamsters with gonadal atrophy induced by short photoperiods. J Endocrinol 1981; 90 (1): 97–102.
76. Stuart Tobet SJ, Gabriel Knoll JG, Hartshorn C et al. Brain sex differences and hormone influences. A moving experience? J Neuroendocrinol 2009; 21 (4): 387–92. DOI: 10.1111/j.1365-2826.2009.01834.x.
77. Webster KM, Sun M, Crack P et al. Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflam 2017; 14: 10. DOI: 10.1186/s12974-016-0786-1.
78. Reddy DS. Role of hormones and neurosteroids in epileptogenesis. Front Cell Neurosci 2013; 7: 115. DOI: 10.3389/fncel.2013.00115.
79. Zeng Y, Zhang Y, Ma J, Xu J. Progesterone for Acute Traumatic Brain Injury: A Systematic Review of Randomized Controlled Trials. Published: October 16, 2015. http://dx.DOI.org/10.1371/journal.pone.0140624
80. De Nicola AF, Labombarda F, Deniselle MC et al. Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration. Front Neuroendocrinol 2009; 30: 173–87. DOI: 10.1016/j.yfrne.2009.03.001.
81. Cheng G, Kong R, Zhang L, Zhang J. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies Br J Pharmacol 2012; 167 (4): 699–719. DOI: 10.1111/j.1476-5381.2012.02025.x.
82. Singh M, Chang Su C, Selena NS. Non-genomic mechanisms of progesterone action in the brain Front Neurosci 2013; 7: 159. DOI: 10.3389/fnins.2013.00159.
83. Nin MS, Martinez LA, Pibiri F et al. Neurosteroids reduce social isolation-induced behavioral deficits: a proposed link with neurosteroid-mediated upregulation of BDNF expression. Front Endocrinol (Lausanne) 2011; 2: 73. DOI: 10.3389/fendo.2011.00073.
Авторы
Н.Н.Стеняева*1, Д.Ф.Хритинин2, В.Ю.Григорьев2, А.А.Куземин1
1. ФГБУ «Научный центр акушерства, гинекологии и перинатологии им. акад. В.И.Кулакова» Минздрава России. 117997, Россия, Москва, ул. Академика Опарина, д. 4;
2. ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М.Сеченова» Минздрава России. 119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2
*nataliasten@mail.ru
1. Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation. 117997, Russian Federation, Moscow, ul. Akademika Oparina, d. 4;
2. I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation. 119991, Russian Federation, Moscow, ul. Trubetskaia, d. 8, str. 2
*nataliasten@mail.ru
1. ФГБУ «Научный центр акушерства, гинекологии и перинатологии им. акад. В.И.Кулакова» Минздрава России. 117997, Россия, Москва, ул. Академика Опарина, д. 4;
2. ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М.Сеченова» Минздрава России. 119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2
*nataliasten@mail.ru
________________________________________________
1. Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation. 117997, Russian Federation, Moscow, ul. Akademika Oparina, d. 4;
2. I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation. 119991, Russian Federation, Moscow, ul. Trubetskaia, d. 8, str. 2
*nataliasten@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
