Калий, магний и пиридоксин в контексте биологических эффектов эстрогенов
Калий, магний и пиридоксин в контексте биологических эффектов эстрогенов
Громова О.А., Торшин И.Ю., Томилова И.К. и др. Калий, магний и пиридоксин в контексте биологических эффектов эстрогенов. Гинекология. 2017; 19 (3): 30–39. DOI: 10.26442/2079-5696_19.3.30-39
________________________________________________
Gromova O.A., Torshin I.Yu., Tomilova I.K. et al. Potassium, magnesium and pyridoxine in the context of the biological effects of estrogens. Gynecology. 2017;
19 (3): 30–39. DOI: 10.26442/2079-5696_19.3.30-39
Калий, магний и пиридоксин в контексте биологических эффектов эстрогенов
Громова О.А., Торшин И.Ю., Томилова И.К. и др. Калий, магний и пиридоксин в контексте биологических эффектов эстрогенов. Гинекология. 2017; 19 (3): 30–39. DOI: 10.26442/2079-5696_19.3.30-39
________________________________________________
Gromova O.A., Torshin I.Yu., Tomilova I.K. et al. Potassium, magnesium and pyridoxine in the context of the biological effects of estrogens. Gynecology. 2017;
19 (3): 30–39. DOI: 10.26442/2079-5696_19.3.30-39
Ионы калия и магния принципиально необходимы для осуществления биологических эффектов эстрогенов. Ионы магния способствуют транслокации рецепторов эстрогена в ядро клетки и регулируют калиевые каналы, которые участвуют в регуляции артериального давления посредством эстрогенов. В центральной нервной системе ионы калия и магния осуществляют взаимосвязь между нейростероидными эффектами эстрогенов и различными нейротрансмиттерами (g-аминомасляная кислота, адреналин, опиоиды, ацетилхолин). Витамин В6 (пиридоксин) повышает биоусвояемость магния и является фармакодинамическим синергистом магния и калия. Поэтому заместительную гормональную терапию эстрогенами (которая отчасти способствует формированию дефицитов магния и пиридоксина) следует сопровождать адекватной комбинацией калия, магния и пиридоксина. Ключевые слова: заместительная гормональная терапия, эстрогены, калия аспарагинат, магния аспарагинат, пиридоксин, Плюс Витамин В6 «Панангин».
________________________________________________
Potassium and magnesium ions are essential for realizing the biological effects of estrogens. Magnesium ions promote the translocation of the estrogen receptors into the nucleus of the cell and regulate the potassium channels that are involved in the regulation of arterial pressure by means of estrogens. In the central nervous system, potassium and magnesium ions interact with the neurosteroids of estrogens and various neurotransmitters (g-aminobutyric acid, epinephrine, opioids, acetylcholine).
Vitamin B6 (pyridoxine) increases the bioavailability of magnesium and is a pharmacodynamic synergistic of magnesium and potassium. Therefore, hormone replacement therapy with estrogens (which contributes in part to the formation of magnesium and pyridoxine deficiencies) should be accompanied by an adequate combination of potassium, magnesium and pyridoxine. Key words: hormone replacement therapy, estrogens, potassium asparaginate, magnesium asparaginate, pyridoxine, Plus Vitamin B6 "Panangin"
1. Громова О.А., Торшин И.Ю., Лиманова О.А. и др. Сравнительное исследование доказательной базы эффективности и безопасности применения пероральной и трансдермальной форм заместительной гормональной терапии эстрогенами у женщин в различные возрастные периоды. Пробл. репродукции. 2013; 6: 86–96. / Gromova O.A., Torshin I.Iu., Limanova O.A. i dr. Sravnitelnoe issledovanie dokazatelnoi bazy effektivnosti i bezopasnosti primeneniia peroralnoi i transdermalnoi form zamestitelnoi gormonalnoi terapii estrogenami u zhenshchin v razlichnye vozrastnye periody. Probl. reproduktsii. 2013; 6: 86–96. [in Russian]
2. Ребров В.Г., Громова О.А. Витамины, макро- и микроэлементы. М.: ГЭОТАР, 2008. / Rebrov V.G., Gromova O.A. Vitaminy, makro- i mikroelementy. M.: GEOTAR, 2008. [in Russian]
3. Torshin I., Gromova O. Magnesium: fundamental studies and clinica practice. NY: Nova Biomedical Publishers, 2011.
4. Torshin I.Yu. Bioinformatics in the post-genomic era: physiology and medicine. NY: Nova Biomedical Publishers, 2007; p. 35–67.
5. Fukai F, Murayama A. Association and dissociation of estrogen receptor with estrogen receptor-binding factors is regulated by Mg2+. J Biochem 1984; 95 (4): 1227–30.
6. Chinigarzadeh A, Muniandy S, Salleh N. Estrogen, progesterone, and genistein differentially regulate levels of expression of alpha-, beta-, and gamma-epithelial sodium channel (ENaC) and alpha-sodium potassium pump (Na(+)/K(+)-ATPase) in the uteri of sex steroid-deficient rats. Theriogenology 2015; 84 (6): 911–26.
7. Knudsen JF. Estrogen (EB) and EB + progesterone (P) induced changes in pituitary sodium, potassium adenosine triphosphatase activity (ATPase). Endocr Res Commun 1976; 3 (5): 281–95.
8. Harms LR, Burne TH, Eyles DW, McGrath JJ. Vitamin D and the brain. Best Pract Res Clin Endocrinol Metab 2011; 25 (4): 657–69.
9. Kelly MJ, Qiu J, Wagner EJ, Ronnekleiv OK. Rapid effects of estrogen on G protein-coupled receptor activation of potassium channels in the central nervous system (CNS). J Steroid Biochem Mol Biol 2002; 83 (1–5): 187–93.
10. Kelly MJ, Qiu J, Ronnekleiv OK. Estrogen modulation of G-protein-coupled receptor activation of potassium channels in the central nervous system. Ann N Y Acad Sci 2003; 1007: 6–16.
11. Farkas I, Varju P, Liposits Z. Estrogen modulates potassium currents and expression of the Kv4.2 subunit in GT1-7 cells. Neurochem Int 2007; 50 (4): 619–27.
12. Lee SK, Ryu PD, Lee SY. Estrogen replacement modulates voltage-gated potassium channels in rat presympathetic paraventricular nucleus neurons. BMC Neurosci 2013; 14: 134.
13. Gibbs RB, Hashash A, Johnson DA. Effects of estrogen on potassium-stimulated acetylcholine release in the hippocampus and overlying cortex of adult rats. Brain Res 1997; 749 (1): 143–6.
14. Gabor R, Nagle R, Johnson DA, Gibbs RB. Estrogen enhances potassium-stimulated acetylcholine release in the rat hippocampus. Brain Res 2003; 962 (1–2): 244–7.
15. Han G, Yu X, Lu L et al. Estrogen receptor alpha mediates acute potassium channel stimulation in human coronary artery smooth muscle cells. J Pharmacol Exp Ther 2006; 316 (3): 1025–30.
16. Preston RA, Norris PM, Alonso AB et al. Randomized, placebo-controlled trial of the effects of drospirenone-estradiol on blood pressure and potassium balance in hypertensive postmenopausal women receiving hydrochlorothiazide. Menopause 2007; 14 (3 Pt1): 408–14.
17. Юдина Н.В., Торшин И.Ю., Громова О.А. и др. Обеспеченность ионами калия и магния – фундаментальное условие для поддержания нормального артериального давления. Кардиология. 2016; 10: 80–9. / Iudina N.V., Torshin I.Iu., Gromova O.A. i dr. Obespechennost ionami kaliia i magniia – fundamentalnoe uslovie dlia podderzhaniia normalnogo arterialnogo davleniia. Kardiologiia. 2016; 10: 80–9. [in Russian]
18. Tremblay AM, Dufour CR, Ghahremani M et al. Physiological genomics identifies estrogen-related receptor alpha as a regulator of renal sodium and potassium homeostasis and the renin-angiotensin pathway. Mol Endocrinol 2010; 24 (1): 22–32.
19. Sun L, Zhao T, Ju T et al. A Combination of Intravenous Genistein Plus Mg2+ Enhances Antihypertensive Effects in SHR by Endothelial Protection and BKCa Channel Inhibition. Am J Hypertens 2015; 28 (9): 1114–20.
20. Amberg GC, Bonev AD, Rossow CF et al. Modulation of the molecular composition of large conductance, Ca(2+) activated K(+) channels in vascular smooth muscle during hypertension. J Clin Invest 2003; 112 (5): 717–24.
21. Goulding A, McChesney R. Oestrogen-progestogen oral contraceptives and urinary calcium excretion. Clin Endocrinol 1977; 6 (6): 449–54.
22. Muneyyirci-Delale O, Nacharaju VL, Dalloul M et al. Serum ionized magnesium and calcium in women after menopause: inverse relation of estrogen with ionized magnesium. Fertil Steril 1999; 71 (5): 869–72.
23. Wilson SM, Bivins BN, Russell KA, Bailey LB. Oral contraceptive use: impact on folate, vitamin B(6), and vitamin B(1)(2) status. Nutr Rev 2011; 69 (10): 572–83.
24. Heiss G, Wallace R, Anderson GL et al. Health risks and benefits 3 years after stopping randomized treatment with estrogen and progestin. JAMA 2008; 299 (9): 1036–45.
25. Higdon J. En Evidence-Based Approach to Vitamins and minerals. New York – Stuttgart, 2005.
26. Лебедев В.А. и др. Клиническое значение дефицита магния у женщин с предменструальным синдромом. Вопр. гинекологии, акушерства и перинатологии. 2008; 7 (1): 77–82. / Lebedev V.A. i dr. Klinicheskoe znachenie defitsita magniia u zhenshchin s predmenstrual'nym sindromom. Vopr. ginekologii, akusherstva i perinatologii. 2008; 7 (1): 77–82. [in Russian]
27. Егорова Е.Ю., Торшин И.Ю., Громова О.А., Мартынов А.И. Применение кардиоинтервалографии для скрининговой диагностики и оценки эффективности коррекции дефицита магния и коморбидных ему состояний. Терапевт. арх. 2015; 8: 16–28. / Egorova E.Iu., Torshin I.Iu., Gromova O.A., Martynov A.I. Primenenie kardiointervalografii dlia skriningovoi diagnostiki i otsenki effektivnosti korrektsii defitsita magniia i komorbidnykh emu sostoianii. Terapevt. arkh. 2015; 8: 16–28. [in Russian]
28. Торшин И.Ю., Громова О.А. Экспертный анализ данных в молекулярной фармакологии. М.: МЦНМО, 2012. / Torshin I.Iu., Gromova O.A. Ekspertnyi analiz dannykh v molekuliarnoi farmakologii. M.: MTsNMO, 2012. [in Russian]
29. Yugandhar VG, Clark MA. Angiotensin III: a physiological relevant peptide of the renin angiotensin system. Peptides 2013; 46: 26–32. DOI: 10.1016/j.peptides.2013.04.014
30. Corken M, Porter J. Is vitamin B(6) deficiency an under-recognized risk in patients receiving haemodialysis? A systematic review: 2000–2010. Nephrology (Carlton) 2011; 16 (7): 619–25.
31. Shen J, Lai CQ, Mattei J et al. Association of vitamin B-6 status with inflammation, oxidative stress, and chronic inflammatory conditions: the Boston Puerto Rican Health Study. Am J Clin Nutr 2010; 91 (2): 337–42.
32. Bell IR, Edman JS, Morrow FD et al. Brief communication. Vitamin B1, B2, and B6 augmentation of tricyclic antidepressant treatment in geriatric depression with cognitive dysfunction. J Am Coll Nutr 1992; 11 (2): 159–163.
33. Hvas AM, Juul S, Bech P, Nexo E. Vitamin B6 level is associated with symptoms of depression. Psychother Psychosom 2004; 73 (6): 340–3.
34. Lal KJ, Dakshinamurti K. The relationship between low-calcium-induced increase in systolic blood pressure and vitamin B6. J Hypertens 1995; 13 (3): 327–32.
35. Van Dijk RA, Rauwerda JA, Steyn M et al. Long-term homocysteine-lowering treatment with folic acid plus pyridoxine is associated with decreased blood pressure but not with improved brachial artery endothelium-dependent vasodilation or carotid artery stiffness: a 2-year, randomized, placebo-controlled trial. Arterioscler Thromb Vasc Biol 2001; 21 (12): 2072–9.
36. Skarupski KA, Tangney C, Li H et al. Longitudinal association of vitamin B-6, folate, and vitamin B-12 with depressive symptoms among older adults over time. Am J Clin Nutr 2010; 92 (2): 330–5.
37. Wyatt KM, Dimmock PW, Jones PW et al. Efficacy of vitamin B-6 in the treatment of premenstrual syndrome: systematic review. BMJ 1999; 318 (7195): 1375–81.
38. Kobzar G, Mardla V, Ratsep I, Samel N. Effect of vitamin B(6) vitamers on platelet aggregation. Platelets 2009; 20 (2): 120–4.
39. Page JH, Ma J, Chiuve SE et al. Plasma vitamin B(6) and risk of myocardial infarction in women. Circulation 2009; 120 (8): 649–55.
________________________________________________
1. Gromova O.A., Torshin I.Iu., Limanova O.A. i dr. Sravnitelnoe issledovanie dokazatelnoi bazy effektivnosti i bezopasnosti primeneniia peroralnoi i transdermalnoi form zamestitelnoi gormonalnoi terapii estrogenami u zhenshchin v razlichnye vozrastnye periody. Probl. reproduktsii. 2013; 6: 86–96. [in Russian]
2. Rebrov V.G., Gromova O.A. Vitaminy, makro- i mikroelementy. M.: GEOTAR, 2008. [in Russian]
3. Torshin I., Gromova O. Magnesium: fundamental studies and clinica practice. NY: Nova Biomedical Publishers, 2011.
4. Torshin I.Yu. Bioinformatics in the post-genomic era: physiology and medicine. NY: Nova Biomedical Publishers, 2007; p. 35–67.
5. Fukai F, Murayama A. Association and dissociation of estrogen receptor with estrogen receptor-binding factors is regulated by Mg2+. J Biochem 1984; 95 (4): 1227–30.
6. Chinigarzadeh A, Muniandy S, Salleh N. Estrogen, progesterone, and genistein differentially regulate levels of expression of alpha-, beta-, and gamma-epithelial sodium channel (ENaC) and alpha-sodium potassium pump (Na(+)/K(+)-ATPase) in the uteri of sex steroid-deficient rats. Theriogenology 2015; 84 (6): 911–26.
7. Knudsen JF. Estrogen (EB) and EB + progesterone (P) induced changes in pituitary sodium, potassium adenosine triphosphatase activity (ATPase). Endocr Res Commun 1976; 3 (5): 281–95.
8. Harms LR, Burne TH, Eyles DW, McGrath JJ. Vitamin D and the brain. Best Pract Res Clin Endocrinol Metab 2011; 25 (4): 657–69.
9. Kelly MJ, Qiu J, Wagner EJ, Ronnekleiv OK. Rapid effects of estrogen on G protein-coupled receptor activation of potassium channels in the central nervous system (CNS). J Steroid Biochem Mol Biol 2002; 83 (1–5): 187–93.
10. Kelly MJ, Qiu J, Ronnekleiv OK. Estrogen modulation of G-protein-coupled receptor activation of potassium channels in the central nervous system. Ann N Y Acad Sci 2003; 1007: 6–16.
11. Farkas I, Varju P, Liposits Z. Estrogen modulates potassium currents and expression of the Kv4.2 subunit in GT1-7 cells. Neurochem Int 2007; 50 (4): 619–27.
12. Lee SK, Ryu PD, Lee SY. Estrogen replacement modulates voltage-gated potassium channels in rat presympathetic paraventricular nucleus neurons. BMC Neurosci 2013; 14: 134.
13. Gibbs RB, Hashash A, Johnson DA. Effects of estrogen on potassium-stimulated acetylcholine release in the hippocampus and overlying cortex of adult rats. Brain Res 1997; 749 (1): 143–6.
14. Gabor R, Nagle R, Johnson DA, Gibbs RB. Estrogen enhances potassium-stimulated acetylcholine release in the rat hippocampus. Brain Res 2003; 962 (1–2): 244–7.
15. Han G, Yu X, Lu L et al. Estrogen receptor alpha mediates acute potassium channel stimulation in human coronary artery smooth muscle cells. J Pharmacol Exp Ther 2006; 316 (3): 1025–30.
16. Preston RA, Norris PM, Alonso AB et al. Randomized, placebo-controlled trial of the effects of drospirenone-estradiol on blood pressure and potassium balance in hypertensive postmenopausal women receiving hydrochlorothiazide. Menopause 2007; 14 (3 Pt1): 408–14.
17. Iudina N.V., Torshin I.Iu., Gromova O.A. i dr. Obespechennost ionami kaliia i magniia – fundamentalnoe uslovie dlia podderzhaniia normalnogo arterialnogo davleniia. Kardiologiia. 2016; 10: 80–9. [in Russian]
18. Tremblay AM, Dufour CR, Ghahremani M et al. Physiological genomics identifies estrogen-related receptor alpha as a regulator of renal sodium and potassium homeostasis and the renin-angiotensin pathway. Mol Endocrinol 2010; 24 (1): 22–32.
19. Sun L, Zhao T, Ju T et al. A Combination of Intravenous Genistein Plus Mg2+ Enhances Antihypertensive Effects in SHR by Endothelial Protection and BKCa Channel Inhibition. Am J Hypertens 2015; 28 (9): 1114–20.
20. Amberg GC, Bonev AD, Rossow CF et al. Modulation of the molecular composition of large conductance, Ca(2+) activated K(+) channels in vascular smooth muscle during hypertension. J Clin Invest 2003; 112 (5): 717–24.
21. Goulding A, McChesney R. Oestrogen-progestogen oral contraceptives and urinary calcium excretion. Clin Endocrinol 1977; 6 (6): 449–54.
22. Muneyyirci-Delale O, Nacharaju VL, Dalloul M et al. Serum ionized magnesium and calcium in women after menopause: inverse relation of estrogen with ionized magnesium. Fertil Steril 1999; 71 (5): 869–72.
23. Wilson SM, Bivins BN, Russell KA, Bailey LB. Oral contraceptive use: impact on folate, vitamin B(6), and vitamin B(1)(2) status. Nutr Rev 2011; 69 (10): 572–83.
24. Heiss G, Wallace R, Anderson GL et al. Health risks and benefits 3 years after stopping randomized treatment with estrogen and progestin. JAMA 2008; 299 (9): 1036–45.
25. Higdon J. En Evidence-Based Approach to Vitamins and minerals. New York – Stuttgart, 2005.
26. Lebedev V.A. i dr. Klinicheskoe znachenie defitsita magniia u zhenshchin s predmenstrual'nym sindromom. Vopr. ginekologii, akusherstva i perinatologii. 2008; 7 (1): 77–82. [in Russian]
27. Egorova E.Iu., Torshin I.Iu., Gromova O.A., Martynov A.I. Primenenie kardiointervalografii dlia skriningovoi diagnostiki i otsenki effektivnosti korrektsii defitsita magniia i komorbidnykh emu sostoianii. Terapevt. arkh. 2015; 8: 16–28. [in Russian]
28. Torshin I.Iu., Gromova O.A. Ekspertnyi analiz dannykh v molekuliarnoi farmakologii. M.: MTsNMO, 2012. [in Russian]
29. Yugandhar VG, Clark MA. Angiotensin III: a physiological relevant peptide of the renin angiotensin system. Peptides 2013; 46: 26–32. DOI: 10.1016/j.peptides.2013.04.014
30. Corken M, Porter J. Is vitamin B(6) deficiency an under-recognized risk in patients receiving haemodialysis? A systematic review: 2000–2010. Nephrology (Carlton) 2011; 16 (7): 619–25.
31. Shen J, Lai CQ, Mattei J et al. Association of vitamin B-6 status with inflammation, oxidative stress, and chronic inflammatory conditions: the Boston Puerto Rican Health Study. Am J Clin Nutr 2010; 91 (2): 337–42.
32. Bell IR, Edman JS, Morrow FD et al. Brief communication. Vitamin B1, B2, and B6 augmentation of tricyclic antidepressant treatment in geriatric depression with cognitive dysfunction. J Am Coll Nutr 1992; 11 (2): 159–163.
33. Hvas AM, Juul S, Bech P, Nexo E. Vitamin B6 level is associated with symptoms of depression. Psychother Psychosom 2004; 73 (6): 340–3.
34. Lal KJ, Dakshinamurti K. The relationship between low-calcium-induced increase in systolic blood pressure and vitamin B6. J Hypertens 1995; 13 (3): 327–32.
35. Van Dijk RA, Rauwerda JA, Steyn M et al. Long-term homocysteine-lowering treatment with folic acid plus pyridoxine is associated with decreased blood pressure but not with improved brachial artery endothelium-dependent vasodilation or carotid artery stiffness: a 2-year, randomized, placebo-controlled trial. Arterioscler Thromb Vasc Biol 2001; 21 (12): 2072–9.
36. Skarupski KA, Tangney C, Li H et al. Longitudinal association of vitamin B-6, folate, and vitamin B-12 with depressive symptoms among older adults over time. Am J Clin Nutr 2010; 92 (2): 330–5.
37. Wyatt KM, Dimmock PW, Jones PW et al. Efficacy of vitamin B-6 in the treatment of premenstrual syndrome: systematic review. BMJ 1999; 318 (7195): 1375–81.
38. Kobzar G, Mardla V, Ratsep I, Samel N. Effect of vitamin B(6) vitamers on platelet aggregation. Platelets 2009; 20 (2): 120–4.
39. Page JH, Ma J, Chiuve SE et al. Plasma vitamin B(6) and risk of myocardial infarction in women. Circulation 2009; 120 (8): 649–55.
1. ФГБОУ ВО «Ивановская государственная медицинская академия» Минздрава России. 153000, Россия, Иваново, Шереметевский пр-т, д. 8;
2. Российский сотрудничающий центр Института микроэлементов под эгидой ЮНЕСКО при ФГБОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И.Пирогова» Минздрава России. 117997, Россия, Москва, ул. Островитянова, д. 1а;
3. ФГАОУ ВО «Московский физико-технический институт (государственный университет)» Минобороны России. 141700, Россия, Долгопрудный, Институтский пер., д. 9;
4. ГБУЗ «Московский областной научно-исследовательский институт акушерства и гинекологии». 101000, Россия, Москва, ул. Покровка, д. 22а
*unesco.gromova@gmail.com
1. Ivanovo State Medical Academy of the Ministry of Health of the Russian Federation. 153000, Russian Federation, Ivanovo, Sheremetevskii pr-t, d. 8;
2. Moscow Branch of Trace Element Institute for UNESCO at N.I.Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation. 117997, Russian Federation, Moscow, ul. Ostrovitianova, d. 1а;
3. Moscow Institute of Physics and Technology of the Ministry of Defence of the Russian Federation. 141700, Russian Federation, Dolgoprudnyi, Institutskii per., d. 9;
4. Moscow Regional Research Institute of Obstetrics and Gynecology. 101000, Russian Federation, Moscow, ul. Pokrovka, d. 22a
*unesco.gromova@gmail.com