Процессы ангиогенеза являются одними из ключевых в функционировании репродуктивной системы у женщин. Исследования по циклическому ангиогенезу
в репродуктивной системе позволили выделить отдельное направление научных исследований и получить результаты, имеющие важное научное и практическое значение. Достаточно детально изучены процессы циклического ангиогенеза в органах репродуктивной системы в норме. В то же время вопросы влияния различных методов гормональной контрацепции на взаимосвязь ангиогенных факторов роста, гемостаза, регионарной гемодинамики остаются неизученными. Предположение, что подобная взаимосвязь играет существенную роль в функционировании эндометрия и модификация данных факторов может иметь место при различных методах воздействия, в том числе и при назначении гормональной контрацепции, способно служить предметом научного поиска с большим практическим компонентом.
The processes of angiogenesis are one of the key in the functioning of the reproductive system in women. Studies on cyclic angiogenesis in the reproductive system have allowed us to single out a separate area of scientific research and to obtain results that have important scientific and practical value. The processes of cyclic angiogenesis in the organs of the reproductive system are studied in sufficient detail. At the same time, the issues of the influence of various methods of hormonal contraception on the relationship of angiogenic growth factors, hemostasis, regional hemodynamics remain unstudied. The assumption that such a relationship plays a significant role in the functioning of the endometrium, and modification of these factors can occur with various methods of exposure, including the appointment of hormonal contraception, can serve as a scientific research subject with a large practical component. Key words: hormonal contraception, side effects, angiogenesis.
1. Wang G et al. Expression of vascular endothelial growth factors and their receptors in human endometrium from women experiencing abnormal bleeding patterns after prolonged use of a levonorgestrel-releasing intrauterine system. Hum Reprod 2005; 20 (5): 1410–7.
2. Hague S, MacKenzie IZ, Bicknell R, Rees MC. In-vivo angiogenesis and progestogens. Hum Reprod 2002; 17 (3): 786–93.
3. Roopa BA, Loganath A, Singh K. The effect of a levonorgestrel-releasing intrauterine system on angiogenic growth factors in the endometrium. Hum Reprod 2003; 18 (9):1809–19.
4. Sabatini R, Cagiano R. Comparison profiles of cycle control, side effects and sexual satisfaction of three hormonal contraceptives. Contraception 2006; 74 (3): 220–3.
5. Hoebena А, Landuyt B, Highley MS, Wildiers H. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 2004; 56: 549–80.
6. Bruegmann E, Gruemmer R, Neulen J, Motejlek K. Regulation of soluble vascular endothelial growth factor receptor 1secretion from human endothelial cells by tissue inhibitor of metalloproteinase l. Mol Hum Reprod 2009; 15 (11): 749–56.
7. Cristin P, Reija V, Amanda E et al. In addition, Stephen S. Soluble factors from human endometrium promote angiogenesis and regulate the endothelial cell transcriptase. Hum Reprod 2004; 19 (10): 2356–66.
8. Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 2007; 8 (6): 464–78.
9. Naik NA, Bhat IA, Afroze D et al. Vascular endothelial growth factor a gene (VEGFA) polymorphisms and expression of VEGFA gene in lung cancer patients of Kashmir Valley (India). Tumor Biol 2012; 33 (3): 833–9. DOI: 10.1007/s13277-011-0306-y
10. Boer K, Troost D, Spliet WG et al. Cellular distribution of vascular endothelial growth factor A (VEGFA) and B (VEGFB) and VEGF receptors 1 and 2 in focal cortical dysplasia type IIB. Act Neuropathol 2008; 115 (6): 683–96. DOI: 10.1007/s00401-008-0354-6
11. Kaur H, Li JJ, Bay BH, Yung LY. Investigating the antiproliferative activity of high affinity DNA aptamer on cancer cells. PLoS One 2013;
8 (1): e50964. DOI: 10.1371/journal.pone.0050964
12. Бурлев В.А., Ильясова Н.А., Волков Н.И. и др. Плотность микрососудов и ангиогенная активность в эутопическом эндометрии у больных с перитонеальной формой эндометриоза. Проблемы репродукции. 2004; 10 (6): 51–6.
[Burlev V.A., Il'iasova N.A., Volkov N.I. et al. Plotnost' mikrososudov i angiogennaia aktivnost' v eutopicheskom endometrii u bol'nykh s peritoneal'noi formoi endometrioza. Problemy reproduktsii. 2004; 10 (6): 51–6 (in Russian).]
13. Sa-Nguanraksa D, O-Charoenrat P. The role of vascular endothelial growth factor a polymorphisms in breast cancer. Int J Mol Sci 2012;
13 (11): 14845–64. DOI: 10.3390/ijms131114845
14. Bates DO, Hillman NJ, Williams B et al. Regulation of microvascular permeability by vascular endothelial growth factors. J Anat 2002; 200 (6): 581–97.
15. Ylikorkala A, Rossi DJ, Korsisaari N et al. Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice. Science 2001; 293 (5533): 1323–6.
16. Carmeliet P, Ferreira V, Breier G et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380 (6573): 435–9.
17. Miquerol L, Langille BL, Nagy A. Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development 2000; 127 (18): 3941–6.
18. Бурлев В.А., Зайдиева З.С., Ильясова Н.А. Регуляция ангиогенеза гестационного периода (обзор литературы). Проблемы репродукции. 2008; 14 (3): 18–32.
[Burlev V.A., Zaidieva Z.S., Il'iasova N.A. Reguliatsiia angiogeneza gestatsionnogo perioda (obzor literatury). Problemy reproduktsii. 2008; 14 (3): 18–32 (in Russian).]
19. Soares R, Reis-Filho JS, Gartner F, Schmitt FC. Vascular Endothelial Growth Factor, Transforming Growth Factor-α, and Estrogen Receptors: Possible Cross-Talks and Interactions. Am J Pathol 2002; 160 (1): 381–3.
20. Girling JE, Rogers PA. Recent advances in endometrial angiogenesis research. Angiogenesis 2005; 8 (2): 89–99.
21. Demir R, Yaba A, Huppertz B. Vasculogenesis and angiogenesis in the endometrium during menstrual cycle and implantation. Acta Histochem 2010; 112 (3): 203–14.
22. Giuseppina L, Geri M, MAGALI A. Presence of Estrogen Receptor b in the Human Endometrium through the Cycle: Expression in Glandular, Stromal, and Vascular Cells. J Clin Endocrinol Metab 2001; 86 (3).
23. Aberdeen GW, Wiegand SJ, Bonagura TW Jr et al. Vascular Endothelial Growth Factor Mediates the Estrogen-Induced Breakdown of Tight Junctions between and Increase in Proliferation of Microvessel Endothelial Cells in the Baboon Endometrium. Endocrinology 2008; 149 (12): 6076–83.
24. Fan X, Krieg S, Kuo CJ et al. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium. Faseb J 2008; 22 (10): 3571–80.
25. Kliche S, Waltenberger J. VEGF receptor signaling and endothelial function. IUBMB Life 2001; 52 (1–2): 61–6.
26. Schini-Kerth VB, Busse R. Vascular endothelial growth factor up-regulates nitric oxide synthase expression in endothelial cells. Cardiovascular Res 1999; 41 (3): 773–80.
27. Hood JD, Meininger CJ, Ziche M, Granger HJ. VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. Am J Physiol 1998; 274 (3 Pt2): H1054-8.
28. Van Lint P, Libert C. Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 2007; 82 (6): 1375–81.
29. Malemud CJ. Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci 2006; 11: 1696–701.
30. Соболева Г.М., Сухих Г.Т. Семейство матриксных металлопротеиназ: экспрессия в органах женской репродуктивной системы. Акушерство и гинекология. 2007; 2: 17–21.
[Soboleva G.M., Sukhikh G.T. Semeistvo matriksnykh metalloproteinaz: ekspressiia v organakh zhenskoi reproduktivnoi sistemy. Akusherstvo i ginekologiia. 2007; 2: 17–21 (in Russian).]
31. Gaide Chevronnay HP, Selvais C, Emonard H et al. Regulation of matrix metalloproteinases activity studied in human endometrium as a paradigm of cyclic tissue breakdown and regeneration. Biochim Biophys Acta 2012; 1824 (1): 146–56.
32. Goffin F, Frankenne F, Béliard A et al. Human endometrial epithelial cells modulate the activation of gelatinase a by stromal cells. Gynecol Obstet Invest 2002; 53 (2): 105–11.
33. Plaisier M, Koolwijk P, Hanemaaijer R et al. Membrane-type matrix metalloproteinases and vascularization in human endometrium during the menstrual cycle. Mol Hum Reprod 2006; 12 (1): 11–8.
34. Hickey M, d'Arcangues C. Vaginal bleeding disturbances and implantable contraceptives. Contraception 2002; 65 (1): 75–84.
35. Goffin F, Munaut C, Frankenne F et al. Expression pattern of metalloproteinases and tissue inhibitors of matrix-metalloproteinases in cycling human endometrium. Biol Reprod 2003; 69 (3): 976–84.
36. Plaisier M, Koolwijk P, Hanemaaijer R et al. Membrane-type matrix metalloproteinases and vascularization in human endometrium during the menstrual cycle. Mol Hum Reprod 2006; 12 (1): 11–8.
37. Sannecke C, Husen B et al. Progestins inhibit expression of MMPs and of angiogenic factors in human ectopic endometrial lesions in a mouse model. Mol Hum Reprod 2009; 15 (10): 633–43.
38. Wahab M, Taylor AH, Pringle JH et al. Trimegestone differentially modulates the expression of matrix metalloproteinases in the endometrial stromal cell. Mol Hum Reprod 2006; 12 (3): 157–67.
39. Jensen JT, Parke S, Mellinger U et al. Effective treatment of heavy menstrual bleeding with estradiol valerate and dienogest: a randomized controlled trial. Obstetric Gynecol 2011; 117 (4): 777–87.
40. Simbar M, Manconi F, Markham R et al. A three-dimensional study of endometrial microvessels in women using the contraceptive subdermal levonorgestrel implant system, Norplant. Micron 2004; 35 (7): 589–95.
41. Hickey M, Fraser IS. Surface vascularization and endometrial appearance in women with menorrhagia or using levonorgestrel contraceptive implants. Implications for the mechanisms of breakthrough bleeding. Hum Reprod 2002; 17 (9): 2428–34.
42. Donoghue JF, McGavigan CJ, Lederman FL et al. Dilated thin-walled blood and lymphatic vessels in human endometrium: a potential role for VEGF-D in progestin-induced break-through bleeding. PLoSOne 2012; 7 (Issue 2); e30916.
43. Jondet M, Letellier B, Verdys M.T. Endometrial vascularization in levonorgestrel intrauterine device users; computerized microvessel measurement study. Contraception 2005; 71 (1): 60–4.
44. Hickey M, Dwarte D, Fraser IS. Superficial endometrial vascular fragility in Norplant users and in women with ovulatory dysfunctional uterine bleeding. Hum Reprod 2000; 15 (7): 1509–14.
45. Hickey M, Lau TM, Russell P et al. Microvascular density in conditions of endometrial atrophy. Hum Reprod 1996; 11 (9): 2009–13.
46. Smith OP, Critchley HO. Progestogen only contraception and endometrial break through bleeding. Angiogenesis 2005; 8 (2):117–26.
47. Hickey M, Fraser I. Human uterine vascular structures in normal and diseased states. Microsc Res Tech 2003; 60 (4): 377–89.
48. Rogers PA, Au CL, Affandi B. Endometrial microvascular density during the normal menstrual cycle and following exposure to long-term levonorgestrel. Hum Reprod 1993; 8 (9): 1396–404.
49. Pritts EA, Ryan IP, Mueller MD et al. Angiogenic effects of Norplant contraception on endometrial histology and uterine bleeding. J Clin Endocrinol Metab 2005; 90 (4): 2142–7.
50. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002; 2 (10): 727–39.
51. Oliveira-Ribeiro M, Petta CA et al. Correlation between endometrial histology, microvascular density and calibre, matrix metalloproteinase-3 and bleeding pattern in women using a levonorgestrel-releasing intrauterine system. Human Reprod 2004; 19 (8): 1778–84.
52. Stephanie R, Labied S, Blacher S. Endometrial vessel maturation in women exposed to levonorgestrel-releasing intrauterine system for a short or prolonged period. Hum Reprod 2007; 22 (12): 3084–91.
53. McGavigan CJ, Dockery P, Metaxa-Mariatou V et al. Hormonally mediated disturbance of angiogenesis in the human endometrium after exposure to intrauterine levonorgestrel. Hum Reprod 2003;
18 (1): 77–84.
54. Hickey M, Krikun G, Kodaman P et al. Long-term progestin-only contraceptives result in reduced endometrial blood flow and oxidative stress. J Clin Endocrinol Metab 2006; 91 (9): 3633–8.
55. Charles JL, Graciela K, Hickey M et al. Decidualized Human Endometrial Stromal Cells Mediate Hemostasis, Angiogenesis, and Abnormal Uterine Bleeding. Reprod Sci 2009; 16 (2): 162–70.
56. Lockwood CJ, Schatz F, Krikun G. Angiogenic factors and the endometrium following long term progestin only contraception. Histol Histopathol 2004; 19 (1): 167–72.
57. Rowlands S. Newer progestogens. J Fam Plann Reprod Health Care 2003; 29 (1): 13–6.
58. Johannisson E, Helmerhorst FM et al. Effect of a combined oral contraceptive containing 3 mg of drospirenone and 30 microg of ethinyl estradiol on the human endometrium. Fertil Steril 2001; 76 (1): 102–7.
59. Anderson FD, Feldman R, Reape KZ. Endometrial effects of a 91-day extended-regimen oral contraceptive with low-dose estrogen in place of placebo. Contraception 2008; 77 (2): 91-6.
60. Rabe T, Hartschuh E, Wahlstrom T et al. Endometrial safety of a novel monophasic combined oral contraceptive containing 0.02 mg ethinylestradiol and 2 mg chlormadinone acetate administered in a 24/4-day regimen over six cycles. Contraception 2010; 82 (4): 358–65.
61. Johnson JV, Grubb GS, Constantine GD. Endometrial histology following 1 year of a continuous daily regimen of levonorgestrel 90 micro g/ethinyl estradiol 20 micro g. Contraception 2007; 75 (1): 23–6
62. Archer DF. Endometrial histology during use of a low-dose estrogen-desogestrel oral contraceptive with a reduced hormone-free interval. Contraception 1999; 60 (3): 151–4.
________________________________________________
1. Wang G et al. Expression of vascular endothelial growth factors and their receptors in human endometrium from women experiencing abnormal bleeding patterns after prolonged use of a levonorgestrel-releasing intrauterine system. Hum Reprod 2005; 20 (5): 1410–7.
2. Hague S, MacKenzie IZ, Bicknell R, Rees MC. In-vivo angiogenesis and progestogens. Hum Reprod 2002; 17 (3): 786–93.
3. Roopa BA, Loganath A, Singh K. The effect of a levonorgestrel-releasing intrauterine system on angiogenic growth factors in the endometrium. Hum Reprod 2003; 18 (9):1809–19.
4. Sabatini R, Cagiano R. Comparison profiles of cycle control, side effects and sexual satisfaction of three hormonal contraceptives. Contraception 2006; 74 (3): 220–3.
5. Hoebena А, Landuyt B, Highley MS, Wildiers H. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 2004; 56: 549–80.
6. Bruegmann E, Gruemmer R, Neulen J, Motejlek K. Regulation of soluble vascular endothelial growth factor receptor 1secretion from human endothelial cells by tissue inhibitor of metalloproteinase l. Mol Hum Reprod 2009; 15 (11): 749–56.
7. Cristin P, Reija V, Amanda E et al. In addition, Stephen S. Soluble factors from human endometrium promote angiogenesis and regulate the endothelial cell transcriptase. Hum Reprod 2004; 19 (10): 2356–66.
8. Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 2007; 8 (6): 464–78.
9. Naik NA, Bhat IA, Afroze D et al. Vascular endothelial growth factor a gene (VEGFA) polymorphisms and expression of VEGFA gene in lung cancer patients of Kashmir Valley (India). Tumor Biol 2012; 33 (3): 833–9. DOI: 10.1007/s13277-011-0306-y
10. Boer K, Troost D, Spliet WG et al. Cellular distribution of vascular endothelial growth factor A (VEGFA) and B (VEGFB) and VEGF receptors 1 and 2 in focal cortical dysplasia type IIB. Act Neuropathol 2008; 115 (6): 683–96. DOI: 10.1007/s00401-008-0354-6
11. Kaur H, Li JJ, Bay BH, Yung LY. Investigating the antiproliferative activity of high affinity DNA aptamer on cancer cells. PLoS One 2013;
8 (1): e50964. DOI: 10.1371/journal.pone.0050964
12. Burlev V.A., Il'iasova N.A., Volkov N.I. et al. Plotnost' mikrososudov i angiogennaia aktivnost' v eutopicheskom endometrii u bol'nykh s peritoneal'noi formoi endometrioza. Problemy reproduktsii. 2004; 10 (6): 51–6 (in Russian).
13. Sa-Nguanraksa D, O-Charoenrat P. The role of vascular endothelial growth factor a polymorphisms in breast cancer. Int J Mol Sci 2012;
13 (11): 14845–64. DOI: 10.3390/ijms131114845
14. Bates DO, Hillman NJ, Williams B et al. Regulation of microvascular permeability by vascular endothelial growth factors. J Anat 2002; 200 (6): 581–97.
15. Ylikorkala A, Rossi DJ, Korsisaari N et al. Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice. Science 2001; 293 (5533): 1323–6.
16. Carmeliet P, Ferreira V, Breier G et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380 (6573): 435–9.
17. Miquerol L, Langille BL, Nagy A. Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development 2000; 127 (18): 3941–6.
18. Burlev V.A., Zaidieva Z.S., Il'iasova N.A. Reguliatsiia angiogeneza gestatsionnogo perioda (obzor literatury). Problemy reproduktsii. 2008; 14 (3): 18–32 (in Russian).
19. Soares R, Reis-Filho JS, Gartner F, Schmitt FC. Vascular Endothelial Growth Factor, Transforming Growth Factor-α, and Estrogen Receptors: Possible Cross-Talks and Interactions. Am J Pathol 2002; 160 (1): 381–3.
20. Girling JE, Rogers PA. Recent advances in endometrial angiogenesis research. Angiogenesis 2005; 8 (2): 89–99.
21. Demir R, Yaba A, Huppertz B. Vasculogenesis and angiogenesis in the endometrium during menstrual cycle and implantation. Acta Histochem 2010; 112 (3): 203–14.
22. Giuseppina L, Geri M, MAGALI A. Presence of Estrogen Receptor b in the Human Endometrium through the Cycle: Expression in Glandular, Stromal, and Vascular Cells. J Clin Endocrinol Metab 2001; 86 (3).
23. Aberdeen GW, Wiegand SJ, Bonagura TW Jr et al. Vascular Endothelial Growth Factor Mediates the Estrogen-Induced Breakdown of Tight Junctions between and Increase in Proliferation of Microvessel Endothelial Cells in the Baboon Endometrium. Endocrinology 2008; 149 (12): 6076–83.
24. Fan X, Krieg S, Kuo CJ et al. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium. Faseb J 2008; 22 (10): 3571–80.
25. Kliche S, Waltenberger J. VEGF receptor signaling and endothelial function. IUBMB Life 2001; 52 (1–2): 61–6.
26. Schini-Kerth VB, Busse R. Vascular endothelial growth factor up-regulates nitric oxide synthase expression in endothelial cells. Cardiovascular Res 1999; 41 (3): 773–80.
27. Hood JD, Meininger CJ, Ziche M, Granger HJ. VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. Am J Physiol 1998; 274 (3 Pt2): H1054-8.
28. Van Lint P, Libert C. Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 2007; 82 (6): 1375–81.
29. Malemud CJ. Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci 2006; 11: 1696–701.
30. Soboleva G.M., Sukhikh G.T. Semeistvo matriksnykh metalloproteinaz: ekspressiia v organakh zhenskoi reproduktivnoi sistemy. Akusherstvo i ginekologiia. 2007; 2: 17–21 (in Russian).
31. Gaide Chevronnay HP, Selvais C, Emonard H et al. Regulation of matrix metalloproteinases activity studied in human endometrium as a paradigm of cyclic tissue breakdown and regeneration. Biochim Biophys Acta 2012; 1824 (1): 146–56.
32. Goffin F, Frankenne F, Béliard A et al. Human endometrial epithelial cells modulate the activation of gelatinase a by stromal cells. Gynecol Obstet Invest 2002; 53 (2): 105–11.
33. Plaisier M, Koolwijk P, Hanemaaijer R et al. Membrane-type matrix metalloproteinases and vascularization in human endometrium during the menstrual cycle. Mol Hum Reprod 2006; 12 (1): 11–8.
34. Hickey M, d'Arcangues C. Vaginal bleeding disturbances and implantable contraceptives. Contraception 2002; 65 (1): 75–84.
35. Goffin F, Munaut C, Frankenne F et al. Expression pattern of metalloproteinases and tissue inhibitors of matrix-metalloproteinases in cycling human endometrium. Biol Reprod 2003; 69 (3): 976–84.
36. Plaisier M, Koolwijk P, Hanemaaijer R et al. Membrane-type matrix metalloproteinases and vascularization in human endometrium during the menstrual cycle. Mol Hum Reprod 2006; 12 (1): 11–8.
37. Sannecke C, Husen B et al. Progestins inhibit expression of MMPs and of angiogenic factors in human ectopic endometrial lesions in a mouse model. Mol Hum Reprod 2009; 15 (10): 633–43.
38. Wahab M, Taylor AH, Pringle JH et al. Trimegestone differentially modulates the expression of matrix metalloproteinases in the endometrial stromal cell. Mol Hum Reprod 2006; 12 (3): 157–67.
39. Jensen JT, Parke S, Mellinger U et al. Effective treatment of heavy menstrual bleeding with estradiol valerate and dienogest: a randomized controlled trial. Obstetric Gynecol 2011; 117 (4): 777–87.
40. Simbar M, Manconi F, Markham R et al. A three-dimensional study of endometrial microvessels in women using the contraceptive subdermal levonorgestrel implant system, Norplant. Micron 2004; 35 (7): 589–95.
41. Hickey M, Fraser IS. Surface vascularization and endometrial appearance in women with menorrhagia or using levonorgestrel contraceptive implants. Implications for the mechanisms of breakthrough bleeding. Hum Reprod 2002; 17 (9): 2428–34.
42. Donoghue JF, McGavigan CJ, Lederman FL et al. Dilated thin-walled blood and lymphatic vessels in human endometrium: a potential role for VEGF-D in progestin-induced break-through bleeding. PLoSOne 2012; 7 (Issue 2); e30916.
43. Jondet M, Letellier B, Verdys M.T. Endometrial vascularization in levonorgestrel intrauterine device users; computerized microvessel measurement study. Contraception 2005; 71 (1): 60–4.
44. Hickey M, Dwarte D, Fraser IS. Superficial endometrial vascular fragility in Norplant users and in women with ovulatory dysfunctional uterine bleeding. Hum Reprod 2000; 15 (7): 1509–14.
45. Hickey M, Lau TM, Russell P et al. Microvascular density in conditions of endometrial atrophy. Hum Reprod 1996; 11 (9): 2009–13.
46. Smith OP, Critchley HO. Progestogen only contraception and endometrial break through bleeding. Angiogenesis 2005; 8 (2):117–26.
47. Hickey M, Fraser I. Human uterine vascular structures in normal and diseased states. Microsc Res Tech 2003; 60 (4): 377–89.
48. Rogers PA, Au CL, Affandi B. Endometrial microvascular density during the normal menstrual cycle and following exposure to long-term levonorgestrel. Hum Reprod 1993; 8 (9): 1396–404.
49. Pritts EA, Ryan IP, Mueller MD et al. Angiogenic effects of Norplant contraception on endometrial histology and uterine bleeding. J Clin Endocrinol Metab 2005; 90 (4): 2142–7.
50. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002; 2 (10): 727–39.
51. Oliveira-Ribeiro M, Petta CA et al. Correlation between endometrial histology, microvascular density and calibre, matrix metalloproteinase-3 and bleeding pattern in women using a levonorgestrel-releasing intrauterine system. Human Reprod 2004; 19 (8): 1778–84.
52. Stephanie R, Labied S, Blacher S. Endometrial vessel maturation in women exposed to levonorgestrel-releasing intrauterine system for a short or prolonged period. Hum Reprod 2007; 22 (12): 3084–91.
53. McGavigan CJ, Dockery P, Metaxa-Mariatou V et al. Hormonally mediated disturbance of angiogenesis in the human endometrium after exposure to intrauterine levonorgestrel. Hum Reprod 2003;
18 (1): 77–84.
54. Hickey M, Krikun G, Kodaman P et al. Long-term progestin-only contraceptives result in reduced endometrial blood flow and oxidative stress. J Clin Endocrinol Metab 2006; 91 (9): 3633–8.
55. Charles JL, Graciela K, Hickey M et al. Decidualized Human Endometrial Stromal Cells Mediate Hemostasis, Angiogenesis, and Abnormal Uterine Bleeding. Reprod Sci 2009; 16 (2): 162–70.
56. Lockwood CJ, Schatz F, Krikun G. Angiogenic factors and the endometrium following long term progestin only contraception. Histol Histopathol 2004; 19 (1): 167–72.
57. Rowlands S. Newer progestogens. J Fam Plann Reprod Health Care 2003; 29 (1): 13–6.
58. Johannisson E, Helmerhorst FM et al. Effect of a combined oral contraceptive containing 3 mg of drospirenone and 30 microg of ethinyl estradiol on the human endometrium. Fertil Steril 2001; 76 (1): 102–7.
59. Anderson FD, Feldman R, Reape KZ. Endometrial effects of a 91-day extended-regimen oral contraceptive with low-dose estrogen in place of placebo. Contraception 2008; 77 (2): 91-6.
60. Rabe T, Hartschuh E, Wahlstrom T et al. Endometrial safety of a novel monophasic combined oral contraceptive containing 0.02 mg ethinylestradiol and 2 mg chlormadinone acetate administered in a 24/4-day regimen over six cycles. Contraception 2010; 82 (4): 358–65.
61. Johnson JV, Grubb GS, Constantine GD. Endometrial histology following 1 year of a continuous daily regimen of levonorgestrel 90 micro g/ethinyl estradiol 20 micro g. Contraception 2007; 75 (1): 23–6
62. Archer DF. Endometrial histology during use of a low-dose estrogen-desogestrel oral contraceptive with a reduced hormone-free interval. Contraception 1999; 60 (3): 151–4.
ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии им. академика В.И. Кулакова» Минздрава России, Москва, Россия
*Mejevitinova@mail.ru
________________________________________________
Kemalya R. Nabieva, Vladimir A. Burlev, Elena A. Mejevitinova*, Natalia A. Ilyasova
Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
*Mejevitinova@mail.ru