Обоснование. Эпителиальный рак яичников (РЯ) занимает первое место по числу смертей среди заболеваний женских репродуктивных органов. Выявление более ранних стадий РЯ ассоциировано с улучшением исходов, однако сопряжено со сложностями. Цель. Изучить возможность выявления РЯ на Iа–Iс стадиях при помощи высокоэффективной жидкостной хроматографии c масс-спектрометрической детекцией липидного профиля сыворотки крови. Материалы и методы. С ноября 2019 по июль 2020 г. на базе ФГБУ «НМИЦ АГП им. акад. В.И. Кулакова» проведено обсервационное исследование «случай-
контроль». В него включили 41 пациента: 1-я группа (основная) – 28 больных серозным РЯ высокой степени злокачественности I–IV стадии, 2-я группа (контрольная) – 13 условно здоровых женщин. Экстракты липидов сыворотки крови получали в соответствии с модифицированным методом Фолча. Анализ состава образцов проводили с помощью масс-спектрометрии с ионизацией электрораспылением. Непараметрическим методом Манна–Уитни выявлены статистически значимо различимые липиды. При использовании дискриминантного анализа ортогональных проекций на скрытые структуры (OPLS-DA) выполнялось построение дифференциальных OPLS-моделей. Результаты. Первая OPLS-модель позволила кластеризовать пациентов с РЯ и без него на основании 128 липидов (R2=0,87, Q2=0,80, площадь под ROC-кривой AUC=1, чувствительность и специфичность 100%). Вторая модель ранжировала пациентов с I–II стадией РЯ и обследуемой группой контроля (108 липидов, R2=0,97, Q2=0,86). Третья модель построена для дифференциации ранних (Ia–Ia; n=5) и распространенных (IIa–IVa; n=23) стадий РЯ: R2=0,96, Q2=1,00, AUC=0,99. Содержание липидов ряда классов (диглицериды, триглицериды, фосфатидилхолины, этаноламины, сфингомиелины, церамиды, фосфатидилсерины, фосфоинозитолы, простагландины) значимо различалось в изучаемых группах. Заключение. Идентификация липидного профиля крови с помощью высокоэффективной жидкостной хроматографии c масс-спектрометрической детекцией липидного профиля сыворотки крови позволяет отличить здорового человека от пациентов с II–IV и Ia–Iс стадиями РЯ, что свидетельствует о возможности использования в составе диагностической панели в качестве маркерных онколипидов более ранних стадий РЯ.
Background. Ovarian cancer is the first fatal malignancy of the female reproductive system. Early detection is associated with better outcomes, but is significantly difficult because of asymptomatic or low-symptomatic course. Aim. To study the possibility of detecting of OC in early stages (Ia–Ic) by the lipid profile of blood serum obtained using high-performance liquid chromatography with mass spectrometric (MS) detection. Materials and methods. An observational "case-control" study was conducted in period November 2019 – July 2020 in the Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology. 41 patients were included: group 1 (main) – 28 patients with histologically verified high grade serous ovarian cancer of I–IV FIGO stage, group 2 (control) – 13 conditionally healthy women. Venous blood samples were collected immediately before the operation. Extracts of serum lipids were obtained in accordance with the modified Folch method. The composition of the samples was analyzed by electrospray ionization MS. Using the method of discriminant analysis and orthogonal projections to latent structures (OPLS-DA) were building OPLS-models based on profile of significant lipids. The comparison based on the non-parametric Mann–Whitney test. Results. The presence of 128 lipids in blood serum samples makes a major contribution to the OPLS-models, that are different for patients with I–IV OC stage and controls. The OPLS-model parameters are: R2=0.87 and Q2=0.80, the area under the ROC curve reached 1, sensitivity and specificity of the model – 100%. The second OPLS-model was developed to assign patients to 13 blood serum samples of the control group or to 5 blood samples of patients with I-II stages of OC: 108 lipids made the main contribution to this model (R2=0.97, Q2=0.86). The third OPLS-model was constructed to distinguish patients with earlier (Ia–Ia stages; n=5) and advanced (IIa–IVa; n=23) stages: R2=0.96 and Q2=1.00, AUC=0.99. Diglycerides, triglycerides, phosphatidylcholines, ethanolamines, sphingomyelins, ceramides, phosphatidylserines, phosphoinositols and prostaglandins significantly differ in the blood serum samples of patients with Ia–Ic stages of OC and patients with II–IV stages and controls, that indicates the diagnostic value. Conclusion. It is possible to distinguish a healthy person from patient with Ia–Ic or II–IV stages of OC. Serum oncolipids profile obtained by high-performance liquid chromatography with MS detection can be used as markers of early stages of OC, that are associated with better prognosis.
Keywords: lipidome, mass spectrometry, omics technologies, oncolipids, ovarian cancer
1. USCS Data Visualizations – CDC. 2020 Available at: https://gis.cdc.gov/Cancer/USCS/DataViz.html Accessed: 15.04.2021.
2. Koirala P, Moon AS, Chuang L. Clinical Utility of Preoperative Assessment in Ovarian Cancer Cytoreduction. Diagnostics (Basel). 2020;10(8):568.
3. Schorge JO, Clark RM, Lee SI, Penson RT. Primary debulking surgery for advanced ovarian cancer: Are you a believer or a dissenter? Gynecol Oncol. 2014;135(3):595-605.
4. Maringe C, Walters S, Butler J, et al. Stage at diagnosis and ovarian cancer survival: Evidence from the international cancer benchmarking partnership. Gynecol Oncol. 2012;127(1):75-82.
5. Warren LA, Shih A, Renteira SM, et al. Analysis of menstrual effluent: Diagnostic potential for endometriosis. Mol Med. 2018;24(1):1.
6. Devouassoux-Shisheboran M, Genestie C. Pathobiology of ovarian carcinomas. Chin J Cancer. 2015;34(1):50-5.
7. Pavlovich SV, Yurova MV, Melkumyan AG, et al. Biomarkers in ovarian neoplasms: opportunities, limitations, and prospects for using in reproductive-aged women. Obstetrics and Gynegology. 2019;11:65-73. DOI:10.18565/aig.2019.11.65-73
8. Xu Y. Lysophospholipid signaling in the epithelial ovarian cancer tumor microenvironment. Cancers (Basel). 2018;10(7):227.
9. Hilvo M, de Santiago I, Gopalacharyulu P, et al. Accumulated metabolites of hydroxybutyric acid serve as diagnostic and prognostic biomarkers of ovarian high-grade serous carcinomas. Cancer Res. 2016;76(4):796-804.
10. Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). J Chemometrics. 2002;16(3):119-28.
11. R CoreTeam (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/ Accessed: 15.04.2021.
12. RStudio Team (2016). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. Available at: http://www.rstudio.com/ Accessed: 15.04.2021.
13. Braicu EI, Darb-Esfahani S, Schmitt WD, et al. High-grade ovarian serous carcinoma patients exhibit profound alterations in lipid metabolism. Oncotarget. 2017;8(61):102912-22.
14. Buas MF, Gu H, Djukovic D, et al. Identification of novel candidate plasma metabolite biomarkers for distinguishing serous ovarian carcinoma and benign serous ovarian tumors. Gynecol Oncol. 2016;140(1):138-44.
15. Hou Y, Li J, Xie H, et al. Differential plasma lipids profiling and lipid signatures as biomarkers in the early diagnosis of ovarian carcinoma using UPLC-MS. Metabolomics. 2016;12(2):1-12.
________________________________________________
1. USCS Data Visualizations – CDC. 2020 Available at: https://gis.cdc.gov/Cancer/USCS/DataViz.html Accessed: 15.04.2021.
2. Koirala P, Moon AS, Chuang L. Clinical Utility of Preoperative Assessment in Ovarian Cancer Cytoreduction. Diagnostics (Basel). 2020;10(8):568.
3. Schorge JO, Clark RM, Lee SI, Penson RT. Primary debulking surgery for advanced ovarian cancer: Are you a believer or a dissenter? Gynecol Oncol. 2014;135(3):595-605.
4. Maringe C, Walters S, Butler J, et al. Stage at diagnosis and ovarian cancer survival: Evidence from the international cancer benchmarking partnership. Gynecol Oncol. 2012;127(1):75-82.
5. Warren LA, Shih A, Renteira SM, et al. Analysis of menstrual effluent: Diagnostic potential for endometriosis. Mol Med. 2018;24(1):1.
6. Devouassoux-Shisheboran M, Genestie C. Pathobiology of ovarian carcinomas. Chin J Cancer. 2015;34(1):50-5.
7. Pavlovich SV, Yurova MV, Melkumyan AG, et al. Biomarkers in ovarian neoplasms: opportunities, limitations, and prospects for using in reproductive-aged women. Obstetrics and Gynegology. 2019;11:65-73. DOI:10.18565/aig.2019.11.65-73
8. Xu Y. Lysophospholipid signaling in the epithelial ovarian cancer tumor microenvironment. Cancers (Basel). 2018;10(7):227.
9. Hilvo M, de Santiago I, Gopalacharyulu P, et al. Accumulated metabolites of hydroxybutyric acid serve as diagnostic and prognostic biomarkers of ovarian high-grade serous carcinomas. Cancer Res. 2016;76(4):796-804.
10. Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). J Chemometrics. 2002;16(3):119-28.
11. R CoreTeam (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/ Accessed: 15.04.2021.
12. RStudio Team (2016). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. Available at: http://www.rstudio.com/ Accessed: 15.04.2021.
13. Braicu EI, Darb-Esfahani S, Schmitt WD, et al. High-grade ovarian serous carcinoma patients exhibit profound alterations in lipid metabolism. Oncotarget. 2017;8(61):102912-22.
14. Buas MF, Gu H, Djukovic D, et al. Identification of novel candidate plasma metabolite biomarkers for distinguishing serous ovarian carcinoma and benign serous ovarian tumors. Gynecol Oncol. 2016;140(1):138-44.
15. Hou Y, Li J, Xie H, et al. Differential plasma lipids profiling and lipid signatures as biomarkers in the early diagnosis of ovarian carcinoma using UPLC-MS. Metabolomics. 2016;12(2):1-12.
1 ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России, Москва, Россия;
2 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
*m_yurova@oparina4.ru
________________________________________________
Mariia V. Iurova*1,2, Vladimir E. Frankevich1, Stanislav V. Pavlovich1,2, Vitaliy V. Chagovets1, Nataliya L. Starodubtseva1, Grigory N. Khabas1, Lev A. Ashrafyan1, Gennady T. Sukhikh1,2
1 Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia;
2 Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
*m_yurova@oparina4.ru