Кабанова О.О., Мелкумян А.Г., Кречетова Л.В., Менжинская И.В., Павлович С.В. Роль иммунной системы в патогенезе эндометриоза. Гинекология. 2021;23(6):485–492.
DOI: 10.26442/20795696.2021.6.200966
________________________________________________
Kabanova OO, Melkumian AG, Krechetova LV, Menzhinskay IV, Pavlovich SV. The role of the immune system in the pathogenesis of endometriosis. Gynecology. 2021;23(6):485–492. DOI: 10.26442/20795696.2021.6.200966
Роль иммунной системы в патогенезе эндометриоза
Кабанова О.О., Мелкумян А.Г., Кречетова Л.В., Менжинская И.В., Павлович С.В. Роль иммунной системы в патогенезе эндометриоза. Гинекология. 2021;23(6):485–492.
DOI: 10.26442/20795696.2021.6.200966
________________________________________________
Kabanova OO, Melkumian AG, Krechetova LV, Menzhinskay IV, Pavlovich SV. The role of the immune system in the pathogenesis of endometriosis. Gynecology. 2021;23(6):485–492. DOI: 10.26442/20795696.2021.6.200966
В статье представлен критический анализ данных о роли иммунных факторов в патогенезе эндометриоза. Накопленные к настоящему времени результаты исследований убедительно демонстрируют, что в основе возникновения, прогрессирования и персистирования заболевания значимая роль принадлежит аномальной субклинической воспалительной реакции и нарушениям в системе иммунного контроля. Несмотря на то, что множество исследований посвящено отдельным звеньям иммунных нарушений в патогенезе эндометриоза, до сих пор нет единой картины, обобщающей эти данные. Необходимо проведение дальнейших исследований, направленных на поиск иммунологических показателей, которые могут быть использованы в качестве маркеров для клинического применения при неинвазивной диагностике этого заболевания. Остается актуальным также поиск специфических иммунных маркеров, которые бы могли стать мишенью таргетной иммунотерапии эндометриоза.
The review presents a critical analysis of data on the role of immune factors in the pathogenesis of endometriosis. The research results accumulated by now convincingly demonstrate that an abnormal subclinical inflammatory response and disorders in the immune control system play a significant role in the onset, progression and persistence of endometriosis. In spite of the fact that many studies are concentrates on particular components of immune disorders in the pathogenesis of endometriosis, there is still no overall picture summarizing these data. Further research is needed to find immunological parameters that can be used as markers for clinical use in non-invasive diagnosis of this disease. The search for specific immune markers that could be used for target immunotherapy of endometriosis also remains relevant.
1. Laganà AS, Garzon S, Götte M, et al. The Pathogenesis of Endometriosis: Molecular and Cell Biology Insights. Int J Mol Sci. 2019;20(22):5615. DOI:10.3390/ijms20225615
2. Sampson JA. Metastatic or Embolic Endometriosis, due to the Menstrual Dissemination of Endometrial Tissue into the Venous Circulation. Am J Pathol. 1927;3(2):93-110.43.
3. Rižner TL. Diagnostic potential of peritoneal fluid biomarkers of endometriosis. Expert Rev Mol Diagn. 2015;15(4):557-80.
DOI:10.1586/14737159.2015.1015994
4. Ярмолинская М.И., Айламазян Э.К. Генитальный эндометриоз. Различные грани проблемы. СПб.: Эко-Вектор, 2017 [Iarmolinskaia MI, Ailamazian EK. Genital endometriosis. Different facets of the problem. Saint Petersburg: Eko-Vektor, 2017 (in Russian)].
5. Адамян Л.В., Арсланян К.Н., Логинова О.Н., и др. Иммунологические аспекты эндометриоза: обзор литературы. Лечащий врач. 2020;4:37-47 [Adamian LV, Arslanian KN, Loginova ON, et al. Immunologicheskie aspekty endometrioza: obzor literatury. Lechashchii vrach. 2020;4:37-47 (in Russian)].
6. Ahn SH, Monsanto SP, Miller C, et al. Pathophysiology and Immune Dysfunction in Endometriosis. Biomed Res Int. 2015;1-12. DOI:10.1155/2015/795976
7. May KE, Villar J, Kirtley S, et al. Endometrial alterations in endometriosis: a systematic review of putative biomarkers. Hum Reprod Update. 2011;17(5):637-53.
DOI:10.1093/humupd/dmr013
8. Ahn SH, Khalaj K, Young SL, et al. Immune-inflammation gene signatures in endometriosis patients. Fertil Steril. 2016;106(6):1420-31.e7.
DOI:10.1016/j.fertnstert.2016.07.005
9. Paul Dmowski W, Braun DP. Immunology of endometriosis. Best Pract Res Clin Obstet Gynaecol. 2004;18(2):245-63. DOI:10.1016/j.bpobgyn.2004.02.001
10. Suryawanshi S, Huang X, Elishaev E, et al. Complement pathway is frequently altered in endometriosis and endometriosis-associated ovarian cancer. Clin Cancer Res. 2014;20(23):6163-74. DOI:10.1158/1078-0432.CCR-14-1338
11. Riccio LDGC, Santulli P, Marcellin L, et al. Immunology of endometriosis. Best Pract Res Clin Obstet Gynaecol. 2018;50:39-49. DOI:10.1016/j.bpobgyn.2018.01.010
12. Symons LK, Miller JE, Kay VR, et al. The Immunopathophysiology of Endometriosis. Trends Mol Med. 2018;24(9):748-62. DOI:10.1016/j.molmed.2018.07.004
13. Selders GS, Fetz AE, Radic MZ, Bowlin GL. An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen Biomater. 2017;4(1):55-68. DOI:10.1093/rb/rbw041
14. Milewski Ł, Dziunycz P, Barcz E, et al. Increased levels of human neutrophil peptides 1, 2, and 3 in peritoneal fluid of patients with endometriosis: association with neutrophils, T cells and IL-8. J Reprod Immunol. 2011;91(1-2):64-70. DOI:10.1016/j.jri.2011.05.008
15. Monsanto SP, Edwards AK, Zhou J, et al. Surgical removal of endometriotic lesions alters local and systemic proinflammatory cytokines in endometriosis patients. Fertil Steril. 2016;105(4):968-77.e5. DOI:10.1016/j.fertnstert.2015.11.047
16. Lin Y-J, Lai M-D, Lei H-Y, Wing L-YC. Neutrophils and macrophages promote angiogenesis in the early stage of endometriosis in a mouse model. Endocrinology. 2006;147(3):1278-86. DOI:10.1210/en.2005-0790
17. Takamura M, Koga K, Izumi G, et al. Neutrophil depletion reduces endometriotic lesion formation in mice. Am J Reprod Immunol. 2016;76(3):193-8. DOI:10.1111/aji.12540
18. Daley JM, Thomay AA, Connolly MD, et al. Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J Leukoc Biol. 2008;83(1):64-70. DOI:10.1189/jlb.0407247
19. Bacci M, Capobianco A, Monno A, et al. Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. Am J Pathol. 2009;175(2):547-56. DOI:10.2353/ajpath.2009.081011
20. Králíčková M, Vetvicka V. Immunological aspects of endometriosis: a review. Ann Transl Med. 2015;3(11):153. DOI:10.3978/j.issn.2305-5839.2015.06.08
21. McLaren J. Vascular endothelial growth factor and endometriotic angiogenesis. Hum Reprod Update. 2000;6(1):45-55. DOI:10.1093/humupd/6.1.45
22. Томай Л.Р., Гунько В.О., Погорелова Т.Н., и др. Значение протеомного анализа перитонеальной жидкости в выяснении патогенеза эндометриоза. Проблемы репродукции. 2014;20(2):52-6 [Tomai LR, Gunko VO, Pogorelova TN, et al. The value of proteomic analysis of peritoneal fluid to explore the pathogenesis of endometriosis. Russian Journal of Human Reproduction. 2014;20(2):52-6 (in Russian)].
23. Анциферова Ю.С., Посисеева Л.В., Сотникова Н.Ю., Елисеева М.А. Экспрессия скавенджер-рецепторов перитонеальными макрофагами при наружном генитальном эндометриозе. Акушерство и гинекология. 2012;2:46-50 [Antsiferova IuS, Posiseeva LV, Sotnikova NIu, Eliseeva MA. Expressions of peritoneal macrophage scavenger receptors in external genital endometriosis. Akusherstvo i ginekologiia. 2012;2:46-50 (in Russian)].
24. Wu MH, Shoji Y, Wu MC, et al. Suppression of matrix metalloproteinase-9 by prostaglandin E(2) in peritoneal macrophage is associated with severity of endometriosis. Am J Pathol. 2005;167(4):1061-9. DOI:10.1016/S0002-9440(10)61195-9
25. Matarese G, De Placido G, Nikas Y, Alviggi C. Pathogenesis of endometriosis: natural immunity dysfunction or autoimmune disease? Trends Mol Med. 2003;9(5):223-8. DOI:10.1016/s1471-4914(03)00051-0
26. Cominelli A, Gaide Chevronnay HP, Lemoine P, et al. Matrix metalloproteinase-27 is expressed in CD163+/CD206+ M2 macrophages in the cycling human endometrium and in superficial endometriotic lesions. Mol Hum Reprod. 2014;20(8):767-75. DOI:10.1093/molehr/gau034
27. Smith KA, Pearson CB, Hachey AM, et al. Alternative activation of macrophages in rhesus macaques (Macaca mulatta) with endometriosis. Comp Med. 2012;62(4):303-10.
28. Haber E, Danenberg HD, Koroukhov N, et al. Peritoneal macrophage depletion by liposomal bisphosphonate attenuates endometriosis in the rat model. Hum Reprod. 2009;24(2):398-407. DOI:10.1093/humrep/den375
29. Itoh F, Komohara Y, Takaishi K, et al. Possible involvement of signal transducer and activator of transcription-3 in cell-cell interactions of peritoneal macrophages and endometrial stromal cells in human endometriosis. Fertil Steril. 2013;99(6):1705-13. DOI:10.1016/j.fertnstert.2013.01.133
30. Takebayashi A, Kimura F, Kishi Y, et al. Subpopulations of macrophages within eutopic endometrium of endometriosis patients. Am J Reprod Immunol. 2015;73(3):221-31. DOI:10.1111/aji.12331
31. Короткова Т.Д., Адамян Л.В., Степанян А.А., и др. Клеточные и молекулярные факторы врожденного иммунитета в патогенезе наружного генитального эндометриоза у женщин (обзор литературы). Проблемы репродукции. 2018;24(6):22-31 [Korotkova TD, Adamian LV, Stepanian AA, et al. Cellular and molecular factors of innate immunity in the pathogenesis of external genital endometriosis in women (a review). Russian Journal of Human Reproduction. 2018;24(6):22-31 (in Russian)]. DOI:10.17116/repro20182406122
32. Vetvicka V, Laganà AS, Salmeri FM, et al. Regulation of apoptotic pathways during endometriosis: from the molecular basis to the future perspectives. Arch Gynecol Obstet. 2016;294(5):897-904. DOI:10.1007/s00404-016-4195-6
33. Oosterlynck DJ, Cornillie FJ, Waer M, et al. Women with endometriosis show a defect in natural killer activity resulting in a decreased cytotoxicity to autologous endometrium. Fertil Steril. 1991;56(1):45-51. DOI:10.1016/s0015-0282(16)54414-8
34. Laganà AS, Triolo O, Salmeri FM, et al. Natural Killer T cell subsets in eutopic and ectopic endometrium: a fresh look to a busy corner. Arch Gynecol Obstet. 2016;293(5):941-9. DOI:10.1007/s00404-015-4004-7
35. Oosterlynck DJ, Meuleman C, Waer M, et al. Immunosuppressive activity of peritoneal fluid in women with endometriosis. Obstet Gynecol. 1993;82(2):206-12.
36. Wu MY, Yang JH, Chao KH, et al. Increase in the expression of killer cell inhibitory receptors on peritoneal natural killer cells in women with endometriosis. Fertil Steril. 2000;74(6):1187-91. DOI:10.1016/s0015-0282(00)01592-2
37. Moretta A. Natural killer cells and dendritic cells: rendezvous in abused tissues. Nat Rev Immunol. 2002;2(12):957-64. DOI:10.1038/nri956
38. Osuga Y, Koga K, Hirota Y, et al. Lymphocytes in endometriosis. Am J Reprod Immunol. 2011;65(1):1-10. DOI:10.1111/j.1600-0897.2010.00887.x
39. Киселева Е.П. Новые представления о противоинфекционном иммунитете. Инфекция и иммунитет. 2011;1(1):9-14 [Kiseleva EP. New aspects of anti-infection immunity. Russian Journal of Infection and Immunity. 2011;1(1):9-14 (in Russian)].
40. Ho HN, Wu MY, Yang YS. Peritoneal cellular immunity and endometriosis. Am J Reprod Immunol. 1997;38(6):400-12. DOI:10.1111/j.1600-0897.1997.tb00319.x
41. Мусаходжаева Д.А., Арипова Т.У., Ешимбетова Г.З., и др. Субпопуляционный состав лимфоцитов у женщин с генитальным эндометриозом. Журнал теоретической и клинической медицины. 2018;1:79-82 [Musakhodzhaeva DA, Aripova TU, Eshimbetova GZ, et al. Subpopuliatsionnyi sostav limfotsitov u zhenshchin s genitalnym endometriozom. Zhurnal teoreticheskoi i klinicheskoi meditsiny. 2018;1:79-82 (in Russian)].
42. Takamura M, Koga K, Izumi G, et al. Simultaneous Detection and Evaluation of Four Subsets of CD4+ T Lymphocyte in Lesions and Peripheral Blood in Endometriosis. Am J Reprod Immunol. 2015;74(6):480-6. DOI:10.1111/aji.12426
43. Gogacz M, Winkler I, Bojarska-Junak A, et al. Increased percentage of Th17 cells in peritoneal fluid is associated with severity of endometriosis. J Reprod Immunol. 2016;117:39-44. DOI:10.1016/j.jri.2016.04.289
44. de Barros IBL, Malvezzi H, Gueuvoghlanian-Silva BY, et al. What do we know about regulatory T cells and endometriosis? A systematic review.
J Reprod Immunol. 2017;120:48-55. DOI:10.1016/j.jri.2017.04.003
45. Попова О.С. Клетки иммунной системы как биомаркеры в диагностике эндометриоза. Проблемы репродукции. 2019;25(2):8-15 [Popova OS. Immune system cells as biomarkers in the diagnostics of endometriosis. Russian Journal of Human Reproduction. 2019;25(2):8-15 (in Russian)]. DOI:10.17116/repro2019250218
46. Olkowska-Truchanowicz J, Bocian K, Maksym RB, et al. CD4+ CD25+ FOXP3+ regulatory T cells in peripheral blood and peritoneal fluid of patients with endometriosis. Hum Reprod. 2013;28(1):119-24. DOI:10.1093/humrep/des346
47. Hanada T, Tsuji S, Nakayama M, et al. Suppressive regulatory T cells and latent transforming growth factor-β-expressing macrophages are altered in the peritoneal fluid of patients with endometriosis. Reprod Biol Endocrinol. 2018;16(1):9. DOI:10.1186/s12958-018-0325-2
48. Gogacz M, Winkler I, Bojarska-Junak A, et al. T regulatory lymphocytes in patients with endometriosis. Mol Med Rep. 2014;10(2):1072-6. DOI:10.3892/mmr.2014.2294
49. Lebovic DI, Mueller MD, Taylor RN. Immunobiology of endometriosis. Fertil Steril. 2001;75(1):1-10. DOI:10.1016/s0015-0282(00)01630-7
50. Riccio LGC, Baracat EC, Chapron C, et al. The role of the B lymphocytes in endometriosis: A systematic review. J Reprod Immunol. 2017;123:29-34. DOI:10.1016/j.jri.2017.09.001
51. Старцева Н.В. Клинические иммунологические аспекты генитального эндометриоза. Акушерство и гинекология. 1980;3:23-6 [Startseva NV. Klinicheskie immunologicheskie aspekty genital'nogo endometrioza. Akusherstvo i ginekologiia. 1980;3:23-6 (in Russian)].
52. Straub RH. The complex role of estrogens in inflammation. Endocr Rev. 2007;28(5):521-74. DOI:10.1210/er.2007-0001
53. Bohler HC, Gercel-Taylor C, Lessey BA, Taylor DD. Endometriosis markers: immunologic alterations as diagnostic indicators for endometriosis. Reprod Sci. 2007;14(6):595-604. DOI:10.1177/1933719107307910
54. Mathur S, Peress MR, Williamson HO, et al. Autoimmunity to endometrium and ovary in endometriosis. Clin Exp Immunol. 1982;50(2):259-66.
55. Inagaki J, Sugiura-Ogasawara M, Nomizu M, et al. An association of IgG anti-laminin-1 autoantibodies with endometriosis in infertile patients. Hum Reprod. 2003;18(3):544-9. DOI:10.1093/humrep/deg148
56. Менжинская И.В., Мелкумян А.Г., Павлович С.В., и др. Аутоиммунные маркеры для неинвазивной диагностики эндометриоза у женщин. Биомедицинская химия. 2020;66(2):162-6 [Menzhinskaia IV, Melkumian AG, Pavlovich SV, et al. Autoimmune markers for non-invasive diagnosis of endometriosis in women. Biomeditsinskaia khimiia. 2020;66(2):162-6 (in Russian)]. DOI:10.18097/PBMC20206602162
57. Shen P, Fillatreau S. Antibody-independent functions of B cells: a focus on cytokines. Nat Rev Immunol. 2015;15(7):441-51. DOI:10.1038/nri3857
58. Evans-Hoeker E, Lessey BA, Jeong JW, et al. Endometrial BCL6 Overexpression in Eutopic Endometrium of Women With Endometriosis. Reprod Sci. 2016;23(9):1234-41. DOI:10.1177/1933719116649711
59. Yeol SG, Won YS, Kim YI, et al. Decreased Bcl-6 and increased Blimp-1 in the peritoneal cavity of patients with endometriosis. Clin Exp Obstet Gynecol. 2015;42(2):156-60.
60. Söhngen L, Schmidt M, Wimberger P, et al. Additional B-cell deficiency does not affect growth and angiogenesis of ectopic human endometrium in T-cell-deficient endometriosis mouse models during long-term culture. J Reprod Immunol. 2014;106:50-7. DOI:10.1016/j.jri.2014.08.004
61. Santulli P, Borghese B, Chouzenoux S, et al. Interleukin-19 and interleukin-22 serum levels are decreased in patients with ovarian endometrioma. Fertil Steril. 2013;99(1):219-26.e2. DOI:10.1016/j.fertnstert.2012.08.055
62. Carmona F, Chapron C, Martínez-Zamora M-Á, et al. Ovarian endometrioma but not deep infiltrating endometriosis is associated with increased serum levels of interleukin-8 and interleukin-6. J Reprod Immunol. 2012;95(1-2):80-6. DOI:10.1016/j.jri.2012.06.001
63. Harada T, Iwabe T, Terakawa N. Role of cytokines in endometriosis. Fertil Steril. 2001;76(1):1-10. DOI:10.1016/s0015-0282(01)01816-7
64. Zarmakoupis PN, Rier SE, Maroulis GB, Becker JL. Inhibition of human endometrial stromal cell proliferation by interleukin 6. Hum Reprod. 1995;10(9):2395-9. DOI:10.1093/oxfordjournals.humrep.a136306
65. Tabibzadeh SS, Santhanam U, Sehgal PB, May LT. Cytokine-induced production of IFN-beta 2/IL-6 by freshly explanted human endometrial stromal cells. Modulation by estradiol-17 beta. J Immunol. 1989;142(9):3134-9.
66. Kang YJ, Jeung IC, Park A, et al. An increased level of IL-6 suppresses NK cell activity in peritoneal fluid of patients with endometriosis via regulation of SHP-2 expression. Hum Reprod. 2014;29(10):2176-89. DOI:10.1093/humrep/deu172
67. Guo SW, Du Y, Liu X. Platelet-derived TGF-β1 mediates the down-modulation of NKG2D expression and may be responsible for impaired natural killer (NK) cytotoxicity in women with endometriosis. Hum Reprod. 2016;31(7):1462-74. DOI:10.1093/humrep/dew057
68. Suen JL, Chang Y, Chiu PR, et al. Serum level of IL-10 is increased in patients with endometriosis, and IL-10 promotes the growth of lesions in a murine model. Am J Pathol. 2014;184(2):464-71. DOI:10.1016/j.ajpath.2013.10.023
69. Cameron MJ, Kelvin DJ. Cytokines and chemokines – their receptors and their genes: an overview. Adv Exp Med Biol. 2003;520:8-32. DOI:10.1007/978-1-4615-0171-8_2
70. Цицкарева Д.З., Ярмолинская М.И., Селютин А.В., Сельков С.А. Оценка содержания и патогенетической роли цитокинов перитонеальной жидкости у пациенток с глубоким инфильтративным эндометриозом. Журнал акушерства и женских болезней. 2017;66(1):38-45 [Tsitskareva DZ, Iarmolinskaia MI, Seliutin AV, Selkov SA. Evaluation of the content and the pathogenetic role of cytokines in the peritoneal fluid in patients with deep infiltrative endometriosis. Journal of Obstetrics and Women’s Diseases. 2017;66(1):38-45 (in Russian)]. DOI:10.17816/JOWD66138-45
71. Yang HL, Zhou WJ, Chang KK, et al. The crosstalk between endometrial stromal cells and macrophages impairs cytotoxicity of NK cells in endometriosis by secreting IL-10 and TGF-β. Reproduction. 2017;154(6):815-25. DOI:10.1530/REP-17-0342
72. Пашков В.М., Лебедев В.А. Современные представления об этиологии и патогенезе генитального эндометриоза. Вопросы гинекологии, акушерства и перинатологии. 2007;6(3):52-61 [Pashkov VM, Lebedev VA. Modern understanding of the etiology and pathogenesis of genital endometriosis. Voprosy ginekologii, akusherstva i perinatologii. 2007;6(3):52-61 (in Russian)].
73. Коваль Г.Д. Обоснование подходов к лечению бесплодия у женщин с эндометриозом в зависимости от иммунологических показателей. Universum: медицина и фармакология. 2015;7-8(19):9 [Koval GD. Substantiation of approaches to the treatment of infertility in women with endometriosis depending on immunological findings. Universum: meditsina i farmakologiia. 2015;7-8(19):9 (in Russian)].
74. Красильникова А.К., Малышкина А.И., Сотникова Н.Ю., и др. Использование иммуномодулирующей терапии у женщин с бесплодием при «малых» формах наружного генитального эндометриоза. Российский вестник акушера-гинеколога. 2014;14(3):25-8 [Krasilnikova AK, Malyshkina AI, Sotnikova NIu, et al. Ispolzovanie immunomoduliruiushchei terapii u zhenshchin s besplodiem pri "malykh" formakh naruzhnogo genital'nogo endometrioza. Rossiiskii vestnik akushera-ginekologa. 2014;14(3):25-8 (in Russian)].
75. Романова С.В. Значение факторов врожденного иммунитета в патогенезе наружного генитального эндометриоза I–II стадии у пациенток с бесплодием и обоснование использования препарата глюкозаминилмурамилдипептида в комплексной терапии данной патологии. Автореф. … канд. мед. наук. Иваново, 2013 [Romanova SV. Value factors of innate immunity in the pathogenesis of external genital endometriosis stage I–II in patients with infertility and justification for the use of GMDP entrapped in the treatment of this pathology. Avtoref. … kand. med. nauk. Ivanovo, 2013 (in Russian)].
76. Сотникова Н.Ю., Анциферова Ю.С., Малышкина А.И., Красильникова А.К. Нарушения системных реакций врожденного иммунитета у пациенток с бесплодием и эндометриозом I–II стадии и возможность их коррекции препаратом Ликопид. Иммунология. 2016;37(1):17-21 [Sotnikova NIu, Antsiferova IuS, Malyshkina AI, Krasilnikova AK. Impairment of the system innate immune reactions in infertile patients with endometriosis of I–II stage and possibility of its correction by drug likopid. Immunologiia. 2016;37(1):17-21 (in Russian)]. DOI:10.18821/0206-4952-2016-37-1-17–21
77. Sikora J, Smycz-Kubańska M, Mielczarek-Palacz A, Kondera-Anasz Z. Abnormal peritoneal regulation of chemokine activation-The role of IL-8 in pathogenesis of endometriosis. Am J Reprod Immunol. 2017;77(4). DOI:10.1111/aji.12622
78. Miller JE, Monsanto SP, Ahn SH, et al. Interleukin-33 modulates inflammation in endometriosis. Sci Rep. 2017;7(1):17903. DOI:10.1038/s41598-017-18224-x
79. Чантурия Т.З. Роль иммунологических факторов при развитии различных форм эндометриоза. Актуальные проблемы медицины и биологии. 2018;3:25-30 [Chanturiia TZ. Role of immunological factors in the development of endometriosis. Aktualnye problemy meditsiny i biologii. 2018;3:25-30 (in Russian)].
DOI:10.24411/2587-4926-2018-10033
80. Borrelli GM, Kaufmann AM, Abrão MS, Mechsner S. Addition of MCP-1 and MIP-3β to the IL-8 appraisal in peritoneal fluid enhances the probability of identifying women with endometriosis. J Reprod Immunol. 2015;109:66-73. DOI:10.1016/j.jri.2015.01.003
81. Павлович С.В., Кречетова Л.В., Вторушина В.В., и др. Особенности профиля секретируемых белков клетками из эндометриоидных очагов и эутопического эндометрия женщин с наружным генитальным эндометриозом в культуре in vitro. Акушерство и гинекология. 2019;8:90-9 [Pavlovich SV, Krechetova LV, Vtorushina VV, et al. Features of the profile of proteins secreted by cells from the endometrioid foci and eutopic endometrium in women with external genital endometriosis in vitro culture. Akusherstvo i ginekologiia. 2019;8:90-9 (in Russian)]. DOI:10.18565/aig.2019.8.90-99
82. Фролова М.С. Роль ростовых факторов в патогенезе эндометриоза. Журнал акушерства и женских болезней. 2019;68(3):71-80 [Frolova MS. The role of growth factors in the pathogenesis of endometriosis. Zhurnal akusherstva i zhenskikh boleznei. 2019;68(3):71-80 (in Russian)]. DOI:10.17816/JOWD68371-80
83. Shifren JL, Tseng JF, Zaloudek CJ, et al. Ovarian steroid regulation of vascular endothelial growth factor in the human endometrium: implications for angiogenesis during the menstrual cycle and in the pathogenesis of endometriosis. J Clin Endocrinol Metab. 1996;81(8):3112-8. DOI:10.1210/jcem.81.8.8768883
84. Бурлев В.А., Павлович С.В. Ангиогенез и ангиогенные факторы роста в регуляции репродуктивной системы у женщин. Проблемы репродукции. 1999;5(5):6-13 [Burlev VA, Pavlovich SV. Angiogenez i angiogennye faktory rosta v reguliatsii reproduktivnoi sistemy u zhenshchin. Problemy reproduktsii. 1999;5(5):6-13 (in Russian)].
85. Bourlev V, Volkov N, Pavlovitch S, et al. The relationship between microvessel density, proliferative activity and expression of vascular endothelial growth factor-a and its receptors in eutopic endometrium and endometriotic lesions. Reproduction. 2006;132(3):501-9. DOI:10.1530/rep.1.01110
86. Куликова Н.В., Коваленко И.И., Байбуз Д.В., Лебедева Я.А. Роль генетических полиморфизмов генов VEGF, COX2, MUC в развитии эндометриозассоциированного бесплодия. Гинекология. 2019;21(2):34-7
[Kulikova NV, Kovalenko II, Baibuz DV, Lebedeva IaA. The role of genetic polymorphisms of the VEGF, COX2, MUC genes in the development of endometriosis-associated infertility. Gynecology. 2019;21(2):34-7 (in Russian)]. DOI:10.26442/20795696.2019.2.190344
87. Bourlev V, Iljasova N, Adamyan L, et al. Signs of reduced angiogenic activity after surgical removal of deeply infiltrating endometriosis. Fertil Steril. 2010;94(1):52-7. DOI:10.1016/j.fertnstert.2009.02.019
88. Young VJ, Brown JK, Saunders PTK, et al. The peritoneum is both a source and target of TGF-β in women with endometriosis. PLoS One. 2014;9(9):e106773. DOI:10.1371/journal.pone.0106773
89. Hull ML, Johan MZ, Hodge WL, et al. Host-derived TGFB1 deficiency suppresses lesion development in a mouse model of endometriosis. Am J Pathol. 2012;180(3):880-7. DOI:10.1016/j.ajpath.2011.11.013
90. Saito A, Osuga Y, Yoshino O, et al. TGF-β1 induces proteinase-activated receptor 2 (PAR2) expression in endometriotic stromal cells and stimulates PAR2 activation-induced secretion of IL-6. Hum Reprod. 2011;26(7):1892-8. DOI:10.1093/humrep/der125
91. Choi HJ, Park MJ, Kim BS, et al. Transforming growth factor β1 enhances adhesion of endometrial cells to mesothelium by regulating integrin expression. BMB Rep. 2017;50(8):429-34. DOI:10.5483/bmbrep.2017.50.8.097
________________________________________________
1. Laganà AS, Garzon S, Götte M, et al. The Pathogenesis of Endometriosis: Molecular and Cell Biology Insights. Int J Mol Sci. 2019;20(22):5615. DOI:10.3390/ijms20225615
2. Sampson JA. Metastatic or Embolic Endometriosis, due to the Menstrual Dissemination of Endometrial Tissue into the Venous Circulation. Am J Pathol. 1927;3(2):93-110.43.
3. Rižner TL. Diagnostic potential of peritoneal fluid biomarkers of endometriosis. Expert Rev Mol Diagn. 2015;15(4):557-80. DOI:10.1586/14737159.2015.1015994
4. Iarmolinskaia MI, Ailamazian EK. Genital endometriosis. Different facets of the problem. Saint Petersburg: Eko-Vektor, 2017 (in Russian).
5. Adamian LV, Arslanian KN, Loginova ON, et al. Immunologicheskie aspekty endometrioza: obzor literatury. Lechashchii vrach. 2020;4:37-47 (in Russian).
6. Ahn SH, Monsanto SP, Miller C, et al. Pathophysiology and Immune Dysfunction in Endometriosis. Biomed Res Int. 2015;1-12. DOI:10.1155/2015/795976
7. May KE, Villar J, Kirtley S, et al. Endometrial alterations in endometriosis: a systematic review of putative biomarkers. Hum Reprod Update. 2011;17(5):637-53. DOI:10.1093/humupd/dmr013
8. Ahn SH, Khalaj K, Young SL, et al. Immune-inflammation gene signatures in endometriosis patients. Fertil Steril. 2016;106(6):1420-31.e7. DOI:10.1016/j.fertnstert.2016.07.005
9. Paul Dmowski W, Braun DP. Immunology of endometriosis. Best Pract Res Clin Obstet Gynaecol. 2004;18(2):245-63. DOI:10.1016/j.bpobgyn.2004.02.001
10. Suryawanshi S, Huang X, Elishaev E, et al. Complement pathway is frequently altered in endometriosis and endometriosis-associated ovarian cancer. Clin Cancer Res. 2014;20(23):6163-74. DOI:10.1158/1078-0432.CCR-14-1338
11. Riccio LDGC, Santulli P, Marcellin L, et al. Immunology of endometriosis. Best Pract Res Clin Obstet Gynaecol. 2018;50:39-49. DOI:10.1016/j.bpobgyn.2018.01.010
12. Symons LK, Miller JE, Kay VR, et al. The Immunopathophysiology of Endometriosis. Trends Mol Med. 2018;24(9):748-62. DOI:10.1016/j.molmed.2018.07.004
13. Selders GS, Fetz AE, Radic MZ, Bowlin GL. An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen Biomater. 2017;4(1):55-68. DOI:10.1093/rb/rbw041
14. Milewski Ł, Dziunycz P, Barcz E, et al. Increased levels of human neutrophil peptides 1, 2, and 3 in peritoneal fluid of patients with endometriosis: association with neutrophils, T cells and IL-8. J Reprod Immunol. 2011;91(1-2):64-70. DOI:10.1016/j.jri.2011.05.008
15. Monsanto SP, Edwards AK, Zhou J, et al. Surgical removal of endometriotic lesions alters local and systemic proinflammatory cytokines in endometriosis patients. Fertil Steril. 2016;105(4):968-77.e5. DOI:10.1016/j.fertnstert.2015.11.047
16. Lin Y-J, Lai M-D, Lei H-Y, Wing L-YC. Neutrophils and macrophages promote angiogenesis in the early stage of endometriosis in a mouse model. Endocrinology. 2006;147(3):1278-86. DOI:10.1210/en.2005-0790
17. Takamura M, Koga K, Izumi G, et al. Neutrophil depletion reduces endometriotic lesion formation in mice. Am J Reprod Immunol. 2016;76(3):193-8. DOI:10.1111/aji.12540
18. Daley JM, Thomay AA, Connolly MD, et al. Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J Leukoc Biol. 2008;83(1):64-70. DOI:10.1189/jlb.0407247
19. Bacci M, Capobianco A, Monno A, et al. Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. Am J Pathol. 2009;175(2):547-56. DOI:10.2353/ajpath.2009.081011
20. Králíčková M, Vetvicka V. Immunological aspects of endometriosis: a review. Ann Transl Med. 2015;3(11):153. DOI:10.3978/j.issn.2305-5839.2015.06.08
21. McLaren J. Vascular endothelial growth factor and endometriotic angiogenesis. Hum Reprod Update. 2000;6(1):45-55. DOI:10.1093/humupd/6.1.45
22. Tomai LR, Gunko VO, Pogorelova TN, et al. The value of proteomic analysis of peritoneal fluid to explore the pathogenesis of endometriosis. Russian Journal of Human Reproduction. 2014;20(2):52-6 (in Russian).
23. Antsiferova IuS, Posiseeva LV, Sotnikova NIu, Eliseeva MA. Expressions of peritoneal macrophage scavenger receptors in external genital endometriosis. Akusherstvo i ginekologiia. 2012;2:46-50 (in Russian).
24. Wu MH, Shoji Y, Wu MC, et al. Suppression of matrix metalloproteinase-9 by prostaglandin E(2) in peritoneal macrophage is associated with severity of endometriosis. Am J Pathol. 2005;167(4):1061-9. DOI:10.1016/S0002-9440(10)61195-9
25. Matarese G, De Placido G, Nikas Y, Alviggi C. Pathogenesis of endometriosis: natural immunity dysfunction or autoimmune disease? Trends Mol Med. 2003;9(5):223-8. DOI:10.1016/s1471-4914(03)00051-0
26. Cominelli A, Gaide Chevronnay HP, Lemoine P, et al. Matrix metalloproteinase-27 is expressed in CD163+/CD206+ M2 macrophages in the cycling human endometrium and in superficial endometriotic lesions. Mol Hum Reprod. 2014;20(8):767-75. DOI:10.1093/molehr/gau034
27. Smith KA, Pearson CB, Hachey AM, et al. Alternative activation of macrophages in rhesus macaques (Macaca mulatta) with endometriosis. Comp Med. 2012;62(4):303-10.
28. Haber E, Danenberg HD, Koroukhov N, et al. Peritoneal macrophage depletion by liposomal bisphosphonate attenuates endometriosis in the rat model. Hum Reprod. 2009;24(2):398-407. DOI:10.1093/humrep/den375
29. Itoh F, Komohara Y, Takaishi K, et al. Possible involvement of signal transducer and activator of transcription-3 in cell-cell interactions of peritoneal macrophages and endometrial stromal cells in human endometriosis. Fertil Steril. 2013;99(6):1705-13. DOI:10.1016/j.fertnstert.2013.01.133
30. Takebayashi A, Kimura F, Kishi Y, et al. Subpopulations of macrophages within eutopic endometrium of endometriosis patients. Am J Reprod Immunol. 2015;73(3):221-31. DOI:10.1111/aji.12331
31. Korotkova TD, Adamian LV, Stepanian AA, et al. Cellular and molecular factors of innate immunity in the pathogenesis of external genital endometriosis in women (a review). Russian Journal of Human Reproduction. 2018;24(6):22-31 (in Russian). DOI:10.17116/repro20182406122
32. Vetvicka V, Laganà AS, Salmeri FM, et al. Regulation of apoptotic pathways during endometriosis: from the molecular basis to the future perspectives. Arch Gynecol Obstet. 2016;294(5):897-904. DOI:10.1007/s00404-016-4195-6
33. Oosterlynck DJ, Cornillie FJ, Waer M, et al. Women with endometriosis show a defect in natural killer activity resulting in a decreased cytotoxicity to autologous endometrium. Fertil Steril. 1991;56(1):45-51. DOI:10.1016/s0015-0282(16)54414-8
34. Laganà AS, Triolo O, Salmeri FM, et al. Natural Killer T cell subsets in eutopic and ectopic endometrium: a fresh look to a busy corner. Arch Gynecol Obstet. 2016;293(5):941-9. DOI:10.1007/s00404-015-4004-7
35. Oosterlynck DJ, Meuleman C, Waer M, et al. Immunosuppressive activity of peritoneal fluid in women with endometriosis. Obstet Gynecol. 1993;82(2):206-12.
36. Wu MY, Yang JH, Chao KH, et al. Increase in the expression of killer cell inhibitory receptors on peritoneal natural killer cells in women with endometriosis. Fertil Steril. 2000;74(6):1187-91. DOI:10.1016/s0015-0282(00)01592-2
37. Moretta A. Natural killer cells and dendritic cells: rendezvous in abused tissues. Nat Rev Immunol. 2002;2(12):957-64. DOI:10.1038/nri956
38. Osuga Y, Koga K, Hirota Y, et al. Lymphocytes in endometriosis. Am J Reprod Immunol. 2011;65(1):1-10. DOI:10.1111/j.1600-0897.2010.00887.x
39. Kiseleva EP. New aspects of anti-infection immunity. Russian Journal of Infection and Immunity. 2011;1(1):9-14 (in Russian).
40. Ho HN, Wu MY, Yang YS. Peritoneal cellular immunity and endometriosis. Am J Reprod Immunol. 1997;38(6):400-12. DOI:10.1111/j.1600-0897.1997.tb00319.x
41. Musakhodzhaeva DA, Aripova TU, Eshimbetova GZ, et al. Subpopuliatsionnyi sostav limfotsitov u zhenshchin s genitalnym endometriozom. Zhurnal teoreticheskoi i klinicheskoi meditsiny. 2018;1:79-82 (in Russian).
42. Takamura M, Koga K, Izumi G, et al. Simultaneous Detection and Evaluation of Four Subsets of CD4+ T Lymphocyte in Lesions and Peripheral Blood in Endometriosis. Am J Reprod Immunol. 2015;74(6):480-6. DOI:10.1111/aji.12426
43. Gogacz M, Winkler I, Bojarska-Junak A, et al. Increased percentage of Th17 cells in peritoneal fluid is associated with severity of endometriosis. J Reprod Immunol. 2016;117:39-44. DOI:10.1016/j.jri.2016.04.289
44. de Barros IBL, Malvezzi H, Gueuvoghlanian-Silva BY, et al. What do we know about regulatory T cells and endometriosis? A systematic review.
J Reprod Immunol. 2017;120:48-55. DOI:10.1016/j.jri.2017.04.003
45. Popova OS. Immune system cells as biomarkers in the diagnostics of endometriosis. Russian Journal of Human Reproduction. 2019;25(2):8-15 (in Russian). DOI:10.17116/repro2019250218
46. Olkowska-Truchanowicz J, Bocian K, Maksym RB, et al. CD4+ CD25+ FOXP3+ regulatory T cells in peripheral blood and peritoneal fluid of patients with endometriosis. Hum Reprod. 2013;28(1):119-24. DOI:10.1093/humrep/des346
47. Hanada T, Tsuji S, Nakayama M, et al. Suppressive regulatory T cells and latent transforming growth factor-β-expressing macrophages are altered in the peritoneal fluid of patients with endometriosis. Reprod Biol Endocrinol. 2018;16(1):9. DOI:10.1186/s12958-018-0325-2
48. Gogacz M, Winkler I, Bojarska-Junak A, et al. T regulatory lymphocytes in patients with endometriosis. Mol Med Rep. 2014;10(2):1072-6. DOI:10.3892/mmr.2014.2294
49. Lebovic DI, Mueller MD, Taylor RN. Immunobiology of endometriosis. Fertil Steril. 2001;75(1):1-10. DOI:10.1016/s0015-0282(00)01630-7
50. Riccio LGC, Baracat EC, Chapron C, et al. The role of the B lymphocytes in endometriosis: A systematic review. J Reprod Immunol. 2017;123:29-34. DOI:10.1016/j.jri.2017.09.001
51. Startseva NV. Klinicheskie immunologicheskie aspekty genital'nogo endometrioza. Akusherstvo i ginekologiia. 1980;3:23-6 (in Russian).
52. Straub RH. The complex role of estrogens in inflammation. Endocr Rev. 2007;28(5):521-74. DOI:10.1210/er.2007-0001
53. Bohler HC, Gercel-Taylor C, Lessey BA, Taylor DD. Endometriosis markers: immunologic alterations as diagnostic indicators for endometriosis. Reprod Sci. 2007;14(6):595-604. DOI:10.1177/1933719107307910
54. Mathur S, Peress MR, Williamson HO, et al. Autoimmunity to endometrium and ovary in endometriosis. Clin Exp Immunol. 1982;50(2):259-66.
55. Inagaki J, Sugiura-Ogasawara M, Nomizu M, et al. An association of IgG anti-laminin-1 autoantibodies with endometriosis in infertile patients. Hum Reprod. 2003;18(3):544-9. DOI:10.1093/humrep/deg148
56. Menzhinskaia IV, Melkumian AG, Pavlovich SV, et al. Autoimmune markers for non-invasive diagnosis of endometriosis in women. Biomeditsinskaia khimiia. 2020;66(2):162-6 (in Russian). DOI:10.18097/PBMC20206602162
57. Shen P, Fillatreau S. Antibody-independent functions of B cells: a focus on cytokines. Nat Rev Immunol. 2015;15(7):441-51. DOI:10.1038/nri3857
58. Evans-Hoeker E, Lessey BA, Jeong JW, et al. Endometrial BCL6 Overexpression in Eutopic Endometrium of Women With Endometriosis. Reprod Sci. 2016;23(9):1234-41. DOI:10.1177/1933719116649711
59. Yeol SG, Won YS, Kim YI, et al. Decreased Bcl-6 and increased Blimp-1 in the peritoneal cavity of patients with endometriosis. Clin Exp Obstet Gynecol. 2015;42(2):156-60.
60. Söhngen L, Schmidt M, Wimberger P, et al. Additional B-cell deficiency does not affect growth and angiogenesis of ectopic human endometrium in T-cell-deficient endometriosis mouse models during long-term culture. J Reprod Immunol. 2014;106:50-7. DOI:10.1016/j.jri.2014.08.004
61. Santulli P, Borghese B, Chouzenoux S, et al. Interleukin-19 and interleukin-22 serum levels are decreased in patients with ovarian endometrioma. Fertil Steril. 2013;99(1):219-26.e2. DOI:10.1016/j.fertnstert.2012.08.055
62. Carmona F, Chapron C, Martínez-Zamora M-Á, et al. Ovarian endometrioma but not deep infiltrating endometriosis is associated with increased serum levels of interleukin-8 and interleukin-6. J Reprod Immunol. 2012;95(1-2):80-6. DOI:10.1016/j.jri.2012.06.001
63. Harada T, Iwabe T, Terakawa N. Role of cytokines in endometriosis. Fertil Steril. 2001;76(1):1-10. DOI:10.1016/s0015-0282(01)01816-7
64. Zarmakoupis PN, Rier SE, Maroulis GB, Becker JL. Inhibition of human endometrial stromal cell proliferation by interleukin 6. Hum Reprod. 1995;10(9):2395-9. DOI:10.1093/oxfordjournals.humrep.a136306
65. Tabibzadeh SS, Santhanam U, Sehgal PB, May LT. Cytokine-induced production of IFN-beta 2/IL-6 by freshly explanted human endometrial stromal cells. Modulation by estradiol-17 beta. J Immunol. 1989;142(9):3134-9.
66. Kang YJ, Jeung IC, Park A, et al. An increased level of IL-6 suppresses NK cell activity in peritoneal fluid of patients with endometriosis via regulation of SHP-2 expression. Hum Reprod. 2014;29(10):2176-89. DOI:10.1093/humrep/deu172
67. Guo SW, Du Y, Liu X. Platelet-derived TGF-β1 mediates the down-modulation of NKG2D expression and may be responsible for impaired natural killer (NK) cytotoxicity in women with endometriosis. Hum Reprod. 2016;31(7):1462-74. DOI:10.1093/humrep/dew057
68. Suen JL, Chang Y, Chiu PR, et al. Serum level of IL-10 is increased in patients with endometriosis, and IL-10 promotes the growth of lesions in a murine model. Am J Pathol. 2014;184(2):464-71. DOI:10.1016/j.ajpath.2013.10.023
69. Cameron MJ, Kelvin DJ. Cytokines and chemokines – their receptors and their genes: an overview. Adv Exp Med Biol. 2003;520:8-32. DOI:10.1007/978-1-4615-0171-8_2
70. Tsitskareva DZ, Iarmolinskaia MI, Seliutin AV, Selkov SA. Evaluation of the content and the pathogenetic role of cytokines in the peritoneal fluid in patients with deep infiltrative endometriosis. Journal of Obstetrics and Women’s Diseases. 2017;66(1):38-45 (in Russian). DOI:10.17816/JOWD66138-45
71. Yang HL, Zhou WJ, Chang KK, et al. The crosstalk between endometrial stromal cells and macrophages impairs cytotoxicity of NK cells in endometriosis by secreting IL-10 and TGF-β. Reproduction. 2017;154(6):815-25. DOI:10.1530/REP-17-0342
72. Pashkov VM, Lebedev VA. Modern understanding of the etiology and pathogenesis of genital endometriosis. Voprosy ginekologii, akusherstva i perinatologii. 2007;6(3):52-61 (in Russian).
73. Koval GD. Substantiation of approaches to the treatment of infertility in women with endometriosis depending on immunological findings. Universum: meditsina i farmakologiia. 2015;7-8(19):9 (in Russian).
74. Krasilnikova AK, Malyshkina AI, Sotnikova NIu, et al. Ispolzovanie immunomoduliruiushchei terapii u zhenshchin s besplodiem pri "malykh" formakh naruzhnogo genital'nogo endometrioza. Rossiiskii vestnik akushera-ginekologa. 2014;14(3):25-8 (in Russian).
75. Romanova SV. Value factors of innate immunity in the pathogenesis of external genital endometriosis stage I–II in patients with infertility and justification for the use of GMDP entrapped in the treatment of this pathology. Avtoref. … kand. med. nauk. Ivanovo, 2013 (in Russian).
76. Sotnikova NIu, Antsiferova IuS, Malyshkina AI, Krasilnikova AK. Impairment of the system innate immune reactions in infertile patients with endometriosis of I–II stage and possibility of its correction by drug likopid. Immunologiia. 2016;37(1):17-21 (in Russian). DOI:10.18821/0206-4952-2016-37-1-17–21
77. Sikora J, Smycz-Kubańska M, Mielczarek-Palacz A, Kondera-Anasz Z. Abnormal peritoneal regulation of chemokine activation-The role of IL-8 in pathogenesis of endometriosis. Am J Reprod Immunol. 2017;77(4). DOI:10.1111/aji.12622
78. Miller JE, Monsanto SP, Ahn SH, et al. Interleukin-33 modulates inflammation in endometriosis. Sci Rep. 2017;7(1):17903. DOI:10.1038/s41598-017-18224-x
79. Chanturiia TZ. Role of immunological factors in the development of endometriosis. Aktualnye problemy meditsiny i biologii. 2018;3:25-30 (in Russian).
DOI:10.24411/2587-4926-2018-10033
80. Borrelli GM, Kaufmann AM, Abrão MS, Mechsner S. Addition of MCP-1 and MIP-3β to the IL-8 appraisal in peritoneal fluid enhances the probability of identifying women with endometriosis. J Reprod Immunol. 2015;109:66-73. DOI:10.1016/j.jri.2015.01.003
81. Pavlovich SV, Krechetova LV, Vtorushina VV, et al. Features of the profile of proteins secreted by cells from the endometrioid foci and eutopic endometrium in women with external genital endometriosis in vitro culture. Akusherstvo i ginekologiia. 2019;8:90-9 (in Russian). DOI:10.18565/aig.2019.8.90-99
82. Frolova MS. The role of growth factors in the pathogenesis of endometriosis. Zhurnal akusherstva i zhenskikh boleznei. 2019;68(3):71-80 (in Russian). DOI:10.17816/JOWD68371-80
83. Shifren JL, Tseng JF, Zaloudek CJ, et al. Ovarian steroid regulation of vascular endothelial growth factor in the human endometrium: implications for angiogenesis during the menstrual cycle and in the pathogenesis of endometriosis. J Clin Endocrinol Metab. 1996;81(8):3112-8. DOI:10.1210/jcem.81.8.8768883
84. Burlev VA, Pavlovich SV. Angiogenez i angiogennye faktory rosta v reguliatsii reproduktivnoi sistemy u zhenshchin. Problemy reproduktsii. 1999;5(5):6-13 (in Russian).
85. Bourlev V, Volkov N, Pavlovitch S, et al. The relationship between microvessel density, proliferative activity and expression of vascular endothelial growth factor-a and its receptors in eutopic endometrium and endometriotic lesions. Reproduction. 2006;132(3):501-9. DOI:10.1530/rep.1.01110
86. Kulikova NV, Kovalenko II, Baibuz DV, Lebedeva IaA. The role of genetic polymorphisms of the VEGF, COX2, MUC genes in the development of endometriosis-associated infertility. Gynecology. 2019;21(2):34-7 (in Russian). DOI:10.26442/20795696.2019.2.190344
87. Bourlev V, Iljasova N, Adamyan L, et al. Signs of reduced angiogenic activity after surgical removal of deeply infiltrating endometriosis. Fertil Steril. 2010;94(1):52-7. DOI:10.1016/j.fertnstert.2009.02.019
88. Young VJ, Brown JK, Saunders PTK, et al. The peritoneum is both a source and target of TGF-β in women with endometriosis. PLoS One. 2014;9(9):e106773. DOI:10.1371/journal.pone.0106773
89. Hull ML, Johan MZ, Hodge WL, et al. Host-derived TGFB1 deficiency suppresses lesion development in a mouse model of endometriosis. Am J Pathol. 2012;180(3):880-7. DOI:10.1016/j.ajpath.2011.11.013
90. Saito A, Osuga Y, Yoshino O, et al. TGF-β1 induces proteinase-activated receptor 2 (PAR2) expression in endometriotic stromal cells and stimulates PAR2 activation-induced secretion of IL-6. Hum Reprod. 2011;26(7):1892-8. DOI:10.1093/humrep/der125
91. Choi HJ, Park MJ, Kim BS, et al. Transforming growth factor β1 enhances adhesion of endometrial cells to mesothelium by regulating integrin expression. BMB Rep. 2017;50(8):429-34. DOI:10.5483/bmbrep.2017.50.8.097
1 ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова», Москва, Россия;
2 ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России, Москва, Россия
*kabanova.olya2012@gmail.com
________________________________________________
Оlga O. Kabanova*1, Arika G. Melkumian2, Liubov V. Krechetova2, Irina V. Menzhinskay2, Stanislav V. Pavlovich2
1 Lomonosov Moscow State University, Moscow, Russia;
2 Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
*kabanova.olya2012@gmail.com