Цель. Определить динамику уровней липидов в клетках эпителия шейки матки при лечении 0,1% активированной глицирризиновой кислотой хронического цервицита и внутриэпителиальных поражений низкой степени (LSIL). Материалы и методы. В проспективное когортное исследование включили 40 пациенток с хроническим цервицитом и 40 пациенток с LSIL. Цитологическую оценку мазков с шейки матки осуществляли по системе Bethesda (2014 г.). Все пациентки получали Эпиген Интим спрей в течение 18 мес. Амплификацию типоспецифических фрагментов ДНК вируса папилломы человека (ВПЧ) и человеческой ДНК (контроль взятия материала – КВМ) проводили с помощью комплекта реагентов для выявления, типирования и количественного определения 21 типа ВПЧ методом ПЦР ВПЧ «Квант-21». Липидный экстракт соскоба эпителия шейки матки, взятого до начала терапии и после, анализировали методом высокоэффективной жидкостной хроматографии с тандемной масс-спектрометрией (ВЭЖХ-МС/МС). Липиды идентифицировали с помощью R-скрипта Lipid Match и по характерным МС/МС. Корреляционный анализ липидома соскоба и КВМ проводили с использованием теста Спирмена, сравнение уровней липидов в двух временных точках – с помощью теста Манна–Уитни. Результаты. При лечении хронического цервицита снижались уровни липидов CL 16:0_16:1_18:1_18:1, HexCer-NDS d20:0/26:0, PC 16:0_18:1 и 16:0_20:4; при лечении LSIL – уровни церамидов и глюкозилцерамидов. Для хронического цервицита характерна положительная корреляция КВМ мазка с кардиолипинами, глюкозилцерамидами и липидами с простой эфирной связью эпителия, для LSIL – отрицательная корреляция с фосфатидилхолинами и фосфатидилэтаноламинами с простой эфирной связью. Заключение. В результате лечения активированной глицирризиновой кислотой статистически значимо изменялся липидный спектр клеток эпителия, причем характер изменений зависел от типа поражения. Необходимо также учитывать КВМ соскобов при дальнейших исследованиях липидома эпителиальных клеток, причем на поправки влияет тип ВПЧ-ассоциированных поражений.
Aim. To determine the change of lipid levels in the cervical epithelial cells during the treatment of chronic cervicitis and low-grade squamous intraepithelial lesions (LSIL) with 0.1% activated glycyrrhizic acid. Materials and methods. The prospective cohort study included 40 patients with chronic cervicitis and 40 patients with LSIL. Cytological evaluation of cervical smears was performed according to the Bethesda system (2014). All patients received Epigen Intim Spray for 18 months. Amplification of type-specific DNA fragments of human papillomavirus (HPV) and human DNA (sampling control – SC) was done using a kit of reagents to detect, type, and quantitatively determine 21 HPV types by Quantum-21 HPV PCR. Lipid extract of a cervical epithelial scraping taken before and after therapy was analyzed by high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). Lipids were identified using the Lipid Match R-script and by characteristic MS/MS. Correlation analysis of the lipidome of cervicovaginal fluid and SC was performed using the Spearman test, and the Mann-Whitney test was used to compare lipid levels at the two time points. Results. During the treatment of chronic cervicitis, the levels of CL lipids 16:0_16:1_18:1_18:1, HexCer-NDS d20:0/26:0, PC 16: 0_18: 1 and 16: 0_20:4 were decreasing; during the treatment of LSIL, the levels of ceramides and glucosylceramides were decreasing. Chronic cervicitis is characterized by a positive correlation of SC smear with cardiolipins, glucosylceramides, and epithelial lipids with an ether bond; LSIL showed a negative correlation with phosphatidylcholines and phosphatidylethanolamines with an ether bond. Conclusion. As a result of treatment with activated glycyrrhizic acid, the lipid spectrum of epithelial cells significantly changed, depending on the type of lesion. It is also necessary to consider SC scrapings in further studies of epithelial cell lipidome and the type of HPV-associated lesions that affects the adjustments.
1. Роговская С.И. Папилломавирусная инфекция у женщин и патология шейки матки: В помощь практикующему врачу. Изд. 2-е, испр. и доп. М.: ГЭОТАР-Медиа, 2014 [Rogovskaya SI. Papillomavirusnaya infekciya u zhenshchin i patologiya shejki matki: V pomoshch' praktikuyushchemu vrachu. Izd. 2-e, ispr. i dop. Moscow: GEOTAR-Media, 2014 (in Russian)].
2. Gong G, Xiang L, Yuan L, et al. Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on focal cerebral ischemia/reperfusion-induced inflammation, oxidative stress, and apoptosis in rats. PLoS One. 2014;9(3):e89450. DOI:10.1371/journal.pone.0089450
3. Gu XJ, Xu J, Ma BY, et al. Effect of glycyrrhizin on traumatic brain injury in rats and its mechanism. Chinese J Traumatol. 2014;17(1):1-7.
4. Hou S, Zheng F, Li Y, et al The protective effect of glycyrrhizic acid on renal tubular epithelial cell injury induced by high glucose. Int J Mol Sci. 2014;15(9):15026-43. DOI:10.3390/ijms150915026
5. Farooqui A, Khan F, Khan I, Ansari IA. Glycyrrhizin induces reactive oxygen species-dependent apoptosis and cell cycle arrest at G0/G1 in HPV18+ human cervical cancer HeLa cell line. Biomed Pharmacother. 2018;97:752-64. DOI:10.1016/j.biopha.2017.10.147
6. Valencia MH, Pacheco AC, Quijano TH, et al. Clinical Response to Glycyrrhizinic Acid in Genital Infection Due to Human Papillomavirus and Low-Grade Squamous Intraepithelial Lesion. Clin Pract. 2011;1(4):e93. DOI:10.4081/cp.2011.e93
7. Murphy DJ. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res. 2001;40(5):325-438. DOI:10.1016/s0163-7827(01)00013-3
8. Shevchenko A, Simons K. Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol. 2010;11(8):593-8. DOI:10.1038/nrm2934
9. Tokareva A, Chagovets V, Attoeva D, et al. Non-Invasive Differential Diagnosis of Cervical Neoplastic Lesions by the Lipid Profile Analysis of Cervical Scrapings. Metabolites. 2022;12(9):883. DOI:10.3390/metabo12090883
10. Starodubtseva NL, Chagovets VV, Nekrasova ME, et al. Shotgun Lipidomics for Differential Diagnosis of HPV-Associated Cervix Transformation. Metabolites. 2022;12(6):503. DOI:10.3390/metabo12060503
11. Koelmel JP, Kroeger NM, Ulmer CZ, et al. LipidMatch: An automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinformatics. 2017;18(1):331. DOI:10.1186/s12859-017-1744-3
12. Roy N, Ghosh S, Juin SK, et al. Immunomodulator mediated changes in plasma membrane calcium ATPase in controlling visceral leishmaniasis. Exp Parasitol. 2020;217:107948. DOI:10.1016/j.exppara.2020.107948
13. Hannun YA, Obeid LM. Principles of bioactive lipid signalling: Lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9(2):139-50. DOI:10.1038/nrm2329
14. Reza S, Ugorski M, Suchański J. Glucosylceramide and galactosylceramide, small glycosphingolipids with significant impact on health and disease. Glycobiology. 2021;31(11):1416-34. DOI:10.1093/glycob/cwab046
15. Peterson B, Stovall K, Monian P, et al. Alterations in phospholipid and fatty acid lipid profiles in primary neocortical cells during oxidant-induced cell injury. Chem Biol Interact. 2008;174(3):163-76. DOI:10.1016/j.cbi.2008.05.028
16. Olszowski T, Gutowska I, Baranowska-Bosiacka I, et al. Cadmium alters the concentration of fatty acids in THP-1 macrophages. Biol Trace Elem Res. 2018;182(1):29-36. DOI:10.1007/s12011-017-1071-6
17. Datta SC, Radin NS. Stimulation of liver growth and DNA synthesis by glucosylceramide. Lipids. 1988;23(5):508-10. DOI:10.1007/BF02535529
18. Marchell NL, Uchida Y, Brown BE, et al. Glucosylceramides stimulate mitogenesis in aged murine epidermis. J Invest Dermatol. 1998;110(4):383‑7. DOI:10.1046/j.1523-1747.1998.00145.x
19. Iyer SS, He Q, Janczy JR, et al. Mitochondrial Cardiolipin Is Required for Nlrp3 Inflammasome Activation. Immunity. 2013;39(2):311-23. DOI:10.1016/j.immuni.2013.08.001
20. Elliott EI, Miller AN, Banoth B, et al. Cutting Edge: Mitochondrial assembly of the NLRP3 inflammasome complex is initiated at priming. J Immunol. 2018;200(9):3047-52. DOI:10.4049/jimmunol.1701723
21. Konjar Š, Frising UC, Ferreira C, et al. Mitochondria maintain controlled activation state of epithelial-resident T lymphocytes. Sci Immunol. 2018;3(24):eaan2543. DOI:10.1126/sciimmunol.aan2543
22. Sassa T, Suto S, Okayasu Y, Kihara A. A shift in sphingolipid composition from C24 to C16 increases susceptibility to apoptosis in HeLa cells. Biochim Biophys Acta. 2012;1821(7):1031-7. DOI:10.1016/j.bbalip.2012.04.008
23. Wallner S, Schmitz G. Plasmalogens the neglected regulatory and scavenging lipid species. Chem Phys Lipids. 2011;164(6):573-89. DOI:10.1016/j.chemphyslip.2011.06.008
24. Bozelli JC Jr, Azher S, Epand RM. Plasmalogens and Chronic Inflammatory Diseases. Front Physiol. 2021;12:730829. DOI:10.3389/fphys.2021.730829
25. Muntinga CLP, de Vos van Steenwijk PJ, Bekkers RLM, van Esch EMG. Importance of the Immune Microenvironment in the Spontaneous Regression of Cervical Squamous Intraepithelial Lesions (cSIL) and Implications for Immunotherapy. J Clin Med. 2022;11(5):1432. DOI:10.3390/jcm11051432
26. Alrajjal A, Pansare V, Choudhury MSR, et al Squamous intraepithelial lesions (SIL: LSIL, HSIL, ASCUS, ASC-H, LSIL-H) of Uterine Cervix and Bethesda System. Cytojournal. 2021;18:16. DOI:10.25259/Cytojournal_24_2021
27. Spector AA, Yorek MA. Membrane lipid composition and cellular function. J Lipid Res. 1985;26(9):1015-35.
________________________________________________
1. Rogovskaya SI. Papillomavirusnaya infekciya u zhenshchin i patologiya shejki matki: V pomoshch' praktikuyushchemu vrachu. Izd. 2-e, ispr. i dop. Moscow: GEOTAR-Media, 2014 (in Russian).
2. Gong G, Xiang L, Yuan L, et al. Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on focal cerebral ischemia/reperfusion-induced inflammation, oxidative stress, and apoptosis in rats. PLoS One. 2014;9(3):e89450. DOI:10.1371/journal.pone.0089450
3. Gu XJ, Xu J, Ma BY, et al. Effect of glycyrrhizin on traumatic brain injury in rats and its mechanism. Chinese J Traumatol. 2014;17(1):1-7.
4. Hou S, Zheng F, Li Y, et al The protective effect of glycyrrhizic acid on renal tubular epithelial cell injury induced by high glucose. Int J Mol Sci. 2014;15(9):15026-43. DOI:10.3390/ijms150915026
5. Farooqui A, Khan F, Khan I, Ansari IA. Glycyrrhizin induces reactive oxygen species-dependent apoptosis and cell cycle arrest at G0/G1 in HPV18+ human cervical cancer HeLa cell line. Biomed Pharmacother. 2018;97:752-64. DOI:10.1016/j.biopha.2017.10.147
6. Valencia MH, Pacheco AC, Quijano TH, et al. Clinical Response to Glycyrrhizinic Acid in Genital Infection Due to Human Papillomavirus and Low-Grade Squamous Intraepithelial Lesion. Clin Pract. 2011;1(4):e93. DOI:10.4081/cp.2011.e93
7. Murphy DJ. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res. 2001;40(5):325-438. DOI:10.1016/s0163-7827(01)00013-3
8. Shevchenko A, Simons K. Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol. 2010;11(8):593-8. DOI:10.1038/nrm2934
9. Tokareva A, Chagovets V, Attoeva D, et al. Non-Invasive Differential Diagnosis of Cervical Neoplastic Lesions by the Lipid Profile Analysis of Cervical Scrapings. Metabolites. 2022;12(9):883. DOI:10.3390/metabo12090883
10. Starodubtseva NL, Chagovets VV, Nekrasova ME, et al. Shotgun Lipidomics for Differential Diagnosis of HPV-Associated Cervix Transformation. Metabolites. 2022;12(6):503. DOI:10.3390/metabo12060503
11. Koelmel JP, Kroeger NM, Ulmer CZ, et al. LipidMatch: An automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinformatics. 2017;18(1):331. DOI:10.1186/s12859-017-1744-3
12. Roy N, Ghosh S, Juin SK, et al. Immunomodulator mediated changes in plasma membrane calcium ATPase in controlling visceral leishmaniasis. Exp Parasitol. 2020;217:107948. DOI:10.1016/j.exppara.2020.107948
13. Hannun YA, Obeid LM. Principles of bioactive lipid signalling: Lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9(2):139-50. DOI:10.1038/nrm2329
14. Reza S, Ugorski M, Suchański J. Glucosylceramide and galactosylceramide, small glycosphingolipids with significant impact on health and disease. Glycobiology. 2021;31(11):1416-34. DOI:10.1093/glycob/cwab046
15. Peterson B, Stovall K, Monian P, et al. Alterations in phospholipid and fatty acid lipid profiles in primary neocortical cells during oxidant-induced cell injury. Chem Biol Interact. 2008;174(3):163-76. DOI:10.1016/j.cbi.2008.05.028
16. Olszowski T, Gutowska I, Baranowska-Bosiacka I, et al. Cadmium alters the concentration of fatty acids in THP-1 macrophages. Biol Trace Elem Res. 2018;182(1):29-36. DOI:10.1007/s12011-017-1071-6
17. Datta SC, Radin NS. Stimulation of liver growth and DNA synthesis by glucosylceramide. Lipids. 1988;23(5):508-10. DOI:10.1007/BF02535529
18. Marchell NL, Uchida Y, Brown BE, et al. Glucosylceramides stimulate mitogenesis in aged murine epidermis. J Invest Dermatol. 1998;110(4):383‑7. DOI:10.1046/j.1523-1747.1998.00145.x
19. Iyer SS, He Q, Janczy JR, et al. Mitochondrial Cardiolipin Is Required for Nlrp3 Inflammasome Activation. Immunity. 2013;39(2):311-23. DOI:10.1016/j.immuni.2013.08.001
20. Elliott EI, Miller AN, Banoth B, et al. Cutting Edge: Mitochondrial assembly of the NLRP3 inflammasome complex is initiated at priming. J Immunol. 2018;200(9):3047-52. DOI:10.4049/jimmunol.1701723
21. Konjar Š, Frising UC, Ferreira C, et al. Mitochondria maintain controlled activation state of epithelial-resident T lymphocytes. Sci Immunol. 2018;3(24):eaan2543. DOI:10.1126/sciimmunol.aan2543
22. Sassa T, Suto S, Okayasu Y, Kihara A. A shift in sphingolipid composition from C24 to C16 increases susceptibility to apoptosis in HeLa cells. Biochim Biophys Acta. 2012;1821(7):1031-7. DOI:10.1016/j.bbalip.2012.04.008
23. Wallner S, Schmitz G. Plasmalogens the neglected regulatory and scavenging lipid species. Chem Phys Lipids. 2011;164(6):573-89. DOI:10.1016/j.chemphyslip.2011.06.008
24. Bozelli JC Jr, Azher S, Epand RM. Plasmalogens and Chronic Inflammatory Diseases. Front Physiol. 2021;12:730829. DOI:10.3389/fphys.2021.730829
25. Muntinga CLP, de Vos van Steenwijk PJ, Bekkers RLM, van Esch EMG. Importance of the Immune Microenvironment in the Spontaneous Regression of Cervical Squamous Intraepithelial Lesions (cSIL) and Implications for Immunotherapy. J Clin Med. 2022;11(5):1432. DOI:10.3390/jcm11051432
26. Alrajjal A, Pansare V, Choudhury MSR, et al Squamous intraepithelial lesions (SIL: LSIL, HSIL, ASCUS, ASC-H, LSIL-H) of Uterine Cervix and Bethesda System. Cytojournal. 2021;18:16. DOI:10.25259/Cytojournal_24_2021
27. Spector AA, Yorek MA. Membrane lipid composition and cellular function. J Lipid Res. 1985;26(9):1015-35.
1 ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии им. акад. В.И. Кулакова» Минздрава России, Москва, Россия;
2 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» (Сеченовский Университет), Москва, Россия;
3 ФГБУН «Федеральный исследовательский центр химической физики им. Н.Н. Семенова» РАН, Москва, Россия
*alisa.tokareva@phystech.edu
________________________________________________
Alisa O. Tokareva*1, Leyla K. Ramazanova1, Elmira R. Dovletkhanova1, Leyla E. Alieva2, Polina L. Sheshko1, Evgenii N. Kukaev1,3, Niso M. Nazarova1, Natalia L. Starodubtseva1, Vitaly V. Chagovets1, Vladimir E. Frankevich1, Vera N. Prilepskaya1
1 Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia;
2 Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia;
3 Semenov Research Center of Chemical Physics, Moscow, Russia
*alisa.tokareva@phystech.edu