Полиморфные варианты гена PPP1R21, ассоциированного с уровнем белка, связывающего половые гормоны, и риск развития рака молочной железы различных стадий
Полиморфные варианты гена PPP1R21, ассоциированного с уровнем белка, связывающего половые гормоны, и риск развития рака молочной железы различных стадий
Пасенов К.Н., Пономаренко И.В., Чурносов М.И. Полиморфные варианты гена PPP1R21, ассоциированного с уровнем белка, связывающего половые гормоны, и риск развития рака молочной железы различных стадий. Гинекология. 2024;26(1):89–94. DOI: 10.26442/20795696.2024.1.202644
Pasenov KN, Ponomarenko IV, Churnosov MI. Polymorphic variants of the PPP1R21 gene associated with the level of sex hormone-binding globulin and the risk of various stages of breast cancer. Gynecology. 2024;26(1):89–94. DOI: 10.26442/20795696.2024.1.202644
Полиморфные варианты гена PPP1R21, ассоциированного с уровнем белка, связывающего половые гормоны, и риск развития рака молочной железы различных стадий
Пасенов К.Н., Пономаренко И.В., Чурносов М.И. Полиморфные варианты гена PPP1R21, ассоциированного с уровнем белка, связывающего половые гормоны, и риск развития рака молочной железы различных стадий. Гинекология. 2024;26(1):89–94. DOI: 10.26442/20795696.2024.1.202644
Pasenov KN, Ponomarenko IV, Churnosov MI. Polymorphic variants of the PPP1R21 gene associated with the level of sex hormone-binding globulin and the risk of various stages of breast cancer. Gynecology. 2024;26(1):89–94. DOI: 10.26442/20795696.2024.1.202644
Цель. Оценить связь полиморфных вариантов генов, ассоциированных с уровнем белка, связывающего половые гормоны (sex hormone-binding globulin, SHBG) по данным полногеномных исследований (genome-wide association studies, GWAS), с риском развития рака молочной железы (РМЖ) I–II и III–IV стадий. Материалы и методы. Провели сравнительный генетический анализ на выборках больных РМЖ – 254 пациентки с I–II стадиями и 91 с III–IV стадиями заболевания, и 1140 женщин контрольной группы. В работе рассмотрены 4 однонуклеотидные замены, связанные с уровнем циркулирующего SHBG по данным GWAS: g.107546375A>G PRMT6 (rs17496332), g.27519736T>C GCKR (rs780093), g.48419260T>C PPP1R21 (rs10454142), g.98364050T>A BAIAP2L1 (rs3779195). Результаты. Выявили различия в вовлеченности полиморфных вариантов генов-кандидатов SHBG в формирование РМЖ I–II и III–IV стадий. Полиморфный вариант rs10454142 T>C в гене PPP1R21 ассоциирован с риском развития РМЖ I–II стадий: при наличии у женщины аллельного варианта С этого локуса риск развития заболевания начальных стадий увеличивался (T/T vs.T/C vs.C/C, отношение шансов 1,35, 95% доверительный интервал 1,05–1,75; p=0,021; ppermutat=0,027). При этом увеличение количества аллелей С в генотипе женщины приводило к повышению риска развития РМЖ I–II стадий на 17–18% на каждый аллель. Ассоциаций полиморфных вариантов генов-кандидатов SHBG с риском тяжелого течения заболевания (III–IV стадии болезни) не установлено. Однонуклеотидная замена rs10454142 T>C в гене PPP1R21 и сильно сцепленные с ней однонуклеотидные полиморфные варианты (single nucleotide polymorphisms, SNP) являются функционально значимыми (находятся в регионах энхансеров и промоторов) в эпителиальных и миоэпителиальных клетках молочной железы, печени, влияют на уровень метилирования генома, связаны с уровнем экспрессии гена GTF2A1L.
Ключевые слова: рак молочной железы, SHBG, SNP, стадии заболевания, ассоциации
________________________________________________
Aim. To assess the relationship of polymorphic gene variants associated with the level of sex hormone-binding globulin (SHBG) according to genome-wide association studies (GWAS) with the risk of stage I–II and stage III-IV breast cancer. Materials and methods. A comparative genetic analysis was carried out on samples of patients with breast cancer: 254 patients with stages I–II and 91 with stages III–IV, and 1140 females of the control group. The paper considers 4 single nucleotide substitutions associated with the level of circulating SHBG according to GWAS: g.107546375A>G PRMT6 (rs17496332), g.27519736T>C GCKR (rs780093), g.48419260T>C PPP1R21 (rs10454142), g.98364050T>A BAIAP2L1 (rs3779195). Results. Differences in the involvement of polymorphic variants of SHBG candidate genes in the development of stages I–II and III–IV breast cancer were revealed. The rs10454142 T>C polymorphic variant in the PPP1R21 gene is associated with the risk of stage I–II breast cancer: women with an allelic variant of this locus have a higher risk of early-stage disease (T/T vs. T/C vs. C/C, odds ratio 1.35, 95% confidence interval 1.05-1.75; p=0.021; ppermutat=0.027). Also, an increase in the number of C alleles in the female genotype increased the risk of stage I–II breast cancer by 17–18% per allele. There were no associations of polymorphic variants of SHBG candidate genes with the risk of severe disease (stage III–IV). The single nucleotide substitution rs10454142 T>C in the PPP1R21 gene and the single nucleotide polymorphisms strongly linked to it are functionally significant (located in the regions of enhancers and promoters) in the epithelial and myoepithelial cells of the mammary gland and liver, affect the level of genome methylation, and are associated with the level of GTF2A1L gene expression.
Keywords: breast cancer, sex hormone-binding globulin, single nucleotide polymorphism, stages of the disease, associations
1. Gradishar WJ, Anderson BO, Blair SL, et al; National Comprehensive Cancer Network Breast Cancer Panel. Breast cancer version 3.2014. J Natl Compr Canc Netw. 2014;12(4):542-90. DOI:10.6004/jnccn.2014.0058
2. Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: An overview. Int J Cancer. 2021;149:778-89. DOI:10.1002/ijc.33588
3. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-49. DOI:10.3322/caac.21660
4. Злокачественные новообразования в России в 2018 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М. 2019 [Zlokachestvennye novoobrazovaniia v Rossii v 2018 godu (zabolevaemost' i smertnost'). Pod red. AD Kaprina, VV Starinskogo, GV Petrovoi. Moscow. 2019 (in Russian)].
5. Mucci LA, Hjelmborg JB, Harris JR, et al; Nordic Twin Study of Cancer (NorTwinCan) Collaboration. Familial Risk and Heritability of Cancer Among Twins in Nordic Countries. JAMA. 2016;315(1):68-76. DOI:10.1001/jama.2015.17703
6. Michailidou K, Lindström S, Dennis J, et al; Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551(7678):92-4. DOI:10.1038/nature24284
7. Lilyquist J, Ruddy KJ, Vachon CM, Couch FJ. Common Genetic Variation and Breast Cancer Risk-Past, Present, and Future. Cancer Epidemiol Biomarkers Prev. 2018;27(4):380-94. DOI:10.1158/1055-9965.EPI-17-1144
8. Tin Tin S, Reeves GK, Key TJ. Endogenous hormones and risk of invasive breast cancer in pre- and post-menopausal women: findings from the UK Biobank. Br J Cancer. 2021;125(1):126-34. DOI:10.1038/s41416-021-01392-z
9. Chen F, Wen W, Long J, et al. Mendelian randomization analyses of 23 known and suspected risk factors and biomarkers for breast cancer overall and by molecular subtypes. Int J Cancer. 2022;151(3):372-80. DOI:10.1002/ijc.34026
10. Fortunati N, Catalano MG, Boccuzzi G, Frairia R. Sex Hormone-Binding Globulin (SHBG), estradiol and breast cancer. Mol Cell Endocrinol. 2010;316(1):86-92. DOI:10.1016/j.mce.2009.09.012
11. Qu X, Donnelly R. Sex Hormone-Binding Globulin (SHBG) as an Early Biomarker and Therapeutic Target in Polycystic Ovary Syndrome. Int J Mol Sci. 2020;21(21):8191. DOI:10.3390/ijms21218191
12. Dimou NL, Papadimitriou N, Gill D, et al. Sex hormone binding globulin and risk of breast cancer: a Mendelian randomization study. Int J Epidemiol. 2019;48(3):807-16. DOI:10.1093/ije/dyz107
13. Павлова Н.В., Орлова В.С., Батлуцкая И.В., и др. Роль высокопенетрантных мутаций в генах BRCA1 и CHEK2 в характере ассоциаций полиморфизма генов матриксных металлопротеиназ с раком молочной железы. Научные результаты биомедицинских исследований. 2022;8(2):180-97 [Pavlova NV, Orlova VS, Batlutskaya IV, et al. The role of highly penetrant mutations in BRCA1 and CHEK2 genes in the pattern of associations of matrix metalloproteinase gene polymorphisms with breast cancer. Research Results in Biomedicine. 2022;8(2):180-97 (in Russian)]. DOI:10.18413/2658-6533-2022-8-2-0-4
14. Головченко И.О. Генетические детерминанты уровня половых гормонов у больных эндометриозом. Научные результаты биомедицинских исследований. 2023;9(1):5-21 [Golovchenko IO. Genetic determinants of sex hormone levels in endometriosis patients. Research Results in Biomedicine. 2023;9(1):5-21 (in Russian)].
DOI:10.18413/2658-6533-2023-9-1-0-1
15. Рак молочной железы. Клинические рекомендации. 2021. Режим доступа: https://oncology-association.ru/wp-content/uploads/2021/02/rak-molochnoj-zhelezy-2021.pdf. Ссылка активна на 10.06.2022 [Rak molochnoi zhelezy. Klinicheskie rekomendatsii. 2021. Available at: https://oncology-association.ru/wp-content/uploads/2021/02/rak-molochnoj-zhelezy-2021.pdf. Accessed: 10.06.2022 (in Russian)].
16. Coviello AD, Haring R, Wellons M, et al. A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple Loci implicated in sex steroid hormone regulation. PLoS Genet. 2012;8(7):e1002805. DOI:10.1371/journal.pgen.1002805
17. Пономаренко И.В., Полоников А.В., Чурносов М.И. Ассоциация полиморфизма rs4986938 гена ESR2 с развитием гиперплазии эндометрия. Акушерство и гинекология. 2019;4:66-72 [Ponomarenko IV, Polonikov AV, Churnosov MI. Association of ESR2 rs4986938 polymorphism with the development of endometrial hyperplasia. Obstetrics and Gynecology. 2019;4:66-72 (in Russian)]. DOI:10.18565/aig.2019.4.66-72
18. Sakaue S, Kanai M, Tanigawa Y, et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet. 2021;53(10):1415-24.
DOI:10.1038/s41588-021-00931-x
19. Chen VL, Du X, Chen Y, et al. Genome-wide association study of serum liver enzymes implicates diverse metabolic and liver pathology. Nat Commun. 2021;12(1):816. DOI:10.1038/s41467-020-20870-1 [Published correction appears in: Nat Commun. 2023;14(1):3356].
20. Pazoki R, Vujkovic M, Elliott J, et al; Lifelines Cohort Study; VA Million Veteran Program. Genetic analysis in European ancestry individuals identifies 517 loci associated with liver enzymes. Nat Commun. 2021;12(1):2579. DOI:10.1038/s41467-021-22338-2
21. Hammond GL. Plasma steroid-binding proteins: primary gatekeepers of steroid hormone action. J Endocrinol. 2016;230(1):R13-25. DOI:10.1530/JOE-16-0070
22. Balogh A, Karpati E, Schneider AE, et al. Sex hormone-binding globulin provides a novel entry pathway for estradiol and influences subsequent signaling in lymphocytes via membrane receptor. Sci Rep. 2019;9(1):4. DOI:10.1038/s41598-018-36882-3
23. Gene Cards. The human gene database. Available at: https://www.genecards.org/cgi-bin/carddisp.pl?gene=GTF2A1L. Accessed: 01.10.2023.
24. Wang J, Zhao S, He W, et al. A transcription factor IIA-binding site differentially regulates RNA polymerase II-mediated transcription in a promoter context-dependent manner. J Biol Chem. 2017;292(28):11873-85. DOI:10.1074/jbc.M116.770412
25. Wei Y, Yang X, Gao L, et al. Differences in potential key genes and pathways between primary and radiation-associated angiosarcoma of the breast. Transl Oncol. 2022;19:101385. DOI:10.1016/j.tranon.2022.101385
26. Mello AC, Freitas M, Coutinho L, et al. Machine Learning Supports Long Noncoding RNAs as Expression Markers for Endometrial Carcinoma. Biomed Res Int. 2020;2020:3968279. DOI:10.1155/2020/3968279
27. Iwasaki M, Hamada GS, Nishimoto IN, et al. Dietary isoflavone intake, polymorphisms in the CYP17, CYP19, 17beta-HSD1, and SHBG genes, and risk of breast cancer in case-control studies in Japanese, Japanese Brazilians, and non-Japanese Brazilians. Nutr Cancer. 2010;62(4):466-75. DOI:10.1080/01635580903441279
28. Zhou JY, Shi R, Yu HL, et al. Association between SHBG Asp327Asn (rs6259) polymorphism and breast cancer risk: a meta-analysis of 10,454 cases and 13,111 controls. Mol Biol Rep. 2012;39(8):8307-14. DOI:10.1007/s11033-012-1680-2
29. Zhang B, Beeghly-Fadiel A, Lu W, et al. Evaluation of functional genetic variants for breast cancer risk: results from the Shanghai breast cancer study. Am J Epidemiol. 2011;173(10):1159-70. DOI:10.1093/aje/kwr004
________________________________________________
1. Gradishar WJ, Anderson BO, Blair SL, et al; National Comprehensive Cancer Network Breast Cancer Panel. Breast cancer version 3.2014. J Natl Compr Canc Netw. 2014;12(4):542-90. DOI:10.6004/jnccn.2014.0058
2. Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: An overview. Int J Cancer. 2021;149:778-89. DOI:10.1002/ijc.33588
3. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-49. DOI:10.3322/caac.21660
4. Zlokachestvennye novoobrazovaniia v Rossii v 2018 godu (zabolevaemost' i smertnost'). Pod red. AD Kaprina, VV Starinskogo, GV Petrovoi. Moscow. 2019 (in Russian).
5. Mucci LA, Hjelmborg JB, Harris JR, et al; Nordic Twin Study of Cancer (NorTwinCan) Collaboration. Familial Risk and Heritability of Cancer Among Twins in Nordic Countries. JAMA. 2016;315(1):68-76. DOI:10.1001/jama.2015.17703
6. Michailidou K, Lindström S, Dennis J, et al; Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551(7678):92-4. DOI:10.1038/nature24284
7. Lilyquist J, Ruddy KJ, Vachon CM, Couch FJ. Common Genetic Variation and Breast Cancer Risk-Past, Present, and Future. Cancer Epidemiol Biomarkers Prev. 2018;27(4):380-94. DOI:10.1158/1055-9965.EPI-17-1144
8. Tin Tin S, Reeves GK, Key TJ. Endogenous hormones and risk of invasive breast cancer in pre- and post-menopausal women: findings from the UK Biobank. Br J Cancer. 2021;125(1):126-34. DOI:10.1038/s41416-021-01392-z
9. Chen F, Wen W, Long J, et al. Mendelian randomization analyses of 23 known and suspected risk factors and biomarkers for breast cancer overall and by molecular subtypes. Int J Cancer. 2022;151(3):372-80. DOI:10.1002/ijc.34026
10. Fortunati N, Catalano MG, Boccuzzi G, Frairia R. Sex Hormone-Binding Globulin (SHBG), estradiol and breast cancer. Mol Cell Endocrinol. 2010;316(1):86-92. DOI:10.1016/j.mce.2009.09.012
11. Qu X, Donnelly R. Sex Hormone-Binding Globulin (SHBG) as an Early Biomarker and Therapeutic Target in Polycystic Ovary Syndrome. Int J Mol Sci. 2020;21(21):8191. DOI:10.3390/ijms21218191
12. Dimou NL, Papadimitriou N, Gill D, et al. Sex hormone binding globulin and risk of breast cancer: a Mendelian randomization study. Int J Epidemiol. 2019;48(3):807-16. DOI:10.1093/ije/dyz107
13. Pavlova NV, Orlova VS, Batlutskaya IV, et al. The role of highly penetrant mutations in BRCA1 and CHEK2 genes in the pattern of associations of matrix metalloproteinase gene polymorphisms with breast cancer. Research Results in Biomedicine. 2022;8(2):180-97 (in Russian). DOI:10.18413/2658-6533-2022-8-2-0-4
14. Golovchenko IO. Genetic determinants of sex hormone levels in endometriosis patients. Research Results in Biomedicine. 2023;9(1):5-21 (in Russian).
DOI:10.18413/2658-6533-2023-9-1-0-1
15. Rak molochnoi zhelezy. Klinicheskie rekomendatsii. 2021. Available at: https://oncology-association.ru/wp-content/uploads/2021/02/rak-molochnoj-zhelezy-2021.pdf. Accessed: 10.06.2022 (in Russian).
16. Coviello AD, Haring R, Wellons M, et al. A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple Loci implicated in sex steroid hormone regulation. PLoS Genet. 2012;8(7):e1002805. DOI:10.1371/journal.pgen.1002805
17. Ponomarenko IV, Polonikov AV, Churnosov MI. Association of ESR2 rs4986938 polymorphism with the development of endometrial hyperplasia. Obstetrics and Gynecology. 2019;4:66-72 (in Russian). DOI:10.18565/aig.2019.4.66-72
18. Sakaue S, Kanai M, Tanigawa Y, et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet. 2021;53(10):1415-24.
DOI:10.1038/s41588-021-00931-x
19. Chen VL, Du X, Chen Y, et al. Genome-wide association study of serum liver enzymes implicates diverse metabolic and liver pathology. Nat Commun. 2021;12(1):816. DOI:10.1038/s41467-020-20870-1 [Published correction appears in: Nat Commun. 2023;14(1):3356].
20. Pazoki R, Vujkovic M, Elliott J, et al; Lifelines Cohort Study; VA Million Veteran Program. Genetic analysis in European ancestry individuals identifies 517 loci associated with liver enzymes. Nat Commun. 2021;12(1):2579. DOI:10.1038/s41467-021-22338-2
21. Hammond GL. Plasma steroid-binding proteins: primary gatekeepers of steroid hormone action. J Endocrinol. 2016;230(1):R13-25. DOI:10.1530/JOE-16-0070
22. Balogh A, Karpati E, Schneider AE, et al. Sex hormone-binding globulin provides a novel entry pathway for estradiol and influences subsequent signaling in lymphocytes via membrane receptor. Sci Rep. 2019;9(1):4. DOI:10.1038/s41598-018-36882-3
23. Gene Cards. The human gene database. Available at: https://www.genecards.org/cgi-bin/carddisp.pl?gene=GTF2A1L. Accessed: 01.10.2023.
24. Wang J, Zhao S, He W, et al. A transcription factor IIA-binding site differentially regulates RNA polymerase II-mediated transcription in a promoter context-dependent manner. J Biol Chem. 2017;292(28):11873-85. DOI:10.1074/jbc.M116.770412
25. Wei Y, Yang X, Gao L, et al. Differences in potential key genes and pathways between primary and radiation-associated angiosarcoma of the breast. Transl Oncol. 2022;19:101385. DOI:10.1016/j.tranon.2022.101385
26. Mello AC, Freitas M, Coutinho L, et al. Machine Learning Supports Long Noncoding RNAs as Expression Markers for Endometrial Carcinoma. Biomed Res Int. 2020;2020:3968279. DOI:10.1155/2020/3968279
27. Iwasaki M, Hamada GS, Nishimoto IN, et al. Dietary isoflavone intake, polymorphisms in the CYP17, CYP19, 17beta-HSD1, and SHBG genes, and risk of breast cancer in case-control studies in Japanese, Japanese Brazilians, and non-Japanese Brazilians. Nutr Cancer. 2010;62(4):466-75. DOI:10.1080/01635580903441279
28. Zhou JY, Shi R, Yu HL, et al. Association between SHBG Asp327Asn (rs6259) polymorphism and breast cancer risk: a meta-analysis of 10,454 cases and 13,111 controls. Mol Biol Rep. 2012;39(8):8307-14. DOI:10.1007/s11033-012-1680-2
29. Zhang B, Beeghly-Fadiel A, Lu W, et al. Evaluation of functional genetic variants for breast cancer risk: results from the Shanghai breast cancer study. Am J Epidemiol. 2011;173(10):1159-70. DOI:10.1093/aje/kwr004
Авторы
К.Н. Пасенов, И.В. Пономаренко, М.И. Чурносов*
ФГАОУ ВО «Белгородский государственный национальный исследовательский университет», Белгород, Россия
*churnosov@bsu.edu.ru
________________________________________________
Konstantin N. Pasenov, Irina V. Ponomarenko, Mikhail I. Churnosov*
Belgorod State National Research University, Belgorod, Russia
*churnosov@bsu.edu.ru