Pasenov KN, Ponomarenko IV, Churnosov MI. A polymorphic variant of rs440837 A>G in the ZBTB10 gene is associated with the occurrence of moderately differentiated breast cancer. Gynecology. 2024;26(3):249–253.
DOI: 10.26442/20795696.2024.3.202828
Полиморфный вариант rs440837 A>G в гене ZBTB10 ассоциирован с формированием рака молочной железы умеренной степени дифференцировки
Пасенов К.Н., Пономаренко И.В., Чурносов М.И. Полиморфный вариант rs440837 A>G в гене ZBTB10 ассоциирован с формированием рака молочной железы умеренной степени дифференцировки. Гинекология. 2024;26(3):249–253. DOI: 10.26442/20795696.2024.3.202828
Pasenov KN, Ponomarenko IV, Churnosov MI. A polymorphic variant of rs440837 A>G in the ZBTB10 gene is associated with the occurrence of moderately differentiated breast cancer. Gynecology. 2024;26(3):249–253.
DOI: 10.26442/20795696.2024.3.202828
Цель. Изучить ассоциации однонуклеотидных полиморфных вариантов (single nucleotide polymorphisms – SNP) генов-кандидатов, связанных согласно материалам полногеномных исследований (genome-wide association studies – GWAS) с содержанием белка, связывающего половые гормоны (sex hormone binding protein – SHBG) с формированием рака молочной железы (РМЖ) умеренной (G2) и низкой (G3) степени дифференцировки. Материалы и методы. Выборки для исследования включали 271 больную РМЖ, из которых 157 имели опухоль степени дифференцировки ткани G2 и 114 – G3, и 1140 женщин группы контроля. В исследуемых группах проведено генетическое тестирование 4 GWAS-значимых для SHBG SNP – g.80549739A>G ZBTB10 (rs440837), g.63379150T>G JMJD1C (rs7910927), g.7618597G>T SHBG (rs12150660), g.21178615T>C SLCO1B1 (rs4149056). Результаты. Полиморфные варианты генов, связанные с SHBG, ассоциированы с РМЖ G2-степени дифференцировки, но не обусловливают риск возникновения опухоли высокой степени злокачественности (степень дифференцировки G3). Однонуклеотидная замена rs440837 A>G в гене ZBTB10 ассоциирована с РМЖ степени дифференцировки G2 в соответствии с аддитивной (GG vs AG vs AA, отношение шансов 0,70, 95% доверительный интервал 0,50–0,99; p=0,041; pperm=0,042) и доминантной (GG+AG vs AA, отношение шансов 0,58, 95% доверительный интервал 0,39–0,87; p=0,008; pperm=0,009) генетическими моделями, при этом минорный аллельный вариант G rs440837 являлся протективным фактором развития опухоли G2-степени дифференцировки. Полиморфный вариант rs440837 A>G в гене ZBTB10 – важнейший эпигенетический модификатор в печени (связан с энхансерами и промоторами), он влияет на альтернативное полиаденилирование мРНК гена ZBTB10 в щитовидной железе. Заключение. Аллель G rs440837 (A>G) в гене ZBTB10, связанный по данным GWAS с высоким уровнем SHBG, снижает риск формирования РМЖ G2-степени дифференцировки.
Ключевые слова: рак молочной железы, SHBG, rs440837, ZBTB10, степень дифференцировки опухоли, ассоциации полиморфных вариантов генов
________________________________________________
Aim. To study the associations of single nucleotide polymorphisms (SNP) of candidate genes associated according to genome-wide association studies (GWAS) with the content of sex hormone binding protein (SHBG) with the occurrence of moderately (G2) and low (G3) differentiated breast cancer. Materials and methods. The study samples included 271 patients with breast cancer, of which 157 had a G2 tumor differentiation and 114 – G3, and 1140 women of the control group. In the study groups, genetic testing of 4 GWAS-significant for SHBG SNPs was performed: g.80549739A>G ZBTB10 (rs440837), g.63379150T>G JMJD1C (rs7910927), g.7618597G>T SHBG (rs12150660), g.21178615T>C SLCO1B1 (rs4149056). Results. Polymorphic gene variants associated with SHBG are associated with G2 differentiation in BC but not with the risk of high-grade tumor (low-grade differentiation). The single nucleotide substitution of rs440837 A>G in the ZBTB10 gene is associated with G2 differentiated BC according to additive (GG vs AG vs AA; odds ratio 0.70; 95% confidence interval 0.50–0.99; p=0.041; pperm=0.042) and dominant (GG+AG vs AA; odds ratio 0.58; 95% confidence interval 0.39–0.87; p=0.008; pperm=0.009) genetic models and the minor allelic variant of G rs440837 was a protective factor in the occurrence of a moderately differentiated tumor. The polymorphic variant of rs440837 A>G in the ZBTB10 gene is the most important epigenetic modifier in the liver (associated with enhancers and promoters); it affects the alternative polyadenylation of the ZBTB10 gene mRNA in the thyroid gland. Conclusion. According to GWAS, the G rs440837 (A>G) allele in the ZBTB10 gene, which is associated with high SHBG, reduces the risk of moderately differentiated BC.
Keywords: breast cancer, SHBG, rs440837, ZBTB10, degree of tumor differentiation, associations of polymorphic gene variants
1. Global Cancer Observatory. Available at: https://gco.iarc.fr. Accessed: 10.10.2023.
2. Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: An overview. Int J Cancer. 2021;149:778-89. DOI:10.1002/ijc.33588
3. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49. DOI:10.3322/caac.21660
4. Злокачественные новообразования в России в 2021 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2022 [Zlokachestvennye novoobrazovaniia v Rossii v 2021 godu (zabolevaemost' i smertnost'). Pod red. AD Kaprina, VV Starinskogo, AO Shakhzadovoi. Moscow: MNIOI im. P.A. Gertsena – filial FGBU "NMITs radiologii" Minzdrava Rossii, 2022 (in Russian)].
5. Павлова Н.В., Орлова В.С., Батлуцкая И.В., и др. Роль высокопенетрантных мутаций в генах BRCA1 и CHEK2 в характере ассоциаций полиморфизма генов матриксных металлопротеиназ с раком молочной железы. Научные результаты биомедицинских исследований. 2022;8(2):180-97 [Pavlova NV, Orlova VS, Batlutskaya IV, et al. The role of highly penetrant mutations in BRCA1 and CHEK2 genes in the pattern of associations of matrix metalloproteinase gene polymorphisms with breast cancer. Research Results in Biomedicine. 2022;8(2):180-97 (in Russian)]. DOI:10.18413/2658-6533-2022-8-2-0-4
6. Mucci LA, Hjelmborg JB, Harris JR, et al.; Nordic Twin Study of Cancer (NorTwinCan) Collaboration. Familial risk and heritability of cancer among twins in Nordic countries. JAMA. 2016;315(1):68-76. DOI:10.1001/jama.2015.17703
7. Michailidou K, Lindström S, Dennis J, et al. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551(7678):92-4. DOI:10.1038/nature24284
8. Lilyquist J, Ruddy KJ, Vachon CM, Couch FJ. Common genetic variation and breast cancer risk-past, present, and future. Cancer Epidemiol Biomarkers Prev. 2018;27(4):380-94. DOI:10.1158/1055-9965.EPI-17-1144
9. Pavlova N, Demin S, Churnosov M, et al. Matrix metalloproteinase gene polymorphisms are associated with breast cancer in the caucasian women of Russia. Int J Mol Sci. 2022;23(20):12638. DOI:10.3390/ijms232012638
10. Tin Tin S, Reeves GK, Key TJ. Endogenous hormones and risk of invasive breast cancer in pre- and post-menopausal women: Findings from the UK Biobank. Br J Cancer. 2021;125(1):126-34. DOI:10.1038/s41416-021-01392-z
11. Chen F, Wen W, Long J, et al. Mendelian randomization analyses of 23 known and suspected risk factors and biomarkers for breast cancer overall and by molecular subtypes. Int J Cancer. 2022;151(3):372-80. DOI:10.1002/ijc.34026
12. Key T, Appleby P, Barnes I, Reeves G; Endogenous Hormones and Breast Cancer Collaborative Group. Endogenous sex hormones and breast cancer in postmenopausal women: Reanalysis of nine prospective studies. J Natl Cancer Inst. 2002;94(8):606-16. DOI:10.1093/jnci/94.8.606
13. Balogh A, Karpati E, Schneider AE, et al. Sex hormone-binding globulin provides a novel entry pathway for estradiol and influences subsequent signaling in lymphocytes via membrane receptor. Sci Rep. 2019;9(1):4. DOI:10.1038/s41598-018-36882-3
14. Qu X, Donnelly R. Sex hormone-binding globulin (SHBG) as an early biomarker and therapeutic target in polycystic ovary syndrome. Int J Mol Sci. 2020;21(21):8191. DOI:10.3390/ijms21218191
15. Fortunati N, Catalano MG, Boccuzzi G, Frairia R. Sex hormone-binding globulin (SHBG), estradiol and breast cancer. Mol Cell Endocrinol. 2010;316(1):86-92. DOI:10.1016/j.mce.2009.09.012
16. Dimou NL, Papadimitriou N, Gill D, et al. Sex hormone binding globulin and risk of breast cancer: a Mendelian randomization study. Int J Epidemiol. 2019;48(3):807-16. DOI:10.1093/ije/dyz107
17. Pan Z, Fu Z, Song Q, et al. Genetic polymorphisms and haplotype of hormone-related genes are associated with the risk of breast cancer in Chinese women. Genet Mol Res. 2016;15(2). DOI:10.4238/gmr.15028640
18. Nyante SJ, Gammon MD, Kaufman JS, et al. Genetic variation in estrogen and progesterone pathway genes and breast cancer risk: An exploration of tumor subtype-specific effects. Cancer Causes Control. 2015;26(1):121-31. DOI:10.1007/s10552-014-0491-2
19. Pavlova N, Demin S, Churnosov M, et al. The modifying effect of obesity on the association of matrix metalloproteinase gene polymorphisms with breast cancer risk. Biomedicines. 2022;10(10):2617. DOI:10.3390/biomedicines10102617
20. Рак молочной железы. Клинические рекомендации. М. 2021. Режим доступа: https://oncology.ru/specialist/treatment/references/actual/379.pdf?ysclid=lzsgnvu6sz783307237. Ссылка активна на 10.06.2022 [Rak molochnoi zhelezy. Klinicheskie rekomendatsii. Moscow. 2021. Available at: https://oncology.ru/specialist/treatment/references/actual/379.pdf?ysclid=lzsgnvu6sz783307237. Accessed: 10.06.2022 (in Russian)].
21. Coviello AD, Haring R, Wellons M, et al. A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple Loci implicated in sex steroid hormone regulation. PLoS Genet. 2012;8(7):e1002805. DOI:10.1371/journal.pgen.1002805
22. Harrison S, Davies NM, Howe LD, Hughes A. Testosterone and socioeconomic position: Mendelian randomization in 306,248 men and women in UK Biobank. Sci Adv. 2021;7(31):eabf8257. DOI:10.1126/sciadv.abf8257
23. Ruth KS, Day FR, Tyrrell J, et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat Med. 2020;26(2):252-8.
DOI:10.1038/s41591-020-0751-5
24. Haas CB, Hsu L, Lampe JW, et al. Cross-ancestry genome-wide association studies of sex hormone concentrations in pre- and postmenopausal women. Endocrinology. 2022;163(4):bqac020. DOI:10.1210/endocr/bqac020. Erratum in: Endocrinology. 2022;164(2):bqac207. DOI:10.1210/endocr/bqac207
25. Пономаренко И.В., Полоников А.В., Чурносов М.И. Ассоциация полиморфизма rs4986938 гена ESR2 с развитием гиперплазии эндометрия. Акушерство и гинекология. 2019;4:66-72 [Ponomarenko IV, Polonikov AV, Churnosov MI. Association of ESR2 rs4986938 polymorphism with the development of endometrial hyperplasia. Obstetrics and Gynecology. 2019;4:66-72 (in Russian)]. DOI:10.18565/aig.2019.4.66-72
26. Yarosh SL, Kokhtenko EV, Churnosov MI, et al. Joint effect of glutathione S-transferase genotypes and cigarette smoking on idiopathic male infertility. Andrologia. 2015;47(9):980-6. DOI:10.1111/and.12367
27. Рашина ОВ. Ассоциации полиморфных вариантов генов-кандидатов с развитием H. pylori-негативной язвенной болезни двенадцатиперстной кишки у жителей Центрального Черноземья России. Научные результаты биомедицинских исследований. 2023;9(3):333-46 [Rashina OV. Associations of polymorphic variants of candidate genes with the development of H. pylori-negative duodenal ulcer in residents of the Central Chernozem region of Russia. Research Results in Biomedicine. 2023;9(3):333-46 (in Russian)]. DOI:10.18413/2658-6533-2023-9-3-0-4
28. Che R, Jack JR, Motsinger-Reif AA, Brown CC. An adaptive permutation approach for genome-wide association study: Evaluation and recommendations for use. BioData Min. 2014;7:9. DOI:10.1186/1756-0381-7-9
29. Радзинский В.Е., Алтухова О.Б. Молекулярно-генетические детерминанты бесплодия при генитальном эндометриозе. Научные результаты биомедицинских исследований. 2018;4(3):28-37 [Radzinsky VE, Altuchova OB. Molecular-genetic determinants of infertility in genital endometryosis. Research Results in Biomedicine.
2018;4(3):28-37 (in Russian)]. DOI:10.18413/2313-8955-2018-4-3-0-3
30. Hammond GL. Plasma steroid-binding proteins: primary gatekeepers of steroid hormone action. J Endocrinol. 2016;230(1):R13-25. DOI:10.1530/JOE-16-0070
31. Sinnott-Armstrong N, Tanigawa Y, Amar D, et al.; FinnGen. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat Genet. 2021;53(2):185-94.
DOI:10.1038/s41588-020-00757-z. Erratum in: Nat Genet. 2021;53(11):1622. DOI:10.1038/s41588-021-00956-2.
32. Hercbergs A, Lin HY, Mousa SA, Davis PJ. (Thyroid) Hormonal regulation of breast cancer cells. Front Endocrinol (Lausanne). 2023;13:1109555. DOI:10.3389/fendo.2022.1109555
33. Liu YC, Yeh CT, Lin KH. Molecular functions of thyroid hormone signaling in regulation of cancer progression and anti-apoptosis. Int J Mol Sci. 2019;20(20):4986. DOI:10.3390/ijms20204986. Erratum in: Int J Mol Sci. 2020;21(9):E3185. DOI:10.3390/ijms21093185
34. Krashin E, Piekiełko-Witkowska A, Ellis M, Ashur-Fabian O. Thyroid hormones and cancer: A comprehensive review of preclinical and clinical studies. Front Endocrinol (Lausanne). 2019;10:59. DOI:10.3389/fendo.2019.00059
________________________________________________
1. Global Cancer Observatory. Available at: https://gco.iarc.fr. Accessed: 10.10.2023.
2. Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: An overview. Int J Cancer. 2021;149:778-89. DOI:10.1002/ijc.33588
3. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49. DOI:10.3322/caac.21660
4. Zlokachestvennye novoobrazovaniia v Rossii v 2021 godu (zabolevaemost' i smertnost'). Pod red. AD Kaprina, VV Starinskogo, AO Shakhzadovoi. Moscow: MNIOI im. P.A. Gertsena – filial FGBU "NMITs radiologii" Minzdrava Rossii, 2022 (in Russian).
5. Pavlova NV, Orlova VS, Batlutskaya IV, et al. The role of highly penetrant mutations in BRCA1 and CHEK2 genes in the pattern of associations of matrix metalloproteinase gene polymorphisms with breast cancer. Research Results in Biomedicine. 2022;8(2):180-97 (in Russian). DOI:10.18413/2658-6533-2022-8-2-0-4
6. Mucci LA, Hjelmborg JB, Harris JR, et al.; Nordic Twin Study of Cancer (NorTwinCan) Collaboration. Familial risk and heritability of cancer among twins in Nordic countries. JAMA. 2016;315(1):68-76. DOI:10.1001/jama.2015.17703
7. Michailidou K, Lindström S, Dennis J, et al. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551(7678):92-4. DOI:10.1038/nature24284
8. Lilyquist J, Ruddy KJ, Vachon CM, Couch FJ. Common genetic variation and breast cancer risk-past, present, and future. Cancer Epidemiol Biomarkers Prev. 2018;27(4):380-94. DOI:10.1158/1055-9965.EPI-17-1144
9. Pavlova N, Demin S, Churnosov M, et al. Matrix metalloproteinase gene polymorphisms are associated with breast cancer in the caucasian women of Russia. Int J Mol Sci. 2022;23(20):12638. DOI:10.3390/ijms232012638
10. Tin Tin S, Reeves GK, Key TJ. Endogenous hormones and risk of invasive breast cancer in pre- and post-menopausal women: Findings from the UK Biobank. Br J Cancer. 2021;125(1):126-34. DOI:10.1038/s41416-021-01392-z
11. Chen F, Wen W, Long J, et al. Mendelian randomization analyses of 23 known and suspected risk factors and biomarkers for breast cancer overall and by molecular subtypes. Int J Cancer. 2022;151(3):372-80. DOI:10.1002/ijc.34026
12. Key T, Appleby P, Barnes I, Reeves G; Endogenous Hormones and Breast Cancer Collaborative Group. Endogenous sex hormones and breast cancer in postmenopausal women: Reanalysis of nine prospective studies. J Natl Cancer Inst. 2002;94(8):606-16. DOI:10.1093/jnci/94.8.606
13. Balogh A, Karpati E, Schneider AE, et al. Sex hormone-binding globulin provides a novel entry pathway for estradiol and influences subsequent signaling in lymphocytes via membrane receptor. Sci Rep. 2019;9(1):4. DOI:10.1038/s41598-018-36882-3
14. Qu X, Donnelly R. Sex hormone-binding globulin (SHBG) as an early biomarker and therapeutic target in polycystic ovary syndrome. Int J Mol Sci. 2020;21(21):8191. DOI:10.3390/ijms21218191
15. Fortunati N, Catalano MG, Boccuzzi G, Frairia R. Sex hormone-binding globulin (SHBG), estradiol and breast cancer. Mol Cell Endocrinol. 2010;316(1):86-92. DOI:10.1016/j.mce.2009.09.012
16. Dimou NL, Papadimitriou N, Gill D, et al. Sex hormone binding globulin and risk of breast cancer: a Mendelian randomization study. Int J Epidemiol. 2019;48(3):807-16. DOI:10.1093/ije/dyz107
17. Pan Z, Fu Z, Song Q, et al. Genetic polymorphisms and haplotype of hormone-related genes are associated with the risk of breast cancer in Chinese women. Genet Mol Res. 2016;15(2). DOI:10.4238/gmr.15028640
18. Nyante SJ, Gammon MD, Kaufman JS, et al. Genetic variation in estrogen and progesterone pathway genes and breast cancer risk: An exploration of tumor subtype-specific effects. Cancer Causes Control. 2015;26(1):121-31. DOI:10.1007/s10552-014-0491-2
19. Pavlova N, Demin S, Churnosov M, et al. The modifying effect of obesity on the association of matrix metalloproteinase gene polymorphisms with breast cancer risk. Biomedicines. 2022;10(10):2617. DOI:10.3390/biomedicines10102617
20. Rak molochnoi zhelezy. Klinicheskie rekomendatsii. Moscow. 2021. Available at: https://oncology.ru/specialist/treatment/references/actual/379.pdf?ysclid=lzsgnvu6sz783307237. Accessed: 10.06.2022 (in Russian).
21. Coviello AD, Haring R, Wellons M, et al. A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple Loci implicated in sex steroid hormone regulation. PLoS Genet. 2012;8(7):e1002805. DOI:10.1371/journal.pgen.1002805
22. Harrison S, Davies NM, Howe LD, Hughes A. Testosterone and socioeconomic position: Mendelian randomization in 306,248 men and women in UK Biobank. Sci Adv. 2021;7(31):eabf8257. DOI:10.1126/sciadv.abf8257
23. Ruth KS, Day FR, Tyrrell J, et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat Med. 2020;26(2):252-8.
DOI:10.1038/s41591-020-0751-5
24. Haas CB, Hsu L, Lampe JW, et al. Cross-ancestry genome-wide association studies of sex hormone concentrations in pre- and postmenopausal women. Endocrinology. 2022;163(4):bqac020. DOI:10.1210/endocr/bqac020. Erratum in: Endocrinology. 2022;164(2):bqac207. DOI:10.1210/endocr/bqac207
25. Ponomarenko IV, Polonikov AV, Churnosov MI. Association of ESR2 rs4986938 polymorphism with the development of endometrial hyperplasia. Obstetrics and Gynecology. 2019;4:66-72 (in Russian). DOI:10.18565/aig.2019.4.66-72
26. Yarosh SL, Kokhtenko EV, Churnosov MI, et al. Joint effect of glutathione S-transferase genotypes and cigarette smoking on idiopathic male infertility. Andrologia. 2015;47(9):980-6. DOI:10.1111/and.12367
27. Rashina OV. Associations of polymorphic variants of candidate genes with the development of H. pylori-negative duodenal ulcer in residents of the Central Chernozem region of Russia. Research Results in Biomedicine. 2023;9(3):333-46 (in Russian). DOI:10.18413/2658-6533-2023-9-3-0-4
28. Che R, Jack JR, Motsinger-Reif AA, Brown CC. An adaptive permutation approach for genome-wide association study: Evaluation and recommendations for use. BioData Min. 2014;7:9. DOI:10.1186/1756-0381-7-9
29. Radzinsky VE, Altuchova OB. Molecular-genetic determinants of infertility in genital endometryosis. Research Results in Biomedicine. 2018;4(3):28-37 (in Russian). DOI:10.18413/2313-8955-2018-4-3-0-3
30. Hammond GL. Plasma steroid-binding proteins: primary gatekeepers of steroid hormone action. J Endocrinol. 2016;230(1):R13-25. DOI:10.1530/JOE-16-0070
31. Sinnott-Armstrong N, Tanigawa Y, Amar D, et al.; FinnGen. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat Genet. 2021;53(2):185-94.
DOI:10.1038/s41588-020-00757-z. Erratum in: Nat Genet. 2021;53(11):1622. DOI:10.1038/s41588-021-00956-2.
32. Hercbergs A, Lin HY, Mousa SA, Davis PJ. (Thyroid) Hormonal regulation of breast cancer cells. Front Endocrinol (Lausanne). 2023;13:1109555. DOI:10.3389/fendo.2022.1109555
33. Liu YC, Yeh CT, Lin KH. Molecular functions of thyroid hormone signaling in regulation of cancer progression and anti-apoptosis. Int J Mol Sci. 2019;20(20):4986. DOI:10.3390/ijms20204986. Erratum in: Int J Mol Sci. 2020;21(9):E3185. DOI:10.3390/ijms21093185
34. Krashin E, Piekiełko-Witkowska A, Ellis M, Ashur-Fabian O. Thyroid hormones and cancer: A comprehensive review of preclinical and clinical studies. Front Endocrinol (Lausanne). 2019;10:59. DOI:10.3389/fendo.2019.00059
Авторы
К.Н. Пасенов, И.В. Пономаренко, М.И. Чурносов*
ФГАОУ ВО «Белгородский государственный национальный исследовательский университет», Белгород, Россия
*churnosov@bsu.edu.ru
________________________________________________
Konstantin N. Pasenov, Irina V. Ponomarenko, Mikhail I. Churnosov*
Belgorod State National Research University, Belgorod, Russia
*churnosov@bsu.edu.ru