Синдромы нарушенного микробиоценоза кишечника у детей: причины, диагностика, терапия
Синдромы нарушенного микробиоценоза кишечника у детей: причины, диагностика, терапия
Урсова Н.И. Синдромы нарушенного микробиоценоза кишечника у детей: причины, диагностика, терапия. Consilium Medicum. Педиатрия (Прил.). 2015; 2: 58–63.
________________________________________________
Ursova N.I. The syndromes of the disturbance of gastrointestinal microbiocenosis in children: causes, diagnosis, therapy. Consilium Medicum. Pediatrics (Suppl.). 2015; 2: 58–63.
Синдромы нарушенного микробиоценоза кишечника у детей: причины, диагностика, терапия
Урсова Н.И. Синдромы нарушенного микробиоценоза кишечника у детей: причины, диагностика, терапия. Consilium Medicum. Педиатрия (Прил.). 2015; 2: 58–63.
________________________________________________
Ursova N.I. The syndromes of the disturbance of gastrointestinal microbiocenosis in children: causes, diagnosis, therapy. Consilium Medicum. Pediatrics (Suppl.). 2015; 2: 58–63.
В статье приводятся современные данные о качественных и количественных характеристиках микробиоценоза желудочно-кишечного тракта, роли мукозной и просветной флоры. Мукозная флора в настоящее время рассматривается как предиктор развития биопленок, имеет высокий колонизационный потенциал, представляет собой стабильную функциональную систему, трудно поддающуюся влиянию извне. Просветная микрофлора играет не менее важную роль, в том числе протективную. В публикации приводятся данные по микробиоценозу разных отделов пищеварительного тракта, взаимосвязи нарушений микроэкологического статуса тонкой и толстой кишки с целым рядом заболеваний и патологических состояний.
Подробно рассматриваются дефиниция, этиологические факторы, диагностика и принципы терапии синдрома избыточного бактериального роста и дисбактериозов в детской популяции.
The article describes the modern data on the qualitative and quantitative characteristics of gastrointestinal tract microbiocenosis, the role of mucosal and fecal compartment. Mucosal flora is a predictor of the biofilms development and has a high colony potential nowadays. Mucosal flora is a stable functional system, which is difficult to impact on from the outside. The fecal compartment plays the important role, including protective role. The publication presents the data concerning microbiocenosis of the different parts of the gastrointestinal tract, the relationship between the micro-ecological system disorders in small and large intestine and variety of diseases and pathological conditions.
We discussed in detail the definition, etiological factors, diagnosis and principles of therapy of intestinal bacterial overgrowth syndrome and dysbacteriosis in pediatric populations.
1. Шендеров Б.А. Медицинская микробная экология и функциональное питание. Т. 1. Микрофлора человека и животных и ее функции. М.: ГРАНТЪ, 1998. / Shenderov B.A. Meditsinskaia mikrobnaia ekologiia i funktsional'noe pitanie. T. 1: Mikroflora cheloveka i zhivotnykh i ee funktsii. M.: GRANT, 1998. [in Russian]
2. Salminen S, Isolauri E, Onela T. Gut flora in normal and disordered states. Chemotherapy 1995; 41 (Suppl. 1): 5–15.
3. Van der Waaij D. Colonization resistance of the Digestive Tract. Japan, 1999; p. 76–81.
4. Rajilic-Stojanovic M, Smidt H, De Vos WM. Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 2007; 9: 2125–36.
5. Moore JG, Jessop LD, Osborne DN. A gas chromatographic and mass spectrometric analysis of the odor of human feces. Gastroenterology 1987; 93: 1321.
6. Servin AL. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 2004; 28: 405–40.
7. Gill SR, Pop M, Deboy RT et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312: 1355–9.
8. Dethlefsen L, Eckburg PB, Bik EM, Relman DA. Assembly of the human intestinal microbiota. Trends Ecol Evol 2006; 21: 517–23.
9. Collado MC, Delgado S, Maldonado A et al. Assessement of the bacterial diversity of breast milk of healthy woman by quantitative realtime PCR. Lett Appl Microbiol 2009; 48 (5): 523–8.
10. Martin R, Jimenez E, Heilig H et al. Isolation of bifidobacteria from breast milk and assessement of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative realtime PCR. Appl Environ Microbiol 2009; 75 (4): 965–9.
11. Miller MB, Bassler BI. Quorum sensing in bacteria. Annu Rev Microbiol 2001; 55: 165–99.
12. Galdeano CM, De Moreno de LeBlanc A, Vinderola G et al. Proposed model: mechanisms of ommunomodulation induced by probiotic bacteria. Clin Vaccine Immunol 2007; 14: 485–92.
13. Shida K, Nanno M. Probiotics and immunology: separating the wheat from the chaff. Trends Immynol 2008; 29: 565–73.
14. Conway PL. Development of intestinal microbiota. In: R.L.Mackie, B.A.White, R.E.Isaacson, editors. Gastrointestinal Microbiol 1996; 2: 3–38.
15. Macfariane S. Microbial biofilm communities in the gastrointestinal tract. J Clin Gastroenterol 2008; 242 (3): S142–43.
16. Isolauri E, Salminen S, Ouwehand AC. Microbial-gut interactions in health and disease. Probiotics. Best Pract Res Clin Gastroenterol 2004; 18: 299–313.
17. Кузнецов О.Ю. Бактериальная колония как сложно организованное сообщество клеток. Журн. микробиологии. 2005; 2: 3–7. / Kuznetsov O.Iu. Bakterial'naia koloniia kak slozhno organizovannoe soobshchestvo kletok. Zhurn. mikrobiologii. 2005; 2: 3–7. [in Russian]
18. Nielsen DS, Moller PL, Rosenfeld V et al. Case study of the distribution of mucosa-associated Bifidobacterium species, Lactobacillus species, and other lactic acid bacteria in the human colon. Int J Food Microbiol 2003; 69: 189–215.
19. Molecular basis of the activity of SinR protein, the master regulator of biofilm formation in Bacillus subtilis. J Biol Chem 2013. Doi: 10.1074/jbc.M113.455592.
20. Lebeer S, Vanderleydes G, De Keersmaecker SC. Genes and molecules of lactobacillus supporting probiotic action. Microbiol Mol Biol Rev 2008; 72: 728–64.
21. Macfarlan S, Cummings GH, Macfarlan GT. Bacterial colonization of surfaces in the large intestine; in G.R.Gibson, M.Roberfroid (eds): Colonic microflora, Nutrition and health. London: Chapman & Hall, 1999; p. 71–87.
22. Perdigon G, Fuller R, Raya R. Lactis acid bacteria and their effect on the immune system. Curr Issues Intest Microbiol 2001; 2 (1): 27–42.
23. Карпунина Т.И., Горовиц Э.С., Чиненкова А.Н., Перевалов А.Я. Повышение эффективности терапевтического действия пробиотиков. Журн. микробиологии, эпидемиологии и иммунологии. 1998; 2: 104–7. / Karpunina T.I., Gorovits E.S., Chinenkova A.N., Perevalov A.Ia. Povyshenie effektivnosti terapevticheskogo deistviia probiotikov. Zhurn. mikrobiologii, epidemiologii i immunologii. 1998; 2: 104–7. [in Russian]
24. Постникова Е.А., Пикина А.П., Кафарская Л.И., Ефимов Б.А. Изучение качественного и количественного состава микрофлоры кишечника у клинически здоровых детей в раннем возрасте. Журн. микробиологии. 2004; 1: 67–9. / Postnikova E.A., Pikina A.P., Kafarskaia L.I., Efimov B.A. Izuchenie kachestvennogo i kolichestvennogo sostava mikroflory kishechnika u klinicheski zdorovykh detei v rannem vozraste. Zhurn. mikrobiologii. 2004; 1: 67–9. [in Russian]
25. Pochart P, Marteau P, Bouhnik Y et al. Survival of Bifidobacteria ingested via fermented milk during their passage through the human small intestine: an in vivo study using intestinal perfusion. Am J Clin Nutr 1992; 55: 78–80.
26. Conrad R, Phelps TJ, Zeikus JG. Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments. Appl Environ Microbiol 1985; 50: 595–601.
27. Дармов И.В., Чичерин И.Ю., Погорельский И.П., Лундовских И.А. Выживаемость микроорганизмов пробиотиков в условиях in vitro, имитирующих процесс пищеварения у человека. Эксперим. и клин. гастроэнтерология. 2011;
3: 6–11. / Darmov I.V., Chicherin I.Iu., Pogorel'skii I.P., Lundovskikh I.A. Vyzhivaemost' mikroorganizmov probiotikov v usloviiakh in vitro, imitiruiushchikh protsess pishchevareniia u cheloveka. Eksperim. i klin. gastroenterologiia. 2011; 3: 6–11.
[in Russian]
28. Дармов И.В., Чичерин И.Ю., Ердякова А.С. и др. Сравнительная оценка выживаемости микроорганизмов пробиотиков в составе коммерческих препаратов в условиях in vitro. Сборник научных статей. Кишечная микрофлора. 2012; 1: 11–5. / Darmov I.V., Chicherin I.Iu., Erdiakova A.S. i dr. Sravnitel'naia otsenka vyzhivaemosti mikroorganizmov probiotikov v sostave kommercheskikh preparatov v usloviiakh in vitro. . Sbornik nauchnykh statei. Kishechnaia mikroflora. 2012; 1: 11–5. [in Russian]
29. Salminen S, Salminen E. Lactulose lactic acid bacteria intestinal microecology and mucosal protection. Scand J Gastroenterol 1997; 222: 45–8.
30. Бондаренко В.М. Обоснование и тактика назначения в медицинской практике различных форм пробиотических препаратов. Фарматека. 2012; 13: 89–99. / Bondarenko V.M. Obosnovanie i taktika naznacheniia v meditsinskoi praktike razlichnykh form probioticheskikh preparatov. Farmateka. 2012; 13: 89–99. [in Russian]
31. Bik EM, Eckburg PB, Gill SR et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci USA 2006; 103: 732–37.
32. Чернин В.В., Червинец В.М., Бондаренко В.М. и др. Язвенная болезнь, хронический гастрит и эзофагит в аспекте дисбактериоза гастродуоденальной зоны. Тверь: Триада, 2004. / Chernin V.V., Chervinets V.M., Bondarenko V.M. i dr. Iazvennaia bolezn', khronicheskii gastrit i ezofagit v aspekte disbakterioza gastroduodenal'noi zony. Tver': Triada, 2004. [in Russian]
33. Ботина С.Г., Ивашкина Н.Ю., Маев И.В. Молекулярно-генетические характеристики и пробиотический потенциал бактерий рода Lactobacillus. Молекулярная медицина. 2011; 2: 53–7. / Botina S.G., Ivashkina N.Iu., Maev I.V. Molekuliarno-geneticheskie kharakteristiki i probioticheskii potentsial bakterii roda Lactobacillus. Molekuliarnaia meditsina. 2011; 2: 53–7. [in Russian]
34. Stephen FM, Cummings JH. The microbial contribution to human fecal mass. J Med Microbiol 1980; 13: 45–56.
35. Cummings JH, Pomare EW, Drasar BS et al. Short-chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987; 28: 1221–7.
36. Macfarlane GT, Gibson GR, Drasar BS et al. Metabolic significance of the colonic microflora; in: R.Whitehead (ed). Gastrointestinal an esophageal physiology. Edinburgh: Churchill Livingstone, 1995; p. 249–74.
37. Zoetendal EG, Von Wright A, Vilpponen-Salmela T et al. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 2002; 68: 3401–7.
38. Heiling HG, Zoetendal EG, Vaughan EE et al. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 2002; 68: 114–3.
39. Zoetendal EG, Ben-Amor K, Harmsen HJM et al. Quantification of uncultured Ruminococcus obeum-like bacteria in human fecal samples by fluorescent in situ hybridization and flow cytometry using 16S rRNA-targeted probes. Appl Environ Microbiol 2002; 68: 4225–32.
40. Franks AH, Harmen HJM, Raangs GC et al. Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 1998; 64: 3336–45.
41. Феклисова Л.В. Отраслевой стандарт и протокол ведения больных с дисбактериозом кишечника. Тезисы докладов научно-практического семинара «Индивидуальные подходы к проблеме дисбактериоза». М., 2003; с. 3–7. / Feklisova L.V. Otraslevoi standart i protokol vedeniia bol'nykh s disbakteriozom kishechnika. Tezisy dokladov nauchno-prakticheskogo seminara «Individual'nye podkhody k probleme disbakterioza». M., 2003; s. 3–7. [in Russian]
42. Vollard EJ, Clasener H et al. Influence of amoxycillin erythromycin and roxitromycin on colonization resistance and appearance of secondary colonization in healthy volunteers. J Antimicrob Chemother 1987; 13: 131–8.
43. Beyer G, Heimer-Bau M et al. Impact of Moxifloxacin versus Claritromycin on normal oropharyngeal microflora. Eur J Clin Microbiol Inf Dis 2000; 7: 548–50.
44. Mundy LM, Sahm DF, Gilmore M. Relationships between Enterococcal virulence and antimicrobial resistance. Clin Microbiol Rev 2000; 4: 513–22.
45. Shreiner A, Huffnagle GB, Noverr MC. The Microflora Hypothesis of allergic disease. Adv Exp Med Biol 2008; 635: 113–34.
46. Timmerman HM, Koning CJM, Mulder L et al. Monostrain, multistrain and multispecies probiotics. A comparison of functionality and efficacy. Int J Food Microbiol 2004; 96: 219–33.
47. Imazumi R, Hirata K, Zommara M et al. Effects of cultered mile products by Lactobacillus and Bifidobacterias species on secretion of the bile acids in hepatocytes and in rats. J Nutr Sci Vitaminol (Tokio) 1992; 4: 186–91.
48. Урсова Н.И. Микробиоценоз открытых биологических систем организма в процессе адаптации к окружающей среде. Рус. мед. журн. Детская гастроэнтерология и нутрициология. 2004; 12 (16): 957–9. / Ursova N.I. Mikrobiotsenoz otkrytykh biologicheskikh sistem organizma v protsesse adaptatsii k okruzhaiushchei srede. Rus. med. zhurn. Detskaia gastroenterologiia i nutritsiologiia. 2004; 12 (16): 957–9. [in Russian]
49. Rhee KJ, Sethupathi P, Driks A. Role of commensal bacteria in development of gutassociated lymphoid tissues and preimmune antibody repertoire. J Immunol 2004; 172 (2): 1118–24.
50. Swidsinski A, Loening-Baucke V, Verstraelen H et al. Biostructure of fecal microbiota in healthy subjects and patients with chronic idiopathic diarrhea. Gastroenterology 2008; 135: 568–79.
51. Gedek S. Adherence of Escherichia coli O157 and the Salmonella typhimurum mutant DT101 to a surface of Saccharomyces boulardii. Mycoses 1999; 42: 261–4.
52. Qamar A, Aboudola S, Warny M et al. Saccharomyces boulardii stimulates intestinal immunoglobulin A immune response to Clostridium difficile toxin A in mice. Infect Immun 2001; 69: 2762–5.
53. McFarland LV, Surawicz CM, Elmer GE. A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. J Am Med Assoc 1994; 271: 1913–8.
54. Czerucka D, Rampal P. Experimental effects of Saccharomyces boulardii on diarrheal pathogens. Microbes Infect 2002; 4: 733–9.
55. Cremonini F, Di Caro S, Nista EC et al. Meta-analysis: the effect of probiotic administration on antibiotic-associated diarrhoea. Aliment Pharmacol Ther 2002; 16 (8): 1461–7.
56. Rambaud JC, Buts JP, Corthier G, Flourie B. Gut microflora. Digestive physiology and pathology. Paris: John Libbey Eurotext, 2006.
57. Hamer HM, Jonkers D, Venema K et al. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 2008; 27: 104–19.
58. Girard P, Pansart Y, Gillardin JM. Inducible nitric oxide synthase involvement in the mechanism of action of Saccharomyces boulardii in castor oil-induced diarrhea in rats. Nitric Oxide 2005; 13: 163–9.
59. Sougioultzis S, Simeonidis S, Bhaskar KR et al. Saccharomyces boulardii produces a soluble anti-inflammatory factor that inhibits NF-kB-mediated IL-8 gene expression. Biochem Biophys Res Commun 2006; 343 (1): 69–76.
________________________________________________
1. Shenderov B.A. Meditsinskaia mikrobnaia ekologiia i funktsional'noe pitanie. T. 1: Mikroflora cheloveka i zhivotnykh i ee funktsii. M.: GRANT, 1998. [in Russian]
2. Salminen S, Isolauri E, Onela T. Gut flora in normal and disordered states. Chemotherapy 1995; 41 (Suppl. 1): 5–15.
3. Van der Waaij D. Colonization resistance of the Digestive Tract. Japan, 1999; p. 76–81.
4. Rajilic-Stojanovic M, Smidt H, De Vos WM. Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 2007; 9: 2125–36.
5. Moore JG, Jessop LD, Osborne DN. A gas chromatographic and mass spectrometric analysis of the odor of human feces. Gastroenterology 1987; 93: 1321.
6. Servin AL. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 2004; 28: 405–40.
7. Gill SR, Pop M, Deboy RT et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312: 1355–9.
8. Dethlefsen L, Eckburg PB, Bik EM, Relman DA. Assembly of the human intestinal microbiota. Trends Ecol Evol 2006; 21: 517–23.
9. Collado MC, Delgado S, Maldonado A et al. Assessement of the bacterial diversity of breast milk of healthy woman by quantitative realtime PCR. Lett Appl Microbiol 2009; 48 (5): 523–8.
10. Martin R, Jimenez E, Heilig H et al. Isolation of bifidobacteria from breast milk and assessement of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative realtime PCR. Appl Environ Microbiol 2009; 75 (4): 965–9.
11. Miller MB, Bassler BI. Quorum sensing in bacteria. Annu Rev Microbiol 2001; 55: 165–99.
12. Galdeano CM, De Moreno de LeBlanc A, Vinderola G et al. Proposed model: mechanisms of ommunomodulation induced by probiotic bacteria. Clin Vaccine Immunol 2007; 14: 485–92.
13. Shida K, Nanno M. Probiotics and immunology: separating the wheat from the chaff. Trends Immynol 2008; 29: 565–73.
14. Conway PL. Development of intestinal microbiota. In: R.L.Mackie, B.A.White, R.E.Isaacson, editors. Gastrointestinal Microbiol 1996; 2: 3–38.
15. Macfariane S. Microbial biofilm communities in the gastrointestinal tract. J Clin Gastroenterol 2008; 242 (3): S142–43.
16. Isolauri E, Salminen S, Ouwehand AC. Microbial-gut interactions in health and disease. Probiotics. Best Pract Res Clin Gastroenterol 2004; 18: 299–313.
17. Kuznetsov O.Iu. Bakterial'naia koloniia kak slozhno organizovannoe soobshchestvo kletok. Zhurn. mikrobiologii. 2005; 2: 3–7. [in Russian]
18. Nielsen DS, Moller PL, Rosenfeld V et al. Case study of the distribution of mucosa-associated Bifidobacterium species, Lactobacillus species, and other lactic acid bacteria in the human colon. Int J Food Microbiol 2003; 69: 189–215.
19. Molecular basis of the activity of SinR protein, the master regulator of biofilm formation in Bacillus subtilis. J Biol Chem 2013. Doi: 10.1074/jbc.M113.455592.
20. Lebeer S, Vanderleydes G, De Keersmaecker SC. Genes and molecules of lactobacillus supporting probiotic action. Microbiol Mol Biol Rev 2008; 72: 728–64.
21. Macfarlan S, Cummings GH, Macfarlan GT. Bacterial colonization of surfaces in the large intestine; in G.R.Gibson, M.Roberfroid (eds): Colonic microflora, Nutrition and health. London: Chapman & Hall, 1999; p. 71–87.
22. Perdigon G, Fuller R, Raya R. Lactis acid bacteria and their effect on the immune system. Curr Issues Intest Microbiol 2001; 2 (1): 27–42.
23. Karpunina T.I., Gorovits E.S., Chinenkova A.N., Perevalov A.Ia. Povyshenie effektivnosti terapevticheskogo deistviia probiotikov. Zhurn. mikrobiologii, epidemiologii i immunologii. 1998; 2: 104–7. [in Russian]
24. Postnikova E.A., Pikina A.P., Kafarskaia L.I., Efimov B.A. Izuchenie kachestvennogo i kolichestvennogo sostava mikroflory kishechnika u klinicheski zdorovykh detei v rannem vozraste. Zhurn. mikrobiologii. 2004; 1: 67–9. [in Russian]
25. Pochart P, Marteau P, Bouhnik Y et al. Survival of Bifidobacteria ingested via fermented milk during their passage through the human small intestine: an in vivo study using intestinal perfusion. Am J Clin Nutr 1992; 55: 78–80.
26. Conrad R, Phelps TJ, Zeikus JG. Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments. Appl Environ Microbiol 1985; 50: 595–601.
27. Darmov I.V., Chicherin I.Iu., Pogorel'skii I.P., Lundovskikh I.A. Vyzhivaemost' mikroorganizmov probiotikov v usloviiakh in vitro, imitiruiushchikh protsess pishchevareniia u cheloveka. Eksperim. i klin. gastroenterologiia. 2011; 3: 6–11.
[in Russian]
28. Darmov I.V., Chicherin I.Iu., Erdiakova A.S. i dr. Sravnitel'naia otsenka vyzhivaemosti mikroorganizmov probiotikov v sostave kommercheskikh preparatov v usloviiakh in vitro. . Sbornik nauchnykh statei. Kishechnaia mikroflora. 2012; 1: 11–5. [in Russian]
29. Salminen S, Salminen E. Lactulose lactic acid bacteria intestinal microecology and mucosal protection. Scand J Gastroenterol 1997; 222: 45–8.
30. Bondarenko V.M. Obosnovanie i taktika naznacheniia v meditsinskoi praktike razlichnykh form probioticheskikh preparatov. Farmateka. 2012; 13: 89–99. [in Russian]
31. Bik EM, Eckburg PB, Gill SR et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci USA 2006; 103: 732–37.
32. Chernin V.V., Chervinets V.M., Bondarenko V.M. i dr. Iazvennaia bolezn', khronicheskii gastrit i ezofagit v aspekte disbakterioza gastroduodenal'noi zony. Tver': Triada, 2004. [in Russian]
33. Botina S.G., Ivashkina N.Iu., Maev I.V. Molekuliarno-geneticheskie kharakteristiki i probioticheskii potentsial bakterii roda Lactobacillus. Molekuliarnaia meditsina. 2011; 2: 53–7. [in Russian]
34. Stephen FM, Cummings JH. The microbial contribution to human fecal mass. J Med Microbiol 1980; 13: 45–56.
35. Cummings JH, Pomare EW, Drasar BS et al. Short-chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987; 28: 1221–7.
36. Macfarlane GT, Gibson GR, Drasar BS et al. Metabolic significance of the colonic microflora; in: R.Whitehead (ed). Gastrointestinal an esophageal physiology. Edinburgh: Churchill Livingstone, 1995; p. 249–74.
37. Zoetendal EG, Von Wright A, Vilpponen-Salmela T et al. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 2002; 68: 3401–7.
38. Heiling HG, Zoetendal EG, Vaughan EE et al. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 2002; 68: 114–3.
39. Zoetendal EG, Ben-Amor K, Harmsen HJM et al. Quantification of uncultured Ruminococcus obeum-like bacteria in human fecal samples by fluorescent in situ hybridization and flow cytometry using 16S rRNA-targeted probes. Appl Environ Microbiol 2002; 68: 4225–32.
40. Franks AH, Harmen HJM, Raangs GC et al. Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 1998; 64: 3336–45.
41. Feklisova L.V. Otraslevoi standart i protokol vedeniia bol'nykh s disbakteriozom kishechnika. Tezisy dokladov nauchno-prakticheskogo seminara «Individual'nye podkhody k probleme disbakterioza». M., 2003; s. 3–7. [in Russian]
42. Vollard EJ, Clasener H et al. Influence of amoxycillin erythromycin and roxitromycin on colonization resistance and appearance of secondary colonization in healthy volunteers. J Antimicrob Chemother 1987; 13: 131–8.
43. Beyer G, Heimer-Bau M et al. Impact of Moxifloxacin versus Claritromycin on normal oropharyngeal microflora. Eur J Clin Microbiol Inf Dis 2000; 7: 548–50.
44. Mundy LM, Sahm DF, Gilmore M. Relationships between Enterococcal virulence and antimicrobial resistance. Clin Microbiol Rev 2000; 4: 513–22.
45. Shreiner A, Huffnagle GB, Noverr MC. The Microflora Hypothesis of allergic disease. Adv Exp Med Biol 2008; 635: 113–34.
46. Timmerman HM, Koning CJM, Mulder L et al. Monostrain, multistrain and multispecies probiotics. A comparison of functionality and efficacy. Int J Food Microbiol 2004; 96: 219–33.
47. Imazumi R, Hirata K, Zommara M et al. Effects of cultered mile products by Lactobacillus and Bifidobacterias species on secretion of the bile acids in hepatocytes and in rats. J Nutr Sci Vitaminol (Tokio) 1992; 4: 186–91.
48. Ursova N.I. Mikrobiotsenoz otkrytykh biologicheskikh sistem organizma v protsesse adaptatsii k okruzhaiushchei srede. Rus. med. zhurn. Detskaia gastroenterologiia i nutritsiologiia. 2004; 12 (16): 957–9. [in Russian]
49. Rhee KJ, Sethupathi P, Driks A. Role of commensal bacteria in development of gutassociated lymphoid tissues and preimmune antibody repertoire. J Immunol 2004; 172 (2): 1118–24.
50. Swidsinski A, Loening-Baucke V, Verstraelen H et al. Biostructure of fecal microbiota in healthy subjects and patients with chronic idiopathic diarrhea. Gastroenterology 2008; 135: 568–79.
51. Gedek S. Adherence of Escherichia coli O157 and the Salmonella typhimurum mutant DT101 to a surface of Saccharomyces boulardii. Mycoses 1999; 42: 261–4.
52. Qamar A, Aboudola S, Warny M et al. Saccharomyces boulardii stimulates intestinal immunoglobulin A immune response to Clostridium difficile toxin A in mice. Infect Immun 2001; 69: 2762–5.
53. McFarland LV, Surawicz CM, Elmer GE. A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. J Am Med Assoc 1994; 271: 1913–8.
54. Czerucka D, Rampal P. Experimental effects of Saccharomyces boulardii on diarrheal pathogens. Microbes Infect 2002; 4: 733–9.
55. Cremonini F, Di Caro S, Nista EC et al. Meta-analysis: the effect of probiotic administration on antibiotic-associated diarrhoea. Aliment Pharmacol Ther 2002; 16 (8): 1461–7.
56. Rambaud JC, Buts JP, Corthier G, Flourie B. Gut microflora. Digestive physiology and pathology. Paris: John Libbey Eurotext, 2006.
57. Hamer HM, Jonkers D, Venema K et al. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 2008; 27: 104–19.
58. Girard P, Pansart Y, Gillardin JM. Inducible nitric oxide synthase involvement in the mechanism of action of Saccharomyces boulardii in castor oil-induced diarrhea in rats. Nitric Oxide 2005; 13: 163–9.
59. Sougioultzis S, Simeonidis S, Bhaskar KR et al. Saccharomyces boulardii produces a soluble anti-inflammatory factor that inhibits NF-kB-mediated IL-8 gene expression. Biochem Biophys Res Commun 2006; 343 (1): 69–76.
Авторы
Н.И.Урсова*
ГБУЗ МО Московский областной научно-исследовательский клинический институт им. М.Ф.Владимирского. 129110, Россия, Москва, ул. Щепкина, д. 61/2
*ursovan@mail.ru
________________________________________________
N.I.Ursova*
M.F.Vladimirskiy Moscow Regional Research Clinical Institute. 129110, Russian Federation, Moscow, ul. Shchepkina, d. 61/2
*ursovan@mail.ru