Влияние кишечной микробиоты на иммунную систему ребенка в первую тысячу дней жизни и возможности пробиотической коррекции
Влияние кишечной микробиоты на иммунную систему ребенка в первую тысячу дней жизни и возможности пробиотической коррекции
Якушин А.С., Денисов М.Ю. Влияние кишечной микробиоты на иммунную систему ребенка в первую тысячу дней жизни и возможности пробиотической коррекции. Педиатрия (Прил. к журн. Consilium Medicum). 2018; 2: 43–46.
DOI: 10.26442/2413-8460_2018.2.43-46
________________________________________________
Yakushin A.S., Denisov M.Yu. Influence of intestinal microbiota on the immune system of the child in the first thousand days of life and the possibility of probiotic correction. Pediatrics (Suppl. Consilium Medicum). 2018; 2: 43–46.
DOI: 10.26442/2413-8460_2018.2.43-46
Влияние кишечной микробиоты на иммунную систему ребенка в первую тысячу дней жизни и возможности пробиотической коррекции
Якушин А.С., Денисов М.Ю. Влияние кишечной микробиоты на иммунную систему ребенка в первую тысячу дней жизни и возможности пробиотической коррекции. Педиатрия (Прил. к журн. Consilium Medicum). 2018; 2: 43–46.
DOI: 10.26442/2413-8460_2018.2.43-46
________________________________________________
Yakushin A.S., Denisov M.Yu. Influence of intestinal microbiota on the immune system of the child in the first thousand days of life and the possibility of probiotic correction. Pediatrics (Suppl. Consilium Medicum). 2018; 2: 43–46.
DOI: 10.26442/2413-8460_2018.2.43-46
В обзоре представлены современные представления о механизмах становления кишечной микробиоты у плода и младенцев в первую тысячу дней жизни. Научные исследования демонстрируют многообразие факторов становления первичной микробиоты, роли тех или иных материнских и средовых факторов. Показана важная роль пробиотической поддержки как матери, так и ребенка в первые годы жизни с целью профилактики иммунозависимых заболеваний. Ключевые слова: плод, ребенок, кишечная микробиота, вскармливание, пробиотики.
________________________________________________
Influence of the intestinal microbiota on the immune system of the child in the first thousand days life and the possibility of probiotic correction The review presents modern ideas about the mechanisms of formation intestinal microbiota in the fetus and infants in the first thousand days of life. Scientific research demonstrates the diversity of factors in the development of primary microbiota, the role of various maternal and environmental factors. An important role is shown probiotic support of both mother and child in the first years of life with the aim of prophylaxis of immunodeficient diseases. Key words: fetus, child, intestinal microbiota, feeding, probiotics.
Список литературы
1. Fusunyan R, Nanthakumar N, Baldeon M, Walker W. Evidence for an innate immune response in the immature human intestine: toll-like receptors on fetal enterocytes. Pediatr Res 2001; 49 (4): 589–93.
2. Leeansyah E, Loh L, Nixon D, Sandberg J. Acquisition of innate-like microbial reactivity in mucosal tissues during human fetal MAIT-cell development. Nat Commun 2014; 5: 3143.
3. Jiménez E, Marín M, Martín R et al. Is meconium from healthy newborns actually sterile? Res Microbiol 2008; 159 (3): 187–93.
4. Hu J, Nomura Y, Bashir A et al. Diversified Microbiota of Meconium Is Affected by Maternal Diabetes Status. PLoS ONE 2013; 8 (11): e78257.
5. Ardissone A, de la Cruz D, Davis-Richardson A et al. Meconium Microbiome Analysis Identifies Bacteria Correlated with Premature Birth. PLoS ONE 2014; 9 (3): e90784.
6. Collado M, Rautava S, Aakko J et al. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep 2016; 6 (1).
7. Onderdonk A, Hecht J, McElrath T et al. Colonization of second-trimester placenta parenchyma. Am J Obst Gynecol 2008; 199 (1): 52.
8. Aagaard K, Ma J, Antony K et al. The Placenta Harbors a Unique Microbiome. Sci Translational Med 2014; 6 (237): 237.
9. Pal C, Bengtsson-Palme J, Kristiansson E, Larsson D. The structure and diversity of human, animal and environmental resistomes. Microbiome 2016; 4 (1).
10. Shiozaki A, Yoneda S, Yoneda N et al. Intestinal Microbiota is Different in Women with Preterm Birth: Results from Terminal Restriction Fragment Length Polymorphism Analysis. PLoS ONE 2014; 9 (11): e111374.
11. Neu J. The microbiome during pregnancy and early postnatal life. Seminars in Fetal and Neonatal Medicine. 2016; 21 (6): 373–9.
12. Madan J, Salari R, Saxena D et al. Gut microbial colonisation in premature neonates predicts neonatal sepsis. Arch Dis Child Fetal Neonatal Ed 2012; 97 (6): F456–F462.
13. Koleva P, Kim J, Scott J, Kozyrskyj A. Microbial programming of health and disease starts during fetal life. Birth Defects Res C Embryo Today 2015; 105 (4): 265–77.
14. Gosalbes M, Llop S, Vallès Y et al. Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Experim Allergy 2013; 43 (2): 198–211.
15. Metsälä J, Lundqvist A, Virta LJ et al. Mother’s and offspring’s use of antibiotics and infant allergy to cow’s milk. Epidemiology 2013; 24 (2): 303–9.
16. Dogra S, Sakwinska O, Soh S et al. Dynamics of Infant Gut Microbiota Are Influenced by Delivery Mode and Gestational Duration and Are Associated with Subsequent Adiposity. mBio 2015; 6 (1): e02419–14.
17. Collado M, Isolauri E, Laitinen K et al. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr 2008; 88 (4): 894–9.
18. Abrahamsson T, Jakobsson T, Böttcher M et al. Probiotics in prevention of IgE-associated eczema: A double-blind, randomized, placebo-controlled trial. J Allergy Clin Immunol 2007; 119 (5): 1174–80.
19. Kalliomäki M, Salminen S, Poussa H et al. Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial. Lancet 2003; 361 (9372): 1869–71.
20. Dominguez-Bello M, Costello E, Contreras M et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceed Nat Acad Sci 2010; 107 (26): 11971–5.
21. Roduit C, Scholtens S, de Jongste J et al. Asthma at 8 years of age in children born by caesarean section. Thorax 2009; 64 (2): 107–13.
22. Bonifacio E, Warncke K, Winkler C et al. Cesarean section and interferon-induced helicase gene polymorphisms combine to increase childhood type 1 diabetes risk. Diabetes 2011; 60 (12): 3300–6.
23. Marild K, Stephansson O, Montgomery S et al. Pregnancy outcome and risk of celiac disease in offspring: a nationwide case-control study. Gastroenterology 2012; 142 (1): 39–45.
24. Rautava S, Luoto R, Salminen S, Isolauri E. Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol 2012; 9 (10): 565.
25. Mueller N, Bakacs E, Combellick J et al. The infant microbiome development: mom matters. Trends Molecular Medicine 2015; 21 (2): 109–17.
26. Risnes K, Belanger K, Murk W et al. Antibiotic Exposure by 6 Months and Asthma and Allergy at 6 Years: Findings in a Cohort of 1,401 US Children. Am J Epidemiology 2010; 173 (3): 310–8.
27. Chu D, Ma J, Prince A et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nature Medicine 2017; 23 (3): 314–26.
28. Fouhy F, Guinane C, Hussey S et al. High-Throughput Sequencing Reveals the Incomplete, Short-Term Recovery of Infant Gut Microbiota following Parenteral Antibiotic Treatment with Ampicillin and Gentamicin. Antimicrob Agents Chemother 2012; 56 (11): 5811–20.
29. Tanaka S, Kobayashi T, Songjinda P et al. Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol 2009; 56 (1): 80–7.
30. Azad M, Konya T, Persaud R et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG 2015; 123 (6): 983–93.
31. Martin R, Makino H, Yavuz A et al. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS One 2016; 11 (6): e0158498.
32. Fan W, Huo G, Li X et al. Diversity of the intestinal microbiota in different patterns of feeding infants by Illumina high-throughput sequencing. World J Microbiol Biotechnol 2013; 29 (12): 2365–72.
33. Lee S, Lim J, Kim B et al. Comparison of the gut microbiota profile in breastfed and formula-fed Korean infants using pyrosequencing. Nutrition Res Practice 2015; 9 (3): 242–8.
34. Thompson A, Monteagudo-Mera A, Cadenas M et al. Milk- and solid-feeding practices and daycare attendance are associated with differences in bacterial diversity, predominant communities, and metabolic and immune function of the infant gut microbiome. Front Cell Infect Microbiol 2015; 5: 3.
35. Magne F, Hachelaf W, Suau A et al. A longitudinal study of infant faecal microbiota during weaning. FEMS Microbiol Ecol 2006; 58 (3): 563–71.
36. Bezirtzoglou E, Tsiotsias A, Welling G. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe 2011; 17 (6): 478–82.
37. Turroni F, Peano C, Pass D et al. Diversity of Bifidobacteria within the Infant Gut Microbiota. PLoS ONE 2012; 7 (5): e36957.
38. Davis E, Wang M, Donovan S. The role of early life nutrition in the establishment of gastrointestinal microbial composition and function. Gut Microbes 2017; 8 (2): 143–71.
39. Backhed F, Roswall J, Peng Y et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015; 17 (6): 852.
40. Bergstrom A, Skov T, Bahl M et al. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Appl Environ Microbiol 2014; 80 (9): 2889–900.
41. Valles Y, Artacho A, Pascual-Garcıa A et al. Microbial succession in the gut: directional trends of taxonomic and functional change in a birth cohort of Spanish infants. PLoS Genet 2014; 10 (6): e1004406.
42. Koenig J, Spor A, Scalfone N et al. Succession of microbial consortia in the developing infant gut microbiome. Proceed Nat Acad Sci 2011; 108 (1): 4578–85.
43. Walker W. Bacterial Colonization of the Newborn Gut, Immune Development, and Prevention of Disease. Nestle Nutr Inst Workshop Ser 2017; 88: 23–33.
44. Bisgaard H, Li N, Bonnelykke K et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age.
J Allergy Clin Immunol 2011; 128 (3): 646–52.
45. Abrahamsson T, Jakobsson H, Andersson A et al. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol 2012; 129 (2): 434–40.
46. Ismail I, Oppedisano F, Joseph S. et al. Reduced gut microbial diversity in early life is associated with later development of eczema but not atopy in high-risk infants. Pediatric Allergy Immunol 2012; 23 (7): 674–81.
47. Sjögren Y, Jenmalm M, Böttcher M et al. Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clinical Experim Allergy 2009; 39 (4): 518–26.
48. Johansson M, Sjögren Y, Persson J et al. Early Colonization with a Group of Lactobacilli Decreases the Risk for Allergy at Five Years of Age Despite Allergic Heredity. PLoS ONE 2011; 6 (8): e23031.
49. Szajewska H, Setty M, Mrukowicz J, Guandalini S. Probiotics in gastrointestinal diseases in children: hard and not-so-hard evidence of efficacy. J Pediatric Gastroenterol Nutrition 2006; 42: 454–75.
50. Sazawal S, Dhingra U, Sarkar A et al. Efficacy of milk fortified with a probiotic Bifidobacterium lactis (DR-10TM) and prebiotic galactooligosaccharides in prevention of morbidity and on nutritional status. Asia Pacific J Clin Nutrition 2004; 13: 28.
51. Alfaleh K, Bassler D. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Evidence‐Based Child Health Cochrane Rev J 2012; 7 (6): 1807–54.
52. Deshpande G, Rao S, Patole S. Probiotics for prevention of necrotising enterocolitis in preterm neonates with very low birthweight: a systematic review of randomised controlled trials. Lancet 2007; 369 (9573): 1614–20.
53. Hunter C, Dimaguila M, Gal P et al. Effect of routine probiotic, Lactobacillus reuteri DSM 17938, use on rates of necrotizing enterocolitis in neonates with birthweight 1000 grams: a sequential analysis. BMC Pediatr 2012; 12 (1): 142.
54. Mattar A, Drongowski R, Coran A et al. Effect of probiotics on enterocyte bacterial translocation in vitro. Ped Surg Int 2001; 17 (4): 265–8.
55. Reid G, Howard J, Gan B. Can bacterial interference prevent infection? Trends Microbiol 2001; 9 (9): 424–8.
56. Martin C, Walker W. Probiotics: role in pathophysiology and prevention in necrotizing enterocolitis. Semin Perinatol 2008; 32 (2): 127–37.
________________________________________________
1. Fusunyan R, Nanthakumar N, Baldeon M, Walker W. Evidence for an innate immune response in the immature human intestine: toll-like receptors on fetal enterocytes. Pediatr Res 2001; 49 (4): 589–93.
2. Leeansyah E, Loh L, Nixon D, Sandberg J. Acquisition of innate-like microbial reactivity in mucosal tissues during human fetal MAIT-cell development. Nat Commun 2014; 5: 3143.
3. Jiménez E, Marín M, Martín R et al. Is meconium from healthy newborns actually sterile? Res Microbiol 2008; 159 (3): 187–93.
4. Hu J, Nomura Y, Bashir A et al. Diversified Microbiota of Meconium Is Affected by Maternal Diabetes Status. PLoS ONE 2013; 8 (11): e78257.
5. Ardissone A, de la Cruz D, Davis-Richardson A et al. Meconium Microbiome Analysis Identifies Bacteria Correlated with Premature Birth. PLoS ONE 2014; 9 (3): e90784.
6. Collado M, Rautava S, Aakko J et al. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep 2016; 6 (1).
7. Onderdonk A, Hecht J, McElrath T et al. Colonization of second-trimester placenta parenchyma. Am J Obst Gynecol 2008; 199 (1): 52.
8. Aagaard K, Ma J, Antony K et al. The Placenta Harbors a Unique Microbiome. Sci Translational Med 2014; 6 (237): 237.
9. Pal C, Bengtsson-Palme J, Kristiansson E, Larsson D. The structure and diversity of human, animal and environmental resistomes. Microbiome 2016; 4 (1).
10. Shiozaki A, Yoneda S, Yoneda N et al. Intestinal Microbiota is Different in Women with Preterm Birth: Results from Terminal Restriction Fragment Length Polymorphism Analysis. PLoS ONE 2014; 9 (11): e111374.
11. Neu J. The microbiome during pregnancy and early postnatal life. Seminars in Fetal and Neonatal Medicine. 2016; 21 (6): 373–9.
12. Madan J, Salari R, Saxena D et al. Gut microbial colonisation in premature neonates predicts neonatal sepsis. Arch Dis Child Fetal Neonatal Ed 2012; 97 (6): F456–F462.
13. Koleva P, Kim J, Scott J, Kozyrskyj A. Microbial programming of health and disease starts during fetal life. Birth Defects Res C Embryo Today 2015; 105 (4): 265–77.
14. Gosalbes M, Llop S, Vallès Y et al. Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Experim Allergy 2013; 43 (2): 198–211.
15. Metsälä J, Lundqvist A, Virta LJ et al. Mother’s and offspring’s use of antibiotics and infant allergy to cow’s milk. Epidemiology 2013; 24 (2): 303–9.
16. Dogra S, Sakwinska O, Soh S et al. Dynamics of Infant Gut Microbiota Are Influenced by Delivery Mode and Gestational Duration and Are Associated with Subsequent Adiposity. mBio 2015; 6 (1): e02419–14.
17. Collado M, Isolauri E, Laitinen K et al. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr 2008; 88 (4): 894–9.
18. Abrahamsson T, Jakobsson T, Böttcher M et al. Probiotics in prevention of IgE-associated eczema: A double-blind, randomized, placebo-controlled trial. J Allergy Clin Immunol 2007; 119 (5): 1174–80.
19. Kalliomäki M, Salminen S, Poussa H et al. Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial. Lancet 2003; 361 (9372): 1869–71.
20. Dominguez-Bello M, Costello E, Contreras M et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceed Nat Acad Sci 2010; 107 (26): 11971–5.
21. Roduit C, Scholtens S, de Jongste J et al. Asthma at 8 years of age in children born by caesarean section. Thorax 2009; 64 (2): 107–13.
22. Bonifacio E, Warncke K, Winkler C et al. Cesarean section and interferon-induced helicase gene polymorphisms combine to increase childhood type 1 diabetes risk. Diabetes 2011; 60 (12): 3300–6.
23. Marild K, Stephansson O, Montgomery S et al. Pregnancy outcome and risk of celiac disease in offspring: a nationwide case-control study. Gastroenterology 2012; 142 (1): 39–45.
24. Rautava S, Luoto R, Salminen S, Isolauri E. Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol 2012; 9 (10): 565.
25. Mueller N, Bakacs E, Combellick J et al. The infant microbiome development: mom matters. Trends Molecular Medicine 2015; 21 (2): 109–17.
26. Risnes K, Belanger K, Murk W et al. Antibiotic Exposure by 6 Months and Asthma and Allergy at 6 Years: Findings in a Cohort of 1,401 US Children. Am J Epidemiology 2010; 173 (3): 310–8.
27. Chu D, Ma J, Prince A et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nature Medicine 2017; 23 (3): 314–26.
28. Fouhy F, Guinane C, Hussey S et al. High-Throughput Sequencing Reveals the Incomplete, Short-Term Recovery of Infant Gut Microbiota following Parenteral Antibiotic Treatment with Ampicillin and Gentamicin. Antimicrob Agents Chemother 2012; 56 (11): 5811–20.
29. Tanaka S, Kobayashi T, Songjinda P et al. Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol 2009; 56 (1): 80–7.
30. Azad M, Konya T, Persaud R et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG 2015; 123 (6): 983–93.
31. Martin R, Makino H, Yavuz A et al. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS One 2016; 11 (6): e0158498.
32. Fan W, Huo G, Li X et al. Diversity of the intestinal microbiota in different patterns of feeding infants by Illumina high-throughput sequencing. World J Microbiol Biotechnol 2013; 29 (12): 2365–72.
33. Lee S, Lim J, Kim B et al. Comparison of the gut microbiota profile in breastfed and formula-fed Korean infants using pyrosequencing. Nutrition Res Practice 2015; 9 (3): 242–8.
34. Thompson A, Monteagudo-Mera A, Cadenas M et al. Milk- and solid-feeding practices and daycare attendance are associated with differences in bacterial diversity, predominant communities, and metabolic and immune function of the infant gut microbiome. Front Cell Infect Microbiol 2015; 5: 3.
35. Magne F, Hachelaf W, Suau A et al. A longitudinal study of infant faecal microbiota during weaning. FEMS Microbiol Ecol 2006; 58 (3): 563–71.
36. Bezirtzoglou E, Tsiotsias A, Welling G. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe 2011; 17 (6): 478–82.
37. Turroni F, Peano C, Pass D et al. Diversity of Bifidobacteria within the Infant Gut Microbiota. PLoS ONE 2012; 7 (5): e36957.
38. Davis E, Wang M, Donovan S. The role of early life nutrition in the establishment of gastrointestinal microbial composition and function. Gut Microbes 2017; 8 (2): 143–71.
39. Backhed F, Roswall J, Peng Y et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015; 17 (6): 852.
40. Bergstrom A, Skov T, Bahl M et al. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Appl Environ Microbiol 2014; 80 (9): 2889–900.
41. Valles Y, Artacho A, Pascual-Garcıa A et al. Microbial succession in the gut: directional trends of taxonomic and functional change in a birth cohort of Spanish infants. PLoS Genet 2014; 10 (6): e1004406.
42. Koenig J, Spor A, Scalfone N et al. Succession of microbial consortia in the developing infant gut microbiome. Proceed Nat Acad Sci 2011; 108 (1): 4578–85.
43. Walker W. Bacterial Colonization of the Newborn Gut, Immune Development, and Prevention of Disease. Nestle Nutr Inst Workshop Ser 2017; 88: 23–33.
44. Bisgaard H, Li N, Bonnelykke K et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age.
J Allergy Clin Immunol 2011; 128 (3): 646–52.
45. Abrahamsson T, Jakobsson H, Andersson A et al. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol 2012; 129 (2): 434–40.
46. Ismail I, Oppedisano F, Joseph S. et al. Reduced gut microbial diversity in early life is associated with later development of eczema but not atopy in high-risk infants. Pediatric Allergy Immunol 2012; 23 (7): 674–81.
47. Sjögren Y, Jenmalm M, Böttcher M et al. Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clinical Experim Allergy 2009; 39 (4): 518–26.
48. Johansson M, Sjögren Y, Persson J et al. Early Colonization with a Group of Lactobacilli Decreases the Risk for Allergy at Five Years of Age Despite Allergic Heredity. PLoS ONE 2011; 6 (8): e23031.
49. Szajewska H, Setty M, Mrukowicz J, Guandalini S. Probiotics in gastrointestinal diseases in children: hard and not-so-hard evidence of efficacy. J Pediatric Gastroenterol Nutrition 2006; 42: 454–75.
50. Sazawal S, Dhingra U, Sarkar A et al. Efficacy of milk fortified with a probiotic Bifidobacterium lactis (DR-10TM) and prebiotic galactooligosaccharides in prevention of morbidity and on nutritional status. Asia Pacific J Clin Nutrition 2004; 13: 28.
51. Alfaleh K, Bassler D. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Evidence‐Based Child Health Cochrane Rev J 2012; 7 (6): 1807–54.
52. Deshpande G, Rao S, Patole S. Probiotics for prevention of necrotising enterocolitis in preterm neonates with very low birthweight: a systematic review of randomised controlled trials. Lancet 2007; 369 (9573): 1614–20.
53. Hunter C, Dimaguila M, Gal P et al. Effect of routine probiotic, Lactobacillus reuteri DSM 17938, use on rates of necrotizing enterocolitis in neonates with birthweight 1000 grams: a sequential analysis. BMC Pediatr 2012; 12 (1): 142.
54. Mattar A, Drongowski R, Coran A et al. Effect of probiotics on enterocyte bacterial translocation in vitro. Ped Surg Int 2001; 17 (4): 265–8.
55. Reid G, Howard J, Gan B. Can bacterial interference prevent infection? Trends Microbiol 2001; 9 (9): 424–8.
56. Martin C, Walker W. Probiotics: role in pathophysiology and prevention in necrotizing enterocolitis. Semin Perinatol 2008; 32 (2): 127–37.
Авторы
А.С.Якушин1,2, М.Ю.Денисов*2
1 ООО «Центр семейной медицины». 630090, Россия, Новосибирск, ул. Пирогова, д. 25/4;
2 ФГАОУ ВО «Новосибирский национальный исследовательский государственный университет».
630090, Россия, Новосибирск, ул. Пирогова, д. 1
*mi.den@mail.ru
________________________________________________
A.S.Yakushin1,2, M.Yu.Denisov*2
1 Family Medicine Center. 630090, Russian Federation, Novosibirsk, ul. Pirogova, d. 25/4;
2 Novosibirsk National Research State University. 630090, Russian Federation, Novosibirsk, ul. Pirogova, d. 1
*mi.den@mail.ru