Влияние витамина D на иммунный ответ организма
Влияние витамина D на иммунный ответ организма
Захарова И.Н., Мальцев С.В., Заплатников А.Л. и др. Влияние витамина D на иммунный ответ организма. Педиатрия. Consilium Medicum. 2020; 2: 29–37.
DOI: 10.26442/26586630.2020.2.200238
DOI: 10.26442/26586630.2020.2.200238
DOI: 10.26442/26586630.2020.2.200238
________________________________________________
DOI: 10.26442/26586630.2020.2.200238
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Литературный обзор посвящен влиянию витамина D на иммунный ответ организма. Как показывают исследования, витамин D способен ингибировать синтез провоспалительных цитокинов и, как следствие, играть важную роль в формировании иммунной толерантности, что важно при инфекционных, аутоиммунных заболеваниях и у пациентов после трансплантации органов. Витамин D может применяться как в качестве профилактики, так и в лечебных целях при инфекционных заболеваниях, в онкогематологии, аллергологии, гастроэнтерологии, а также способен влиять на внутриутробное развитие плода и иммунный ответ новорожденного, снижая риск развития патологии беременности, преждевременных родов и патологии плаценты, а также уменьшая частоту, степень тяжести и риск неблагоприятного исхода у новорожденных с врожденной и приобретенной инфекционной патологией. В постнатальном периоде нормальная обеспеченность витамином D не только снижает частоту, но и предотвращает формирование тяжелых форм аутоиммунных, аллергических заболеваний у детей и подростков.
Ключевые слова: витамин D, иммунитет, кальцитриол, плацента, инфекционные заболевания, аутоиммунные болезни.
Key words: vitamin D, immunity, calcitriol, placenta, infectious diseases, autoimmune diseases.
Ключевые слова: витамин D, иммунитет, кальцитриол, плацента, инфекционные заболевания, аутоиммунные болезни.
________________________________________________
Key words: vitamin D, immunity, calcitriol, placenta, infectious diseases, autoimmune diseases.
Список литературы
1. Vinood B. Patel. Molecular Nutrition. Vitamins. Academic Press, 2020. DOI: 10.1016/C2016-0-02103-4
2. Holick MF, Garabedia M. Vitamin D: photobiology, metabolism, mechanism of action, and clinical applications. Primer on the Metabolic Bone diseases and disorders of Mineral Metabolism ed. by M.J. Favus. sixth edition. Chapter 17. Washington, DC: American society for Bone and Mineral Research, 2006; р. 129–37.
3. Мальцев С.В., Рылова Н.В. Витамин D и иммунитет. Практическая медицина. 2015; 86 (1): 114–20.
[Mal'tsev S.V., Rylova N.V. Vitamin D i immunitet. Prakticheskaia meditsina. 2015; 86 (1): 114–20 (in Russian).]
4. Захарова И.Н., Климов Л.Я., Касьянова А.Н. и др. Современные представления об иммунотропных эффектах витамина D. Вопросы практической педиатрии. 2019; 14 (1): 7–17. DOI: 10.20953/1817-7646-2019-1-7-17
[Zakharova I.N., Klimov L.Ia., Kas'ianova A.N. et al. Sovremennye predstavleniia ob immunotropnykh effektakh vitamina D. Voprosy prakticheskoi pediatrii. 2019; 14 (1): 7–17. DOI: 10.20953/1817-7646-2019-1-7-17 (in Russian).]
5. Barragan M, Good M, Kolls JK. Regulation of Dendritic Cell Function by Vitamin D. Nutrients 2015; 7 (9): 8127–51. DOI: 10.3390/nu7095383
6. Barker T, Rogers VE, Levy M et al. Supplemental vitamin D increases serum cytokines in those with initially low 25-hydroxyvitamin D: a randomized, double blind, placebo-controlled study. Cytokine 2015; 71: 132–8. DOI: 10.1016/j.cyto.2014.09.012
7. Agraz-Cibriana JM, Giraldob DM, Urcuqui-Inchimab S. 1,25-dihydroxyvitamin D3 induces formation of neutrophil extracellular trap-like structures and modulates the transcription of genes whose products are neutrophil extracellular trap-associated proteins: A pilot study. Steroids 2019; 141 (January): 14–22. DOI: 10.1016/j.steroids.2018.11.001
8. Corripio-Miyar Y, Mellanby RJ, Morrison K, McNeilly TN. 1,25-dihydroxyvitamin D3 modulates the phenotype and function of monocyte derived dendritic cells in cattle. BMC Vet Res 2017; 13 (1): 390. DOI: 10.1186/s12917-017-1309-8
9. Захарова И.Н., Климов Л.Я., Касьянова А.Н. и др. Роль антимикробных пептидов и витамина D в формировании противоинфекционной защиты. Педиатрия. Журнал им. Г.Н. Сперанского. 2017; 96 (4): 171–9.
[Zakharova I.N., Klimov L.Ia., Kas'ianova A.N. et al. Rol' antimikrobnykh peptidov i vitamina D v formirovanii protivoinfektsionnoi zashchity. Pediatriia. Zhurnal im. G.N. Speranskogo. 2017; 96 (4): 171–9 (in Russian).]
10. Захарова И.Н., Цуцаева А.Н., Климов Л.Я. и др. Витамин D и продукция дефензинов у детей раннего возраста. Мед. совет. 2020; 1: 158–69. DOI: 10.21518/2079-701X-2020-1-158-169
[Zakharova I.N., Tsutsaeva A.N., Klimov L.Ia. et al. Vitamin D i produktsiia defenzinov u detei rannego vozrasta. Med. sovet. 2020; 1: 158–69. DOI: 10.21518/2079-701X-2020-1-158-169 (in Russian).]
11. Абатуров А.Е. Катионные антимикробные пептиды системы неспецифической защиты респираторного тракта: дефензины и кателицидины. Дефензины – молекулы, переживающие ренессанс (часть 1). Здоровье ребенка. 2011; 7: 161–71.
[Abaturov A.E. Kationnye antimikrobnye peptidy sistemy nespetsificheskoi zashchity respiratornogo trakta: defenziny i katelitsidiny. Defenziny – molekuly, perezhivaiushchie renessans (chast' 1). Zdorov'e rebenka. 2011; 7: 161–71 (in Russian).]
12. Agier J, Brzezinska-Blaszczyk E. Cathelicidins and defensins regulate mast cell antimicrobial activity. Postepy Hig Med Dosw (Online) 2016; 70 (0): 618–36. DOI: 10.5604/17322693.1205357
13. Yegorov S, Bromage S, Boldbaatar N, Ganmaa D. Effects of vitamin D supplementation and seasonality on circulating cytokines in adolescents: analysis of data from a feasibility trial in Mongolia. Nutr Immunol 2019; 6: 166. DOI: 10.3389/fnut.2019.00166
14. Esche C, Stellato C, Beck LA. Chemokines: key players in innate and adaptive immunity. J Invest Dermatol 2005; 125: 615–28. DOI: 10.1111/j.0022-202X. 2005.23841.x
15. Chambers ES, Suwannasaen D, Mann EH et al. 1a,25-dihydroxyvitamin D3 in combination with transforming growth factor-b increases the frequency of Foxp3⁺ regulatory T cells through preferential expansion and usage of interleukin-2. Immunology 2014; 143 (1): 52–60. DOI: 10.1111/imm.12289
16. Chen S, Lee LF, Fisher TS et al. Combination of 4-1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model. Cancer Immunol Res 2015; 3 (2): 149–60. DOI: 10.1158/2326-6066
17. Fakhoury MA, Kvietys PR, Kattan WA et al. Vitamin D and intestinal homeostasis: barrier, microbiota, and immune modulation. J Steroid Biochem Mol Biol 2020; 200: 105663. DOI: 10.1016/j.jsbmb.2020.105663
18. Cantorna MT, Rogers CJ, Arora J. Aligning the paradoxical role of vitamin D in gastrointestinal immunity. Trends Endocrinol Metab 2019; 30 (7): 459–66. DOI: 10.1016/j.tem.2019.04.005
19. Boubali S, Liopeta K, Virgilio L et al. Calcium/calmodulin-dependent protein kinase II regulates IL-10 production by human T lymphocytes: a distinct target in the calcium dependent pathway. Molec Immunol 2012; 52: 51–60. DOI: 10.1016/j.molimm.2012.04.008
20. Amirzada M, Jin J. Therapeutic applications of interleukin 24 (IL24). Trop J Pharm Res 2012; 11 (6): 1023–7. DOI: 10.4314/tjpr.v11i6.20
21. Zhu Y, Mahon B, Froicu M, Cantorna M. Calcium and 1a,25-dihydroxyvitamin D3 target the TNF-a pathway to suppress experimental inflammatory bowel disease. Eur J Immunol 2005; 35: 217–24. DOI: 10.1002/eji.200425491
22. Ananthakrishnan AN, Khalili H, Higuchi LM et al. Higher predicted vitamin D status is associated with reduced risk of Crohn’s disease. Gastroenterology 2012; 142 (3): 482–9. DOI: 10.1053/j.gastro.2011.11.040
23. Ananthakrishnan AN, Cheng SC, Cai T et al. Association between reduced plasma 25-hydroxy vitamin D and increased risk of cancer in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol 2014; 12 (5): 821–7. DOI: 10.1016/j.cgh.2013.10.011
24. Linnemana Z, Reisa C, Balajib K et al. The vitamin D positive feedback hypothesis of inflammatory bowel diseases. Medical Hypotheses 2019; 127: 154–8. DOI: 10.1016/j.mehy.2019.04.005.9
25. Hanauer SВ. Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis 2006; 12 (1): 3–9. DOI: 10.1097/01.mib.0000195385.19268.68
26. Потрохова Е.А., Соботюк Н.В., Бочанцев С.В., Гапоненко В.П. Витамин D и аутоиммунные заболевания. Рос. вестн. перинатологии и педиатрии. 2017; 62 (1): 26–32. DOI: 10.21508/1027-4065-2017-62-1-26-32
[Potrokhova E.A., Sobotiuk N.V., Bochantsev S.V., Gaponenko V.P. Vitamin D i autoimmunnye zabolevaniia. Ros. vestn. perinatologii i pediatrii. 2017; 62 (1): 26–32. DOI: 10.21508/1027-4065-2017-62-1-26-32 (in Russian).]
27. Meeker S, Seamons A, Maggio-Price L, Paik J. Protective links between vitamin D, inflammatory bowel disease and colon cancer. World J Gastroenterol 2016; 22 (3): 933–48. DOI: 10.3748/wjg.v22.i3.933
28. Raman M, Milestone AN, Walters JR et al. Vitamin D and gastrointestinal diseases: inflammatory bowel disease and colorectal cancer. Therap Adv Gastroenterol 2011; 4 (1): 49–62. DOI: 10.1177/1756283X10377820
29. Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357: 266–81. DOI: 10.1056/NEJMra070553
30. Dunn JA, Jefferson K, MacDonald D et al. Low serum 25-hydroxyvitamin D is associated with increased bladder cancer risk: A systematic review and evidence of a potential mechanism. J Steroid Biochem Mol Biol 2019; 188: 134–40. DOI: 10.1016/j.jsbmb.2019.01.002
31. Arain A, Matthiesen C. Vitamin D deficiency and graft-versus-host disease in hematopoietic stem cell transplant population. Hematol Oncol Stem Cell Therapy 2019; 12 (3): 133–9. DOI: 10.1016/j.hemonc. 2018. 08.001
32. Ros-Soto J, Snowden JA, Salooja N et al. Transplant complications Working Party of the EBMT. Current practice in vitamin D management in allogeneic hematopoietic stem cell transplantation: asurvey by the transplant Complications Working Party of the European Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant 2019; 25 (10): 2079–85. DOI: 10.1016/j.bbmt.2019.06.015
33. Sproat L, Bolwell B, Rybicki L et al. Vitamin D level after allogeneic hematopoietic stem cell transplant. Biol Blood Marrow Transplant 2011; 17: 1079–83. DOI: 10.1016/j.bbmt.2010.12.704
34. Gargari BN, Behmanesh M, Farsani Z et al. Vitamin D supplementation up-regulates IL-6 and IL-17A gene expression in multiple sclerosis patients. International Immunopharmacology. 2015; 28 (1): 414–9. DOI: 10.1016/j.intimp.2015.06.033
35. Murdaca G, Tonacci A, Negrini S et al. Emerging role of vitamin D in autoimmune diseases: An update on evidence and therapeutic implications. Autoimmunity Rev 2019; 18 (9): 102350. DOI: 10.1016/j.autrev.2019.102350
36. Li D, Jeffery LE, Jenkinson C et al. Serum and synovial fluid vitamin D metabolites and rheumatoid arthritis. J Steroid Biochem Mol Biol 2019; 187: 1–8. DOI: 10.1016/j.jsbmb.2018.10.008
37. Velaphi SC, Izu A, Madhi SA, Pettifor JM. Maternal and neonatal vitamin D status at birth in black South Africans. S Afr Med J 2019; 109 (10): 807–13. DOI: 10.7196/SAMJ.2019.v109i10.13651
38. Mansur JL. Vitamin D in pediatrics, pregnancy and lactation. Arch Argent Pediatr 2018; 116 (4): 286–90. DOI: 10.5546/aap.2018.286
39. Morris SK, Pell LG, Rahman MZ et al. Maternal vitamin D supplementation during pregnancy and lactation to prevent acute respiratory infections in infancy in Dhaka, Bangladesh (MDARI trial): protocol for a prospective cohort study nested within a randomized controlled trial. BMC Pregnancy Childbirth 2016; 16 (1): 1–10. DOI: 10.1186/s12884-016-1103-9
40. Захарова И.Н., Курьянинова В.А., Верисокина Н.Е. и др. Витамин D и провоспалительные цитокины у новорожденных от матерей с эндокринной патологией. Тихоокеанский мед. журн. 2019; 78 (4): 66–9.
[Zakharova I.N., Kur'ianinova V.A., Verisokina N.E. et al. Vitamin D i provospalitel'nye tsitokiny u novorozhdennykh ot materei s endokrinnoi patologiei. Tikhookeanskii med. zhurn. 2019; 78 (4): 66–9 (in Russian).]
41. Skowrońska-Jóźwiak E, Lebiedzińska K, Smyczyńska J et al. Effects of maternal vitamin D status on pregnancy outcomes, health of pregnant women and their offspring. Neuro Endocrinol Lett 2014; 35 (5): 367–72.
42. Zhang Q, Chen H, Wang Y et al. Severe vitamin D deficiency in the first trimester is associated with placental inflammation in high-risk singleton pregnancy. Clinical Nutrition 2019; 38 (4): 1921–6. https://doi.org/10.1016/j.clnu.2018.06.978
43. Saggese G, Vierucci F, Prodam F et al. Vitamin D in pediatric age: consensus of the Italian Pediatric Society and the Italian Society of Preventive and Social Pediatrics, jointly with the Italian Federation of Pediatricians. Ital J Pediatr 2018; 44 (1): 1–40. DOI: 10.1186/s13052-018-0488-7
44. Meyzer C, Frange P, Chappuy H et al. Vitamin D deficiency and insufficiency in HIV-infected children and young adults. Pediatr Infect Dis J 2013; 32 (11): 1240–4.
45. Rutstein R, Downes A, Zemel B et al. Vitamin D status in children and young adults with perinatally acquired HIV infection. Clin Nutr 2011; 30 (5): 624–8.
46. Ali A, Cui X, Alexander S, Eyles D. The placental immune response is dysregulated developmentally vitamin D deficient rats: relevance to autism. J Steroid Biochem Mol Biol 2018; 180: 73–80. DOI: 10.1016/j.jsbmb.2018.01.015
47. Dinlen N, Zenciroglu A, Beken S et al. Association of vitamin D deficiency with acute lower respiratory tract infections in newborns. J Matern Fetal Neonatal Med 2016; 29 (6): 928–32. DOI: 10.3109/14767058.2015.1023710
48. Hornsb E, Pfeffer PE, Laranjo N et al. Vitamin D supplementation during pregnancy: Effect on the neonatal immune system in a randomized controlled trial. J Allergy Clin Immunol 2018; 141 (1): 269–78. https://doi.org/10.1016/j.jaci.2017.02.039
49. Munkhbayarlakh S, Kao H, Hou Y et al. Vitamin D plasma concentration and vitamin D receptor genetic variants confer risk of asthma: A comparison study of Taiwanese and Mongolian populations. World Allergy Organization J 2019; 12 (11): 100076. DOI: 10.1016/j.waojou.2019.100076
50. Huang Y, Wang L, Jia X et al. Vitamin D alleviates airway remodeling in asthma by down-regulating the activity of Wnt/b-catenin signaling pathway. Int Immunopharmacol 2019; 68: 88–94. DOI: 10.1016/j.intimp.2018.12.061
51. Yip KH, Kolesnikoff N, Yu C et al. Mechanisms of vitamin D(3) metabolite repression of IgE-dependent mast cell activation. J Allergy Clin Immunol 2014; 133: 1356–64; e1–14. DOI: 10.1016/j.jaci.2013.11.030
52. Matsui T, Tanaka K, Yamashita H et al. Food allergy is linked to season of birth, sun exposure, and vitamin D deficiency. Allergol Int 2019; 68 (2): 172–7. DOI: 10.1016/j.alit.2018.12.003
53. Ramadan A, Sallam SF, Elsheikh MS et al. VDR gene expression in asthmatic children patients in relation to vitamin D status and supplementation. Gene Reports 2019; 15: 100387. DOI: 10.1016/j.genrep.2019.100387
54. Захарова И.Н., Климов Л.Я., Касьянова А.Н. и др. Взаимосвязь инфекционной заболеваемости и недостаточности витамина D: современное состояние проблемы. Инфекционные болезни. 2018; 16 (3): 69–78. DOI: 10.20953/1729-9225-2018-3-69-78
[Zakharova I.N., Klimov L.Ia., Kas'ianova A.N. et al. Vzaimosviaz' infektsionnoi zabolevaemosti i nedostatochnosti vitamina D: sovremennoe sostoianie problemy. Infektsionnye bolezni. 2018; 16 (3): 69–78. DOI: 10.20953/1729-9225-2018-3-69-78 (in Russian).]
55. Martineau AR, Jolliffe DA, Hooper RL et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ 2017; 356: i6583. DOI: 10.1136/bmj.i6583
56. Касьянова А.Н. Уровень паратгормона и продукция дефензинов у детей раннего возраста в зависимости от обеспеченности витамином D. Автореф. дис. … канд. мед. наук. Ставрополь, 2019.
[Kas'ianova A.N. Uroven' paratgormona i produktsiia defenzinov u detei rannego vozrasta v zavisimosti ot obespechennosti vitaminom D. Avtoref. dis. … kand. med. nauk. Stavropol, 2019 (in Russian).]
57. Eroglu С, Demir F, Erge D et al. The relation between serum vitamin D levels, viral infections and severity of attacks in children with recurrent wheezing. Allergol Immunopathol (Madr) 2019; 47 (6): 591–7. DOI: 10.1016/j.aller.2019.05.002
58. Arboleda J, Fernandez G, Urcuqui-Inchima S. Vitamin D-mediated attenuation of miR-155 in human macrophages infected with dengue virus: Implications for the cytokine response. Infection. Genetics Evolution 2019; 69: 12–21. DOI: 10.1016/j.meegid.2018.12.033
59. Bhargava A, Rastogi P, Lal N et al. Relationship between vitamin D and chronic periodontitis. J Oral Biol Craniofacial Res 2019; 9 (2): 177–9. DOI: 10.1016/j.jobcr.2018.07.001
60. Panda S, Tiwari A, Luthra K et al. Status of vitamin D and the associated host factors in pulmonary tuberculosis patients and their household contacts: A cross sectional study. J Steroid Biochem Mol Biol 2019; 193: 105419. DOI: 10.1016/j.jsbmb.2019.105419
61. Cervantes JL, Oak E, Garcia J et al. Vitamin D modulates human macrophage response to Mycobacterium tuberculosis DNA. Tuberculosis 2019; 116 (Suppl.): S131–S137. DOI: 10.1016/j.tube.2019.04.021
62. Xiao D, Zhang X, Ying J et al. Association between vitamin D status and sepsis in children: A meta-analysis of observational studies. Clin Nutr 2019; S0261–5614 (19): 33022–5. DOI: 10.1016/j.clnu.2019.08.010
63. Aguilar-Jimenez W, Zapata W, Rivero-Juárez A et al. Genetic associations of the vitamin D and antiviral pathways with natural resistance to HIV-1 infection are influenced by interpopulation variability. Infect Genet Evolution 2019; 73: 276–86. DOI: 10.1016/j.meegid.2019.05.014
64. Li B, Wang M, Zhou L et al. Association between serum vitamin D and chronic rhinosinusitis: a meta-analysis. Braz J Otorhinolaryngol 2019; 3: S1808–8694(19)30114-4. DOI: 10.1016/j.bjorl.2019.08.007
65. Grant WB, Lahore H, McDonnell SL et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020; 12 (4): 988. DOI: 10.3390/nu12040988
2. Holick MF, Garabedia M. Vitamin D: photobiology, metabolism, mechanism of action, and clinical applications. Primer on the Metabolic Bone diseases and disorders of Mineral Metabolism ed. by M.J. Favus. sixth edition. Chapter 17. Washington, DC: American society for Bone and Mineral Research, 2006; р. 129–37.
3. Mal'tsev S.V., Rylova N.V. Vitamin D i immunitet. Prakticheskaia meditsina. 2015; 86 (1): 114–20 (in Russian).
4. Zakharova I.N., Klimov L.Ia., Kas'ianova A.N. et al. Sovremennye predstavleniia ob immunotropnykh effektakh vitamina D. Voprosy prakticheskoi pediatrii. 2019; 14 (1): 7–17. DOI: 10.20953/1817-7646-2019-1-7-17 (in Russian).
5. Barragan M, Good M, Kolls JK. Regulation of Dendritic Cell Function by Vitamin D. Nutrients 2015; 7 (9): 8127–51. DOI: 10.3390/nu7095383
6. Barker T, Rogers VE, Levy M et al. Supplemental vitamin D increases serum cytokines in those with initially low 25-hydroxyvitamin D: a randomized, double blind, placebo-controlled study. Cytokine 2015; 71: 132–8. DOI: 10.1016/j.cyto.2014.09.012
7. Agraz-Cibriana JM, Giraldob DM, Urcuqui-Inchimab S. 1,25-dihydroxyvitamin D3 induces formation of neutrophil extracellular trap-like structures and modulates the transcription of genes whose products are neutrophil extracellular trap-associated proteins: A pilot study. Steroids 2019; 141 (January): 14–22. DOI: 10.1016/j.steroids.2018.11.001
8. Corripio-Miyar Y, Mellanby RJ, Morrison K, McNeilly TN. 1,25-dihydroxyvitamin D3 modulates the phenotype and function of monocyte derived dendritic cells in cattle. BMC Vet Res 2017; 13 (1): 390. DOI: 10.1186/s12917-017-1309-8
9. Zakharova I.N., Klimov L.Ia., Kas'ianova A.N. et al. Rol' antimikrobnykh peptidov i vitamina D v formirovanii protivoinfektsionnoi zashchity. Pediatriia. Zhurnal im. G.N. Speranskogo. 2017; 96 (4): 171–9 (in Russian).
10. Zakharova I.N., Tsutsaeva A.N., Klimov L.Ia. et al. Vitamin D i produktsiia defenzinov u detei rannego vozrasta. Med. sovet. 2020; 1: 158–69. DOI: 10.21518/2079-701X-2020-1-158-169 (in Russian).
11. Abaturov A.E. Kationnye antimikrobnye peptidy sistemy nespetsificheskoi zashchity respiratornogo trakta: defenziny i katelitsidiny. Defenziny – molekuly, perezhivaiushchie renessans (chast' 1). Zdorov'e rebenka. 2011; 7: 161–71 (in Russian).
12. Agier J, Brzezinska-Blaszczyk E. Cathelicidins and defensins regulate mast cell antimicrobial activity. Postepy Hig Med Dosw (Online) 2016; 70 (0): 618–36. DOI: 10.5604/17322693.1205357
13. Yegorov S, Bromage S, Boldbaatar N, Ganmaa D. Effects of vitamin D supplementation and seasonality on circulating cytokines in adolescents: analysis of data from a feasibility trial in Mongolia. Nutr Immunol 2019; 6: 166. DOI: 10.3389/fnut.2019.00166
14. Esche C, Stellato C, Beck LA. Chemokines: key players in innate and adaptive immunity. J Invest Dermatol 2005; 125: 615–28. DOI: 10.1111/j.0022-202X. 2005.23841.x
15. Chambers ES, Suwannasaen D, Mann EH et al. 1a,25-dihydroxyvitamin D3 in combination with transforming growth factor-b increases the frequency of Foxp3⁺ regulatory T cells through preferential expansion and usage of interleukin-2. Immunology 2014; 143 (1): 52–60. DOI: 10.1111/imm.12289
16. Chen S, Lee LF, Fisher TS et al. Combination of 4-1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model. Cancer Immunol Res 2015; 3 (2): 149–60. DOI: 10.1158/2326-6066
17. Fakhoury MA, Kvietys PR, Kattan WA et al. Vitamin D and intestinal homeostasis: barrier, microbiota, and immune modulation. J Steroid Biochem Mol Biol 2020; 200: 105663. DOI: 10.1016/j.jsbmb.2020.105663
18. Cantorna MT, Rogers CJ, Arora J. Aligning the paradoxical role of vitamin D in gastrointestinal immunity. Trends Endocrinol Metab 2019; 30 (7): 459–66. DOI: 10.1016/j.tem.2019.04.005
19. Boubali S, Liopeta K, Virgilio L et al. Calcium/calmodulin-dependent protein kinase II regulates IL-10 production by human T lymphocytes: a distinct target in the calcium dependent pathway. Molec Immunol 2012; 52: 51–60. DOI: 10.1016/j.molimm.2012.04.008
20. Amirzada M, Jin J. Therapeutic applications of interleukin 24 (IL24). Trop J Pharm Res 2012; 11 (6): 1023–7. DOI: 10.4314/tjpr.v11i6.20
21. Zhu Y, Mahon B, Froicu M, Cantorna M. Calcium and 1a,25-dihydroxyvitamin D3 target the TNF-a pathway to suppress experimental inflammatory bowel disease. Eur J Immunol 2005; 35: 217–24. DOI: 10.1002/eji.200425491
22. Ananthakrishnan AN, Khalili H, Higuchi LM et al. Higher predicted vitamin D status is associated with reduced risk of Crohn’s disease. Gastroenterology 2012; 142 (3): 482–9. DOI: 10.1053/j.gastro.2011.11.040
23. Ananthakrishnan AN, Cheng SC, Cai T et al. Association between reduced plasma 25-hydroxy vitamin D and increased risk of cancer in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol 2014; 12 (5): 821–7. DOI: 10.1016/j.cgh.2013.10.011
24. Linnemana Z, Reisa C, Balajib K et al. The vitamin D positive feedback hypothesis of inflammatory bowel diseases. Medical Hypotheses 2019; 127: 154–8. DOI: 10.1016/j.mehy.2019.04.005.9
25. Hanauer SВ. Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis 2006; 12 (1): 3–9. DOI: 10.1097/01.mib.0000195385.19268.68
26. Potrokhova E.A., Sobotiuk N.V., Bochantsev S.V., Gaponenko V.P. Vitamin D i autoimmunnye zabolevaniia. Ros. vestn. perinatologii i pediatrii. 2017; 62 (1): 26–32. DOI: 10.21508/1027-4065-2017-62-1-26-32 (in Russian).
27. Meeker S, Seamons A, Maggio-Price L, Paik J. Protective links between vitamin D, inflammatory bowel disease and colon cancer. World J Gastroenterol 2016; 22 (3): 933–48. DOI: 10.3748/wjg.v22.i3.933
28. Raman M, Milestone AN, Walters JR et al. Vitamin D and gastrointestinal diseases: inflammatory bowel disease and colorectal cancer. Therap Adv Gastroenterol 2011; 4 (1): 49–62. DOI: 10.1177/1756283X10377820
29. Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357: 266–81. DOI: 10.1056/NEJMra070553
30. Dunn JA, Jefferson K, MacDonald D et al. Low serum 25-hydroxyvitamin D is associated with increased bladder cancer risk: A systematic review and evidence of a potential mechanism. J Steroid Biochem Mol Biol 2019; 188: 134–40. DOI: 10.1016/j.jsbmb.2019.01.002
31. Arain A, Matthiesen C. Vitamin D deficiency and graft-versus-host disease in hematopoietic stem cell transplant population. Hematol Oncol Stem Cell Therapy 2019; 12 (3): 133–9. DOI: 10.1016/j.hemonc. 2018. 08.001
32. Ros-Soto J, Snowden JA, Salooja N et al. Transplant complications Working Party of the EBMT. Current practice in vitamin D management in allogeneic hematopoietic stem cell transplantation: asurvey by the transplant Complications Working Party of the European Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant 2019; 25 (10): 2079–85. DOI: 10.1016/j.bbmt.2019.06.015
33. Sproat L, Bolwell B, Rybicki L et al. Vitamin D level after allogeneic hematopoietic stem cell transplant. Biol Blood Marrow Transplant 2011; 17: 1079–83. DOI: 10.1016/j.bbmt.2010.12.704
34. Gargari BN, Behmanesh M, Farsani Z et al. Vitamin D supplementation up-regulates IL-6 and IL-17A gene expression in multiple sclerosis patients. International Immunopharmacology. 2015; 28 (1): 414–9. DOI: 10.1016/j.intimp.2015.06.033
35. Murdaca G, Tonacci A, Negrini S et al. Emerging role of vitamin D in autoimmune diseases: An update on evidence and therapeutic implications. Autoimmunity Rev 2019; 18 (9): 102350. DOI: 10.1016/j.autrev.2019.102350
36. Li D, Jeffery LE, Jenkinson C et al. Serum and synovial fluid vitamin D metabolites and rheumatoid arthritis. J Steroid Biochem Mol Biol 2019; 187: 1–8. DOI: 10.1016/j.jsbmb.2018.10.008
37. Velaphi SC, Izu A, Madhi SA, Pettifor JM. Maternal and neonatal vitamin D status at birth in black South Africans. S Afr Med J 2019; 109 (10): 807–13. DOI: 10.7196/SAMJ.2019.v109i10.13651
38. Mansur JL. Vitamin D in pediatrics, pregnancy and lactation. Arch Argent Pediatr 2018; 116 (4): 286–90. DOI: 10.5546/aap.2018.286
39. Morris SK, Pell LG, Rahman MZ et al. Maternal vitamin D supplementation during pregnancy and lactation to prevent acute respiratory infections in infancy in Dhaka, Bangladesh (MDARI trial): protocol for a prospective cohort study nested within a randomized controlled trial. BMC Pregnancy Childbirth 2016; 16 (1): 1–10. DOI: 10.1186/s12884-016-1103-9
40. Zakharova I.N., Kur'ianinova V.A., Verisokina N.E. et al. Vitamin D i provospalitel'nye tsitokiny u novorozhdennykh ot materei s endokrinnoi patologiei. Tikhookeanskii med. zhurn. 2019; 78 (4): 66–9 (in Russian).
41. Skowrońska-Jóźwiak E, Lebiedzińska K, Smyczyńska J et al. Effects of maternal vitamin D status on pregnancy outcomes, health of pregnant women and their offspring. Neuro Endocrinol Lett 2014; 35 (5): 367–72.
42. Zhang Q, Chen H, Wang Y et al. Severe vitamin D deficiency in the first trimester is associated with placental inflammation in high-risk singleton pregnancy. Clinical Nutrition 2019; 38 (4): 1921–6. https://doi.org/10.1016/j.clnu.2018.06.978
43. Saggese G, Vierucci F, Prodam F et al. Vitamin D in pediatric age: consensus of the Italian Pediatric Society and the Italian Society of Preventive and Social Pediatrics, jointly with the Italian Federation of Pediatricians. Ital J Pediatr 2018; 44 (1): 1–40. DOI: 10.1186/s13052-018-0488-7
44. Meyzer C, Frange P, Chappuy H et al. Vitamin D deficiency and insufficiency in HIV-infected children and young adults. Pediatr Infect Dis J 2013; 32 (11): 1240–4.
45. Rutstein R, Downes A, Zemel B et al. Vitamin D status in children and young adults with perinatally acquired HIV infection. Clin Nutr 2011; 30 (5): 624–8.
46. Ali A, Cui X, Alexander S, Eyles D. The placental immune response is dysregulated developmentally vitamin D deficient rats: relevance to autism. J Steroid Biochem Mol Biol 2018; 180: 73–80. DOI: 10.1016/j.jsbmb.2018.01.015
47. Dinlen N, Zenciroglu A, Beken S et al. Association of vitamin D deficiency with acute lower respiratory tract infections in newborns. J Matern Fetal Neonatal Med 2016; 29 (6): 928–32. DOI: 10.3109/14767058.2015.1023710
48. Hornsb E, Pfeffer PE, Laranjo N et al. Vitamin D supplementation during pregnancy: Effect on the neonatal immune system in a randomized controlled trial. J Allergy Clin Immunol 2018; 141 (1): 269–78. https://doi.org/10.1016/j.jaci.2017.02.039
49. Munkhbayarlakh S, Kao H, Hou Y et al. Vitamin D plasma concentration and vitamin D receptor genetic variants confer risk of asthma: A comparison study of Taiwanese and Mongolian populations. World Allergy Organization J 2019; 12 (11): 100076. DOI: 10.1016/j.waojou.2019.100076
50. Huang Y, Wang L, Jia X et al. Vitamin D alleviates airway remodeling in asthma by down-regulating the activity of Wnt/b-catenin signaling pathway. Int Immunopharmacol 2019; 68: 88–94. DOI: 10.1016/j.intimp.2018.12.061
51. Yip KH, Kolesnikoff N, Yu C et al. Mechanisms of vitamin D(3) metabolite repression of IgE-dependent mast cell activation. J Allergy Clin Immunol 2014; 133: 1356–64; e1–14. DOI: 10.1016/j.jaci.2013.11.030
52. Matsui T, Tanaka K, Yamashita H et al. Food allergy is linked to season of birth, sun exposure, and vitamin D deficiency. Allergol Int 2019; 68 (2): 172–7. DOI: 10.1016/j.alit.2018.12.003
53. Ramadan A, Sallam SF, Elsheikh MS et al. VDR gene expression in asthmatic children patients in relation to vitamin D status and supplementation. Gene Reports 2019; 15: 100387. DOI: 10.1016/j.genrep.2019.100387
54. Zakharova I.N., Klimov L.Ia., Kas'ianova A.N. et al. Vzaimosviaz' infektsionnoi zabolevaemosti i nedostatochnosti vitamina D: sovremennoe sostoianie problemy. Infektsionnye bolezni. 2018; 16 (3): 69–78. DOI: 10.20953/1729-9225-2018-3-69-78 (in Russian).
55. Martineau AR, Jolliffe DA, Hooper RL et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ 2017; 356: i6583. DOI: 10.1136/bmj.i6583
56. Kas'ianova A.N. Uroven' paratgormona i produktsiia defenzinov u detei rannego vozrasta v zavisimosti ot obespechennosti vitaminom D. Avtoref. dis. … kand. med. nauk. Stavropol, 2019 (in Russian).
57. Eroglu С, Demir F, Erge D et al. The relation between serum vitamin D levels, viral infections and severity of attacks in children with recurrent wheezing. Allergol Immunopathol (Madr) 2019; 47 (6): 591–7. DOI: 10.1016/j.aller.2019.05.002
58. Arboleda J, Fernandez G, Urcuqui-Inchima S. Vitamin D-mediated attenuation of miR-155 in human macrophages infected with dengue virus: Implications for the cytokine response. Infection. Genetics Evolution 2019; 69: 12–21. DOI: 10.1016/j.meegid.2018.12.033
59. Bhargava A, Rastogi P, Lal N et al. Relationship between vitamin D and chronic periodontitis. J Oral Biol Craniofacial Res 2019; 9 (2): 177–9. DOI: 10.1016/j.jobcr.2018.07.001
60. Panda S, Tiwari A, Luthra K et al. Status of vitamin D and the associated host factors in pulmonary tuberculosis patients and their household contacts: A cross sectional study. J Steroid Biochem Mol Biol 2019; 193: 105419. DOI: 10.1016/j.jsbmb.2019.105419
61. Cervantes JL, Oak E, Garcia J et al. Vitamin D modulates human macrophage response to Mycobacterium tuberculosis DNA. Tuberculosis 2019; 116 (Suppl.): S131–S137. DOI: 10.1016/j.tube.2019.04.021
62. Xiao D, Zhang X, Ying J et al. Association between vitamin D status and sepsis in children: A meta-analysis of observational studies. Clin Nutr 2019; S0261–5614 (19): 33022–5. DOI: 10.1016/j.clnu.2019.08.010
63. Aguilar-Jimenez W, Zapata W, Rivero-Juárez A et al. Genetic associations of the vitamin D and antiviral pathways with natural resistance to HIV-1 infection are influenced by interpopulation variability. Infect Genet Evolution 2019; 73: 276–86. DOI: 10.1016/j.meegid.2019.05.014
64. Li B, Wang M, Zhou L et al. Association between serum vitamin D and chronic rhinosinusitis: a meta-analysis. Braz J Otorhinolaryngol 2019; 3: S1808–8694(19)30114-4. DOI: 10.1016/j.bjorl.2019.08.007
65. Grant WB, Lahore H, McDonnell SL et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020; 12 (4): 988. DOI: 10.3390/nu12040988
2. Holick MF, Garabedia M. Vitamin D: photobiology, metabolism, mechanism of action, and clinical applications. Primer on the Metabolic Bone diseases and disorders of Mineral Metabolism ed. by M.J. Favus. sixth edition. Chapter 17. Washington, DC: American society for Bone and Mineral Research, 2006; р. 129–37.
3. Мальцев С.В., Рылова Н.В. Витамин D и иммунитет. Практическая медицина. 2015; 86 (1): 114–20.
[Mal'tsev S.V., Rylova N.V. Vitamin D i immunitet. Prakticheskaia meditsina. 2015; 86 (1): 114–20 (in Russian).]
4. Захарова И.Н., Климов Л.Я., Касьянова А.Н. и др. Современные представления об иммунотропных эффектах витамина D. Вопросы практической педиатрии. 2019; 14 (1): 7–17. DOI: 10.20953/1817-7646-2019-1-7-17
[Zakharova I.N., Klimov L.Ia., Kas'ianova A.N. et al. Sovremennye predstavleniia ob immunotropnykh effektakh vitamina D. Voprosy prakticheskoi pediatrii. 2019; 14 (1): 7–17. DOI: 10.20953/1817-7646-2019-1-7-17 (in Russian).]
5. Barragan M, Good M, Kolls JK. Regulation of Dendritic Cell Function by Vitamin D. Nutrients 2015; 7 (9): 8127–51. DOI: 10.3390/nu7095383
6. Barker T, Rogers VE, Levy M et al. Supplemental vitamin D increases serum cytokines in those with initially low 25-hydroxyvitamin D: a randomized, double blind, placebo-controlled study. Cytokine 2015; 71: 132–8. DOI: 10.1016/j.cyto.2014.09.012
7. Agraz-Cibriana JM, Giraldob DM, Urcuqui-Inchimab S. 1,25-dihydroxyvitamin D3 induces formation of neutrophil extracellular trap-like structures and modulates the transcription of genes whose products are neutrophil extracellular trap-associated proteins: A pilot study. Steroids 2019; 141 (January): 14–22. DOI: 10.1016/j.steroids.2018.11.001
8. Corripio-Miyar Y, Mellanby RJ, Morrison K, McNeilly TN. 1,25-dihydroxyvitamin D3 modulates the phenotype and function of monocyte derived dendritic cells in cattle. BMC Vet Res 2017; 13 (1): 390. DOI: 10.1186/s12917-017-1309-8
9. Захарова И.Н., Климов Л.Я., Касьянова А.Н. и др. Роль антимикробных пептидов и витамина D в формировании противоинфекционной защиты. Педиатрия. Журнал им. Г.Н. Сперанского. 2017; 96 (4): 171–9.
[Zakharova I.N., Klimov L.Ia., Kas'ianova A.N. et al. Rol' antimikrobnykh peptidov i vitamina D v formirovanii protivoinfektsionnoi zashchity. Pediatriia. Zhurnal im. G.N. Speranskogo. 2017; 96 (4): 171–9 (in Russian).]
10. Захарова И.Н., Цуцаева А.Н., Климов Л.Я. и др. Витамин D и продукция дефензинов у детей раннего возраста. Мед. совет. 2020; 1: 158–69. DOI: 10.21518/2079-701X-2020-1-158-169
[Zakharova I.N., Tsutsaeva A.N., Klimov L.Ia. et al. Vitamin D i produktsiia defenzinov u detei rannego vozrasta. Med. sovet. 2020; 1: 158–69. DOI: 10.21518/2079-701X-2020-1-158-169 (in Russian).]
11. Абатуров А.Е. Катионные антимикробные пептиды системы неспецифической защиты респираторного тракта: дефензины и кателицидины. Дефензины – молекулы, переживающие ренессанс (часть 1). Здоровье ребенка. 2011; 7: 161–71.
[Abaturov A.E. Kationnye antimikrobnye peptidy sistemy nespetsificheskoi zashchity respiratornogo trakta: defenziny i katelitsidiny. Defenziny – molekuly, perezhivaiushchie renessans (chast' 1). Zdorov'e rebenka. 2011; 7: 161–71 (in Russian).]
12. Agier J, Brzezinska-Blaszczyk E. Cathelicidins and defensins regulate mast cell antimicrobial activity. Postepy Hig Med Dosw (Online) 2016; 70 (0): 618–36. DOI: 10.5604/17322693.1205357
13. Yegorov S, Bromage S, Boldbaatar N, Ganmaa D. Effects of vitamin D supplementation and seasonality on circulating cytokines in adolescents: analysis of data from a feasibility trial in Mongolia. Nutr Immunol 2019; 6: 166. DOI: 10.3389/fnut.2019.00166
14. Esche C, Stellato C, Beck LA. Chemokines: key players in innate and adaptive immunity. J Invest Dermatol 2005; 125: 615–28. DOI: 10.1111/j.0022-202X. 2005.23841.x
15. Chambers ES, Suwannasaen D, Mann EH et al. 1a,25-dihydroxyvitamin D3 in combination with transforming growth factor-b increases the frequency of Foxp3⁺ regulatory T cells through preferential expansion and usage of interleukin-2. Immunology 2014; 143 (1): 52–60. DOI: 10.1111/imm.12289
16. Chen S, Lee LF, Fisher TS et al. Combination of 4-1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model. Cancer Immunol Res 2015; 3 (2): 149–60. DOI: 10.1158/2326-6066
17. Fakhoury MA, Kvietys PR, Kattan WA et al. Vitamin D and intestinal homeostasis: barrier, microbiota, and immune modulation. J Steroid Biochem Mol Biol 2020; 200: 105663. DOI: 10.1016/j.jsbmb.2020.105663
18. Cantorna MT, Rogers CJ, Arora J. Aligning the paradoxical role of vitamin D in gastrointestinal immunity. Trends Endocrinol Metab 2019; 30 (7): 459–66. DOI: 10.1016/j.tem.2019.04.005
19. Boubali S, Liopeta K, Virgilio L et al. Calcium/calmodulin-dependent protein kinase II regulates IL-10 production by human T lymphocytes: a distinct target in the calcium dependent pathway. Molec Immunol 2012; 52: 51–60. DOI: 10.1016/j.molimm.2012.04.008
20. Amirzada M, Jin J. Therapeutic applications of interleukin 24 (IL24). Trop J Pharm Res 2012; 11 (6): 1023–7. DOI: 10.4314/tjpr.v11i6.20
21. Zhu Y, Mahon B, Froicu M, Cantorna M. Calcium and 1a,25-dihydroxyvitamin D3 target the TNF-a pathway to suppress experimental inflammatory bowel disease. Eur J Immunol 2005; 35: 217–24. DOI: 10.1002/eji.200425491
22. Ananthakrishnan AN, Khalili H, Higuchi LM et al. Higher predicted vitamin D status is associated with reduced risk of Crohn’s disease. Gastroenterology 2012; 142 (3): 482–9. DOI: 10.1053/j.gastro.2011.11.040
23. Ananthakrishnan AN, Cheng SC, Cai T et al. Association between reduced plasma 25-hydroxy vitamin D and increased risk of cancer in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol 2014; 12 (5): 821–7. DOI: 10.1016/j.cgh.2013.10.011
24. Linnemana Z, Reisa C, Balajib K et al. The vitamin D positive feedback hypothesis of inflammatory bowel diseases. Medical Hypotheses 2019; 127: 154–8. DOI: 10.1016/j.mehy.2019.04.005.9
25. Hanauer SВ. Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis 2006; 12 (1): 3–9. DOI: 10.1097/01.mib.0000195385.19268.68
26. Потрохова Е.А., Соботюк Н.В., Бочанцев С.В., Гапоненко В.П. Витамин D и аутоиммунные заболевания. Рос. вестн. перинатологии и педиатрии. 2017; 62 (1): 26–32. DOI: 10.21508/1027-4065-2017-62-1-26-32
[Potrokhova E.A., Sobotiuk N.V., Bochantsev S.V., Gaponenko V.P. Vitamin D i autoimmunnye zabolevaniia. Ros. vestn. perinatologii i pediatrii. 2017; 62 (1): 26–32. DOI: 10.21508/1027-4065-2017-62-1-26-32 (in Russian).]
27. Meeker S, Seamons A, Maggio-Price L, Paik J. Protective links between vitamin D, inflammatory bowel disease and colon cancer. World J Gastroenterol 2016; 22 (3): 933–48. DOI: 10.3748/wjg.v22.i3.933
28. Raman M, Milestone AN, Walters JR et al. Vitamin D and gastrointestinal diseases: inflammatory bowel disease and colorectal cancer. Therap Adv Gastroenterol 2011; 4 (1): 49–62. DOI: 10.1177/1756283X10377820
29. Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357: 266–81. DOI: 10.1056/NEJMra070553
30. Dunn JA, Jefferson K, MacDonald D et al. Low serum 25-hydroxyvitamin D is associated with increased bladder cancer risk: A systematic review and evidence of a potential mechanism. J Steroid Biochem Mol Biol 2019; 188: 134–40. DOI: 10.1016/j.jsbmb.2019.01.002
31. Arain A, Matthiesen C. Vitamin D deficiency and graft-versus-host disease in hematopoietic stem cell transplant population. Hematol Oncol Stem Cell Therapy 2019; 12 (3): 133–9. DOI: 10.1016/j.hemonc. 2018. 08.001
32. Ros-Soto J, Snowden JA, Salooja N et al. Transplant complications Working Party of the EBMT. Current practice in vitamin D management in allogeneic hematopoietic stem cell transplantation: asurvey by the transplant Complications Working Party of the European Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant 2019; 25 (10): 2079–85. DOI: 10.1016/j.bbmt.2019.06.015
33. Sproat L, Bolwell B, Rybicki L et al. Vitamin D level after allogeneic hematopoietic stem cell transplant. Biol Blood Marrow Transplant 2011; 17: 1079–83. DOI: 10.1016/j.bbmt.2010.12.704
34. Gargari BN, Behmanesh M, Farsani Z et al. Vitamin D supplementation up-regulates IL-6 and IL-17A gene expression in multiple sclerosis patients. International Immunopharmacology. 2015; 28 (1): 414–9. DOI: 10.1016/j.intimp.2015.06.033
35. Murdaca G, Tonacci A, Negrini S et al. Emerging role of vitamin D in autoimmune diseases: An update on evidence and therapeutic implications. Autoimmunity Rev 2019; 18 (9): 102350. DOI: 10.1016/j.autrev.2019.102350
36. Li D, Jeffery LE, Jenkinson C et al. Serum and synovial fluid vitamin D metabolites and rheumatoid arthritis. J Steroid Biochem Mol Biol 2019; 187: 1–8. DOI: 10.1016/j.jsbmb.2018.10.008
37. Velaphi SC, Izu A, Madhi SA, Pettifor JM. Maternal and neonatal vitamin D status at birth in black South Africans. S Afr Med J 2019; 109 (10): 807–13. DOI: 10.7196/SAMJ.2019.v109i10.13651
38. Mansur JL. Vitamin D in pediatrics, pregnancy and lactation. Arch Argent Pediatr 2018; 116 (4): 286–90. DOI: 10.5546/aap.2018.286
39. Morris SK, Pell LG, Rahman MZ et al. Maternal vitamin D supplementation during pregnancy and lactation to prevent acute respiratory infections in infancy in Dhaka, Bangladesh (MDARI trial): protocol for a prospective cohort study nested within a randomized controlled trial. BMC Pregnancy Childbirth 2016; 16 (1): 1–10. DOI: 10.1186/s12884-016-1103-9
40. Захарова И.Н., Курьянинова В.А., Верисокина Н.Е. и др. Витамин D и провоспалительные цитокины у новорожденных от матерей с эндокринной патологией. Тихоокеанский мед. журн. 2019; 78 (4): 66–9.
[Zakharova I.N., Kur'ianinova V.A., Verisokina N.E. et al. Vitamin D i provospalitel'nye tsitokiny u novorozhdennykh ot materei s endokrinnoi patologiei. Tikhookeanskii med. zhurn. 2019; 78 (4): 66–9 (in Russian).]
41. Skowrońska-Jóźwiak E, Lebiedzińska K, Smyczyńska J et al. Effects of maternal vitamin D status on pregnancy outcomes, health of pregnant women and their offspring. Neuro Endocrinol Lett 2014; 35 (5): 367–72.
42. Zhang Q, Chen H, Wang Y et al. Severe vitamin D deficiency in the first trimester is associated with placental inflammation in high-risk singleton pregnancy. Clinical Nutrition 2019; 38 (4): 1921–6. https://doi.org/10.1016/j.clnu.2018.06.978
43. Saggese G, Vierucci F, Prodam F et al. Vitamin D in pediatric age: consensus of the Italian Pediatric Society and the Italian Society of Preventive and Social Pediatrics, jointly with the Italian Federation of Pediatricians. Ital J Pediatr 2018; 44 (1): 1–40. DOI: 10.1186/s13052-018-0488-7
44. Meyzer C, Frange P, Chappuy H et al. Vitamin D deficiency and insufficiency in HIV-infected children and young adults. Pediatr Infect Dis J 2013; 32 (11): 1240–4.
45. Rutstein R, Downes A, Zemel B et al. Vitamin D status in children and young adults with perinatally acquired HIV infection. Clin Nutr 2011; 30 (5): 624–8.
46. Ali A, Cui X, Alexander S, Eyles D. The placental immune response is dysregulated developmentally vitamin D deficient rats: relevance to autism. J Steroid Biochem Mol Biol 2018; 180: 73–80. DOI: 10.1016/j.jsbmb.2018.01.015
47. Dinlen N, Zenciroglu A, Beken S et al. Association of vitamin D deficiency with acute lower respiratory tract infections in newborns. J Matern Fetal Neonatal Med 2016; 29 (6): 928–32. DOI: 10.3109/14767058.2015.1023710
48. Hornsb E, Pfeffer PE, Laranjo N et al. Vitamin D supplementation during pregnancy: Effect on the neonatal immune system in a randomized controlled trial. J Allergy Clin Immunol 2018; 141 (1): 269–78. https://doi.org/10.1016/j.jaci.2017.02.039
49. Munkhbayarlakh S, Kao H, Hou Y et al. Vitamin D plasma concentration and vitamin D receptor genetic variants confer risk of asthma: A comparison study of Taiwanese and Mongolian populations. World Allergy Organization J 2019; 12 (11): 100076. DOI: 10.1016/j.waojou.2019.100076
50. Huang Y, Wang L, Jia X et al. Vitamin D alleviates airway remodeling in asthma by down-regulating the activity of Wnt/b-catenin signaling pathway. Int Immunopharmacol 2019; 68: 88–94. DOI: 10.1016/j.intimp.2018.12.061
51. Yip KH, Kolesnikoff N, Yu C et al. Mechanisms of vitamin D(3) metabolite repression of IgE-dependent mast cell activation. J Allergy Clin Immunol 2014; 133: 1356–64; e1–14. DOI: 10.1016/j.jaci.2013.11.030
52. Matsui T, Tanaka K, Yamashita H et al. Food allergy is linked to season of birth, sun exposure, and vitamin D deficiency. Allergol Int 2019; 68 (2): 172–7. DOI: 10.1016/j.alit.2018.12.003
53. Ramadan A, Sallam SF, Elsheikh MS et al. VDR gene expression in asthmatic children patients in relation to vitamin D status and supplementation. Gene Reports 2019; 15: 100387. DOI: 10.1016/j.genrep.2019.100387
54. Захарова И.Н., Климов Л.Я., Касьянова А.Н. и др. Взаимосвязь инфекционной заболеваемости и недостаточности витамина D: современное состояние проблемы. Инфекционные болезни. 2018; 16 (3): 69–78. DOI: 10.20953/1729-9225-2018-3-69-78
[Zakharova I.N., Klimov L.Ia., Kas'ianova A.N. et al. Vzaimosviaz' infektsionnoi zabolevaemosti i nedostatochnosti vitamina D: sovremennoe sostoianie problemy. Infektsionnye bolezni. 2018; 16 (3): 69–78. DOI: 10.20953/1729-9225-2018-3-69-78 (in Russian).]
55. Martineau AR, Jolliffe DA, Hooper RL et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ 2017; 356: i6583. DOI: 10.1136/bmj.i6583
56. Касьянова А.Н. Уровень паратгормона и продукция дефензинов у детей раннего возраста в зависимости от обеспеченности витамином D. Автореф. дис. … канд. мед. наук. Ставрополь, 2019.
[Kas'ianova A.N. Uroven' paratgormona i produktsiia defenzinov u detei rannego vozrasta v zavisimosti ot obespechennosti vitaminom D. Avtoref. dis. … kand. med. nauk. Stavropol, 2019 (in Russian).]
57. Eroglu С, Demir F, Erge D et al. The relation between serum vitamin D levels, viral infections and severity of attacks in children with recurrent wheezing. Allergol Immunopathol (Madr) 2019; 47 (6): 591–7. DOI: 10.1016/j.aller.2019.05.002
58. Arboleda J, Fernandez G, Urcuqui-Inchima S. Vitamin D-mediated attenuation of miR-155 in human macrophages infected with dengue virus: Implications for the cytokine response. Infection. Genetics Evolution 2019; 69: 12–21. DOI: 10.1016/j.meegid.2018.12.033
59. Bhargava A, Rastogi P, Lal N et al. Relationship between vitamin D and chronic periodontitis. J Oral Biol Craniofacial Res 2019; 9 (2): 177–9. DOI: 10.1016/j.jobcr.2018.07.001
60. Panda S, Tiwari A, Luthra K et al. Status of vitamin D and the associated host factors in pulmonary tuberculosis patients and their household contacts: A cross sectional study. J Steroid Biochem Mol Biol 2019; 193: 105419. DOI: 10.1016/j.jsbmb.2019.105419
61. Cervantes JL, Oak E, Garcia J et al. Vitamin D modulates human macrophage response to Mycobacterium tuberculosis DNA. Tuberculosis 2019; 116 (Suppl.): S131–S137. DOI: 10.1016/j.tube.2019.04.021
62. Xiao D, Zhang X, Ying J et al. Association between vitamin D status and sepsis in children: A meta-analysis of observational studies. Clin Nutr 2019; S0261–5614 (19): 33022–5. DOI: 10.1016/j.clnu.2019.08.010
63. Aguilar-Jimenez W, Zapata W, Rivero-Juárez A et al. Genetic associations of the vitamin D and antiviral pathways with natural resistance to HIV-1 infection are influenced by interpopulation variability. Infect Genet Evolution 2019; 73: 276–86. DOI: 10.1016/j.meegid.2019.05.014
64. Li B, Wang M, Zhou L et al. Association between serum vitamin D and chronic rhinosinusitis: a meta-analysis. Braz J Otorhinolaryngol 2019; 3: S1808–8694(19)30114-4. DOI: 10.1016/j.bjorl.2019.08.007
65. Grant WB, Lahore H, McDonnell SL et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020; 12 (4): 988. DOI: 10.3390/nu12040988
________________________________________________
2. Holick MF, Garabedia M. Vitamin D: photobiology, metabolism, mechanism of action, and clinical applications. Primer on the Metabolic Bone diseases and disorders of Mineral Metabolism ed. by M.J. Favus. sixth edition. Chapter 17. Washington, DC: American society for Bone and Mineral Research, 2006; р. 129–37.
3. Mal'tsev S.V., Rylova N.V. Vitamin D i immunitet. Prakticheskaia meditsina. 2015; 86 (1): 114–20 (in Russian).
4. Zakharova I.N., Klimov L.Ia., Kas'ianova A.N. et al. Sovremennye predstavleniia ob immunotropnykh effektakh vitamina D. Voprosy prakticheskoi pediatrii. 2019; 14 (1): 7–17. DOI: 10.20953/1817-7646-2019-1-7-17 (in Russian).
5. Barragan M, Good M, Kolls JK. Regulation of Dendritic Cell Function by Vitamin D. Nutrients 2015; 7 (9): 8127–51. DOI: 10.3390/nu7095383
6. Barker T, Rogers VE, Levy M et al. Supplemental vitamin D increases serum cytokines in those with initially low 25-hydroxyvitamin D: a randomized, double blind, placebo-controlled study. Cytokine 2015; 71: 132–8. DOI: 10.1016/j.cyto.2014.09.012
7. Agraz-Cibriana JM, Giraldob DM, Urcuqui-Inchimab S. 1,25-dihydroxyvitamin D3 induces formation of neutrophil extracellular trap-like structures and modulates the transcription of genes whose products are neutrophil extracellular trap-associated proteins: A pilot study. Steroids 2019; 141 (January): 14–22. DOI: 10.1016/j.steroids.2018.11.001
8. Corripio-Miyar Y, Mellanby RJ, Morrison K, McNeilly TN. 1,25-dihydroxyvitamin D3 modulates the phenotype and function of monocyte derived dendritic cells in cattle. BMC Vet Res 2017; 13 (1): 390. DOI: 10.1186/s12917-017-1309-8
9. Zakharova I.N., Klimov L.Ia., Kas'ianova A.N. et al. Rol' antimikrobnykh peptidov i vitamina D v formirovanii protivoinfektsionnoi zashchity. Pediatriia. Zhurnal im. G.N. Speranskogo. 2017; 96 (4): 171–9 (in Russian).
10. Zakharova I.N., Tsutsaeva A.N., Klimov L.Ia. et al. Vitamin D i produktsiia defenzinov u detei rannego vozrasta. Med. sovet. 2020; 1: 158–69. DOI: 10.21518/2079-701X-2020-1-158-169 (in Russian).
11. Abaturov A.E. Kationnye antimikrobnye peptidy sistemy nespetsificheskoi zashchity respiratornogo trakta: defenziny i katelitsidiny. Defenziny – molekuly, perezhivaiushchie renessans (chast' 1). Zdorov'e rebenka. 2011; 7: 161–71 (in Russian).
12. Agier J, Brzezinska-Blaszczyk E. Cathelicidins and defensins regulate mast cell antimicrobial activity. Postepy Hig Med Dosw (Online) 2016; 70 (0): 618–36. DOI: 10.5604/17322693.1205357
13. Yegorov S, Bromage S, Boldbaatar N, Ganmaa D. Effects of vitamin D supplementation and seasonality on circulating cytokines in adolescents: analysis of data from a feasibility trial in Mongolia. Nutr Immunol 2019; 6: 166. DOI: 10.3389/fnut.2019.00166
14. Esche C, Stellato C, Beck LA. Chemokines: key players in innate and adaptive immunity. J Invest Dermatol 2005; 125: 615–28. DOI: 10.1111/j.0022-202X. 2005.23841.x
15. Chambers ES, Suwannasaen D, Mann EH et al. 1a,25-dihydroxyvitamin D3 in combination with transforming growth factor-b increases the frequency of Foxp3⁺ regulatory T cells through preferential expansion and usage of interleukin-2. Immunology 2014; 143 (1): 52–60. DOI: 10.1111/imm.12289
16. Chen S, Lee LF, Fisher TS et al. Combination of 4-1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model. Cancer Immunol Res 2015; 3 (2): 149–60. DOI: 10.1158/2326-6066
17. Fakhoury MA, Kvietys PR, Kattan WA et al. Vitamin D and intestinal homeostasis: barrier, microbiota, and immune modulation. J Steroid Biochem Mol Biol 2020; 200: 105663. DOI: 10.1016/j.jsbmb.2020.105663
18. Cantorna MT, Rogers CJ, Arora J. Aligning the paradoxical role of vitamin D in gastrointestinal immunity. Trends Endocrinol Metab 2019; 30 (7): 459–66. DOI: 10.1016/j.tem.2019.04.005
19. Boubali S, Liopeta K, Virgilio L et al. Calcium/calmodulin-dependent protein kinase II regulates IL-10 production by human T lymphocytes: a distinct target in the calcium dependent pathway. Molec Immunol 2012; 52: 51–60. DOI: 10.1016/j.molimm.2012.04.008
20. Amirzada M, Jin J. Therapeutic applications of interleukin 24 (IL24). Trop J Pharm Res 2012; 11 (6): 1023–7. DOI: 10.4314/tjpr.v11i6.20
21. Zhu Y, Mahon B, Froicu M, Cantorna M. Calcium and 1a,25-dihydroxyvitamin D3 target the TNF-a pathway to suppress experimental inflammatory bowel disease. Eur J Immunol 2005; 35: 217–24. DOI: 10.1002/eji.200425491
22. Ananthakrishnan AN, Khalili H, Higuchi LM et al. Higher predicted vitamin D status is associated with reduced risk of Crohn’s disease. Gastroenterology 2012; 142 (3): 482–9. DOI: 10.1053/j.gastro.2011.11.040
23. Ananthakrishnan AN, Cheng SC, Cai T et al. Association between reduced plasma 25-hydroxy vitamin D and increased risk of cancer in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol 2014; 12 (5): 821–7. DOI: 10.1016/j.cgh.2013.10.011
24. Linnemana Z, Reisa C, Balajib K et al. The vitamin D positive feedback hypothesis of inflammatory bowel diseases. Medical Hypotheses 2019; 127: 154–8. DOI: 10.1016/j.mehy.2019.04.005.9
25. Hanauer SВ. Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis 2006; 12 (1): 3–9. DOI: 10.1097/01.mib.0000195385.19268.68
26. Potrokhova E.A., Sobotiuk N.V., Bochantsev S.V., Gaponenko V.P. Vitamin D i autoimmunnye zabolevaniia. Ros. vestn. perinatologii i pediatrii. 2017; 62 (1): 26–32. DOI: 10.21508/1027-4065-2017-62-1-26-32 (in Russian).
27. Meeker S, Seamons A, Maggio-Price L, Paik J. Protective links between vitamin D, inflammatory bowel disease and colon cancer. World J Gastroenterol 2016; 22 (3): 933–48. DOI: 10.3748/wjg.v22.i3.933
28. Raman M, Milestone AN, Walters JR et al. Vitamin D and gastrointestinal diseases: inflammatory bowel disease and colorectal cancer. Therap Adv Gastroenterol 2011; 4 (1): 49–62. DOI: 10.1177/1756283X10377820
29. Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357: 266–81. DOI: 10.1056/NEJMra070553
30. Dunn JA, Jefferson K, MacDonald D et al. Low serum 25-hydroxyvitamin D is associated with increased bladder cancer risk: A systematic review and evidence of a potential mechanism. J Steroid Biochem Mol Biol 2019; 188: 134–40. DOI: 10.1016/j.jsbmb.2019.01.002
31. Arain A, Matthiesen C. Vitamin D deficiency and graft-versus-host disease in hematopoietic stem cell transplant population. Hematol Oncol Stem Cell Therapy 2019; 12 (3): 133–9. DOI: 10.1016/j.hemonc. 2018. 08.001
32. Ros-Soto J, Snowden JA, Salooja N et al. Transplant complications Working Party of the EBMT. Current practice in vitamin D management in allogeneic hematopoietic stem cell transplantation: asurvey by the transplant Complications Working Party of the European Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant 2019; 25 (10): 2079–85. DOI: 10.1016/j.bbmt.2019.06.015
33. Sproat L, Bolwell B, Rybicki L et al. Vitamin D level after allogeneic hematopoietic stem cell transplant. Biol Blood Marrow Transplant 2011; 17: 1079–83. DOI: 10.1016/j.bbmt.2010.12.704
34. Gargari BN, Behmanesh M, Farsani Z et al. Vitamin D supplementation up-regulates IL-6 and IL-17A gene expression in multiple sclerosis patients. International Immunopharmacology. 2015; 28 (1): 414–9. DOI: 10.1016/j.intimp.2015.06.033
35. Murdaca G, Tonacci A, Negrini S et al. Emerging role of vitamin D in autoimmune diseases: An update on evidence and therapeutic implications. Autoimmunity Rev 2019; 18 (9): 102350. DOI: 10.1016/j.autrev.2019.102350
36. Li D, Jeffery LE, Jenkinson C et al. Serum and synovial fluid vitamin D metabolites and rheumatoid arthritis. J Steroid Biochem Mol Biol 2019; 187: 1–8. DOI: 10.1016/j.jsbmb.2018.10.008
37. Velaphi SC, Izu A, Madhi SA, Pettifor JM. Maternal and neonatal vitamin D status at birth in black South Africans. S Afr Med J 2019; 109 (10): 807–13. DOI: 10.7196/SAMJ.2019.v109i10.13651
38. Mansur JL. Vitamin D in pediatrics, pregnancy and lactation. Arch Argent Pediatr 2018; 116 (4): 286–90. DOI: 10.5546/aap.2018.286
39. Morris SK, Pell LG, Rahman MZ et al. Maternal vitamin D supplementation during pregnancy and lactation to prevent acute respiratory infections in infancy in Dhaka, Bangladesh (MDARI trial): protocol for a prospective cohort study nested within a randomized controlled trial. BMC Pregnancy Childbirth 2016; 16 (1): 1–10. DOI: 10.1186/s12884-016-1103-9
40. Zakharova I.N., Kur'ianinova V.A., Verisokina N.E. et al. Vitamin D i provospalitel'nye tsitokiny u novorozhdennykh ot materei s endokrinnoi patologiei. Tikhookeanskii med. zhurn. 2019; 78 (4): 66–9 (in Russian).
41. Skowrońska-Jóźwiak E, Lebiedzińska K, Smyczyńska J et al. Effects of maternal vitamin D status on pregnancy outcomes, health of pregnant women and their offspring. Neuro Endocrinol Lett 2014; 35 (5): 367–72.
42. Zhang Q, Chen H, Wang Y et al. Severe vitamin D deficiency in the first trimester is associated with placental inflammation in high-risk singleton pregnancy. Clinical Nutrition 2019; 38 (4): 1921–6. https://doi.org/10.1016/j.clnu.2018.06.978
43. Saggese G, Vierucci F, Prodam F et al. Vitamin D in pediatric age: consensus of the Italian Pediatric Society and the Italian Society of Preventive and Social Pediatrics, jointly with the Italian Federation of Pediatricians. Ital J Pediatr 2018; 44 (1): 1–40. DOI: 10.1186/s13052-018-0488-7
44. Meyzer C, Frange P, Chappuy H et al. Vitamin D deficiency and insufficiency in HIV-infected children and young adults. Pediatr Infect Dis J 2013; 32 (11): 1240–4.
45. Rutstein R, Downes A, Zemel B et al. Vitamin D status in children and young adults with perinatally acquired HIV infection. Clin Nutr 2011; 30 (5): 624–8.
46. Ali A, Cui X, Alexander S, Eyles D. The placental immune response is dysregulated developmentally vitamin D deficient rats: relevance to autism. J Steroid Biochem Mol Biol 2018; 180: 73–80. DOI: 10.1016/j.jsbmb.2018.01.015
47. Dinlen N, Zenciroglu A, Beken S et al. Association of vitamin D deficiency with acute lower respiratory tract infections in newborns. J Matern Fetal Neonatal Med 2016; 29 (6): 928–32. DOI: 10.3109/14767058.2015.1023710
48. Hornsb E, Pfeffer PE, Laranjo N et al. Vitamin D supplementation during pregnancy: Effect on the neonatal immune system in a randomized controlled trial. J Allergy Clin Immunol 2018; 141 (1): 269–78. https://doi.org/10.1016/j.jaci.2017.02.039
49. Munkhbayarlakh S, Kao H, Hou Y et al. Vitamin D plasma concentration and vitamin D receptor genetic variants confer risk of asthma: A comparison study of Taiwanese and Mongolian populations. World Allergy Organization J 2019; 12 (11): 100076. DOI: 10.1016/j.waojou.2019.100076
50. Huang Y, Wang L, Jia X et al. Vitamin D alleviates airway remodeling in asthma by down-regulating the activity of Wnt/b-catenin signaling pathway. Int Immunopharmacol 2019; 68: 88–94. DOI: 10.1016/j.intimp.2018.12.061
51. Yip KH, Kolesnikoff N, Yu C et al. Mechanisms of vitamin D(3) metabolite repression of IgE-dependent mast cell activation. J Allergy Clin Immunol 2014; 133: 1356–64; e1–14. DOI: 10.1016/j.jaci.2013.11.030
52. Matsui T, Tanaka K, Yamashita H et al. Food allergy is linked to season of birth, sun exposure, and vitamin D deficiency. Allergol Int 2019; 68 (2): 172–7. DOI: 10.1016/j.alit.2018.12.003
53. Ramadan A, Sallam SF, Elsheikh MS et al. VDR gene expression in asthmatic children patients in relation to vitamin D status and supplementation. Gene Reports 2019; 15: 100387. DOI: 10.1016/j.genrep.2019.100387
54. Zakharova I.N., Klimov L.Ia., Kas'ianova A.N. et al. Vzaimosviaz' infektsionnoi zabolevaemosti i nedostatochnosti vitamina D: sovremennoe sostoianie problemy. Infektsionnye bolezni. 2018; 16 (3): 69–78. DOI: 10.20953/1729-9225-2018-3-69-78 (in Russian).
55. Martineau AR, Jolliffe DA, Hooper RL et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ 2017; 356: i6583. DOI: 10.1136/bmj.i6583
56. Kas'ianova A.N. Uroven' paratgormona i produktsiia defenzinov u detei rannego vozrasta v zavisimosti ot obespechennosti vitaminom D. Avtoref. dis. … kand. med. nauk. Stavropol, 2019 (in Russian).
57. Eroglu С, Demir F, Erge D et al. The relation between serum vitamin D levels, viral infections and severity of attacks in children with recurrent wheezing. Allergol Immunopathol (Madr) 2019; 47 (6): 591–7. DOI: 10.1016/j.aller.2019.05.002
58. Arboleda J, Fernandez G, Urcuqui-Inchima S. Vitamin D-mediated attenuation of miR-155 in human macrophages infected with dengue virus: Implications for the cytokine response. Infection. Genetics Evolution 2019; 69: 12–21. DOI: 10.1016/j.meegid.2018.12.033
59. Bhargava A, Rastogi P, Lal N et al. Relationship between vitamin D and chronic periodontitis. J Oral Biol Craniofacial Res 2019; 9 (2): 177–9. DOI: 10.1016/j.jobcr.2018.07.001
60. Panda S, Tiwari A, Luthra K et al. Status of vitamin D and the associated host factors in pulmonary tuberculosis patients and their household contacts: A cross sectional study. J Steroid Biochem Mol Biol 2019; 193: 105419. DOI: 10.1016/j.jsbmb.2019.105419
61. Cervantes JL, Oak E, Garcia J et al. Vitamin D modulates human macrophage response to Mycobacterium tuberculosis DNA. Tuberculosis 2019; 116 (Suppl.): S131–S137. DOI: 10.1016/j.tube.2019.04.021
62. Xiao D, Zhang X, Ying J et al. Association between vitamin D status and sepsis in children: A meta-analysis of observational studies. Clin Nutr 2019; S0261–5614 (19): 33022–5. DOI: 10.1016/j.clnu.2019.08.010
63. Aguilar-Jimenez W, Zapata W, Rivero-Juárez A et al. Genetic associations of the vitamin D and antiviral pathways with natural resistance to HIV-1 infection are influenced by interpopulation variability. Infect Genet Evolution 2019; 73: 276–86. DOI: 10.1016/j.meegid.2019.05.014
64. Li B, Wang M, Zhou L et al. Association between serum vitamin D and chronic rhinosinusitis: a meta-analysis. Braz J Otorhinolaryngol 2019; 3: S1808–8694(19)30114-4. DOI: 10.1016/j.bjorl.2019.08.007
65. Grant WB, Lahore H, McDonnell SL et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020; 12 (4): 988. DOI: 10.3390/nu12040988
Авторы
И.Н. Захарова*1, С.В. Мальцев1, А.Л. Заплатников1, Л.Я. Климов2, А.Н. Пампура3, В.А. Курьянинова2, И.В. Бережная1, Е.Д. Ждакаева1, М.А. Симакова1, А.Н. Цуцаева2, С.В. Долбня2, Н.Е. Верисокина2, А.А. Крушельницкий4, А.В. Махаева5, Д.А. Сычев1
1 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия;
2 ФГБОУ ВО «Ставропольский государственный медицинский университет»Минздрава России, Ставрополь, Россия;
3 ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия;
4 ГБУЗ МО «Щелковский перинатальный центр», Щелково, Россия;
5 ГБУЗ «Детская городская поликлиника №140» Департамента здравоохранения г. Москвы, Москва, Россия
*zakharova-rmapo@yandex.ru
1 Russian Medical Academy of Continuous Professional Education, Moscow, Russia;
2 Stavropol State Medical University, Stavropol, Russia;
3 Pirogov Russian National Research Medical University, Moscow, Russia;
4 Shchyolkovo Perinatal Center, Shchyolkovo, Russia;
5 Children's City Clinic №140, Moscow, Russia
*zakharova-rmapo@yandex.ru
1 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия;
2 ФГБОУ ВО «Ставропольский государственный медицинский университет»Минздрава России, Ставрополь, Россия;
3 ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия;
4 ГБУЗ МО «Щелковский перинатальный центр», Щелково, Россия;
5 ГБУЗ «Детская городская поликлиника №140» Департамента здравоохранения г. Москвы, Москва, Россия
*zakharova-rmapo@yandex.ru
________________________________________________
1 Russian Medical Academy of Continuous Professional Education, Moscow, Russia;
2 Stavropol State Medical University, Stavropol, Russia;
3 Pirogov Russian National Research Medical University, Moscow, Russia;
4 Shchyolkovo Perinatal Center, Shchyolkovo, Russia;
5 Children's City Clinic №140, Moscow, Russia
*zakharova-rmapo@yandex.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
