Захарова И.Н., Мальцев С.В., Заплатников А.Л. и др. Влияние витамина D на иммунный ответ организма. Педиатрия. Consilium Medicum. 2020; 2: 29–37.
DOI: 10.26442/26586630.2020.2.200238
________________________________________________
Zakharova I.N., Maltsev S.V., Zaplatnikov A.L. et al. Influence of vitamin D on the immune response of the organism. Consilium Medicum. 2020; 2: 29–37.
DOI: 10.26442/26586630.2020.2.200238
Влияние витамина D на иммунный ответ организма
Захарова И.Н., Мальцев С.В., Заплатников А.Л. и др. Влияние витамина D на иммунный ответ организма. Педиатрия. Consilium Medicum. 2020; 2: 29–37.
DOI: 10.26442/26586630.2020.2.200238
________________________________________________
Zakharova I.N., Maltsev S.V., Zaplatnikov A.L. et al. Influence of vitamin D on the immune response of the organism. Consilium Medicum. 2020; 2: 29–37.
DOI: 10.26442/26586630.2020.2.200238
Литературный обзор посвящен влиянию витамина D на иммунный ответ организма. Как показывают исследования, витамин D способен ингибировать синтез провоспалительных цитокинов и, как следствие, играть важную роль в формировании иммунной толерантности, что важно при инфекционных, аутоиммунных заболеваниях и у пациентов после трансплантации органов. Витамин D может применяться как в качестве профилактики, так и в лечебных целях при инфекционных заболеваниях, в онкогематологии, аллергологии, гастроэнтерологии, а также способен влиять на внутриутробное развитие плода и иммунный ответ новорожденного, снижая риск развития патологии беременности, преждевременных родов и патологии плаценты, а также уменьшая частоту, степень тяжести и риск неблагоприятного исхода у новорожденных с врожденной и приобретенной инфекционной патологией. В постнатальном периоде нормальная обеспеченность витамином D не только снижает частоту, но и предотвращает формирование тяжелых форм аутоиммунных, аллергических заболеваний у детей и подростков.
A literature review is devoted to the effect of vitamin D on the body's immune response. Studies show that vitamin D is able to inhibit the synthesis of pro-inflammatory cytokines, and, as a result, play an important role in the formation of immune tolerance, which is important in infectious, autoimmune diseases and in patients after organ transplantation. Vitamin D can be used both as a prophylaxis and for therapeutic purposes for infectious diseases, in oncohematology, allergology, gastroenterology, and can also affect the intrauterine development of the fetus and the immune response of the newborn, reducing the risk of pregnancy pathology, risks of premature birth and placenta pathology, as well as reducing the frequency, severity and risk of adverse outcome in newborns with congenital and acquired infectious diseases. In the postnatal period, normal provision with vitamin D not only reduces the frequency, but also prevents the formation of severe forms of autoimmune, allergic diseases in children and adolescents.
1. Vinood B. Patel. Molecular Nutrition. Vitamins. Academic Press, 2020. DOI: 10.1016/C2016-0-02103-4
2. Holick MF, Garabedia M. Vitamin D: photobiology, metabolism, mechanism of action, and clinical applications. Primer on the Metabolic Bone diseases and disorders of Mineral Metabolism ed. by M.J. Favus. sixth edition. Chapter 17. Washington, DC: American society for Bone and Mineral Research, 2006; р. 129–37.
3. Мальцев С.В., Рылова Н.В. Витамин D и иммунитет. Практическая медицина. 2015; 86 (1): 114–20.
[Mal'tsev S.V., Rylova N.V. Vitamin D i immunitet. Prakticheskaia meditsina. 2015; 86 (1): 114–20 (in Russian).]
4. Захарова И.Н., Климов Л.Я., Касьянова А.Н. и др. Современные представления об иммунотропных эффектах витамина D. Вопросы практической педиатрии. 2019; 14 (1): 7–17. DOI: 10.20953/1817-7646-2019-1-7-17
[Zakharova I.N., Klimov L.Ia., Kas'ianova A.N. et al. Sovremennye predstavleniia ob immunotropnykh effektakh vitamina D. Voprosy prakticheskoi pediatrii. 2019; 14 (1): 7–17. DOI: 10.20953/1817-7646-2019-1-7-17 (in Russian).]
5. Barragan M, Good M, Kolls JK. Regulation of Dendritic Cell Function by Vitamin D. Nutrients 2015; 7 (9): 8127–51. DOI: 10.3390/nu7095383
6. Barker T, Rogers VE, Levy M et al. Supplemental vitamin D increases serum cytokines in those with initially low 25-hydroxyvitamin D: a randomized, double blind, placebo-controlled study. Cytokine 2015; 71: 132–8. DOI: 10.1016/j.cyto.2014.09.012
7. Agraz-Cibriana JM, Giraldob DM, Urcuqui-Inchimab S. 1,25-dihydroxyvitamin D3 induces formation of neutrophil extracellular trap-like structures and modulates the transcription of genes whose products are neutrophil extracellular trap-associated proteins: A pilot study. Steroids 2019; 141 (January): 14–22. DOI: 10.1016/j.steroids.2018.11.001
8. Corripio-Miyar Y, Mellanby RJ, Morrison K, McNeilly TN. 1,25-dihydroxyvitamin D3 modulates the phenotype and function of monocyte derived dendritic cells in cattle. BMC Vet Res 2017; 13 (1): 390. DOI: 10.1186/s12917-017-1309-8
9. Захарова И.Н., Климов Л.Я., Касьянова А.Н. и др. Роль антимикробных пептидов и витамина D в формировании противоинфекционной защиты. Педиатрия. Журнал им. Г.Н. Сперанского. 2017; 96 (4): 171–9.
[Zakharova I.N., Klimov L.Ia., Kas'ianova A.N. et al. Rol' antimikrobnykh peptidov i vitamina D v formirovanii protivoinfektsionnoi zashchity. Pediatriia. Zhurnal im. G.N. Speranskogo. 2017; 96 (4): 171–9 (in Russian).]
10. Захарова И.Н., Цуцаева А.Н., Климов Л.Я. и др. Витамин D и продукция дефензинов у детей раннего возраста. Мед. совет. 2020; 1: 158–69. DOI: 10.21518/2079-701X-2020-1-158-169
[Zakharova I.N., Tsutsaeva A.N., Klimov L.Ia. et al. Vitamin D i produktsiia defenzinov u detei rannego vozrasta. Med. sovet. 2020; 1: 158–69. DOI: 10.21518/2079-701X-2020-1-158-169 (in Russian).]
11. Абатуров А.Е. Катионные антимикробные пептиды системы неспецифической защиты респираторного тракта: дефензины и кателицидины. Дефензины – молекулы, переживающие ренессанс (часть 1). Здоровье ребенка. 2011; 7: 161–71.
[Abaturov A.E. Kationnye antimikrobnye peptidy sistemy nespetsificheskoi zashchity respiratornogo trakta: defenziny i katelitsidiny. Defenziny – molekuly, perezhivaiushchie renessans (chast' 1). Zdorov'e rebenka. 2011; 7: 161–71 (in Russian).]
12. Agier J, Brzezinska-Blaszczyk E. Cathelicidins and defensins regulate mast cell antimicrobial activity. Postepy Hig Med Dosw (Online) 2016; 70 (0): 618–36. DOI: 10.5604/17322693.1205357
13. Yegorov S, Bromage S, Boldbaatar N, Ganmaa D. Effects of vitamin D supplementation and seasonality on circulating cytokines in adolescents: analysis of data from a feasibility trial in Mongolia. Nutr Immunol 2019; 6: 166. DOI: 10.3389/fnut.2019.00166
14. Esche C, Stellato C, Beck LA. Chemokines: key players in innate and adaptive immunity. J Invest Dermatol 2005; 125: 615–28. DOI: 10.1111/j.0022-202X. 2005.23841.x
15. Chambers ES, Suwannasaen D, Mann EH et al. 1a,25-dihydroxyvitamin D3 in combination with transforming growth factor-b increases the frequency of Foxp3⁺ regulatory T cells through preferential expansion and usage of interleukin-2. Immunology 2014; 143 (1): 52–60. DOI: 10.1111/imm.12289
16. Chen S, Lee LF, Fisher TS et al. Combination of 4-1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model. Cancer Immunol Res 2015; 3 (2): 149–60. DOI: 10.1158/2326-6066
17. Fakhoury MA, Kvietys PR, Kattan WA et al. Vitamin D and intestinal homeostasis: barrier, microbiota, and immune modulation. J Steroid Biochem Mol Biol 2020; 200: 105663. DOI: 10.1016/j.jsbmb.2020.105663
18. Cantorna MT, Rogers CJ, Arora J. Aligning the paradoxical role of vitamin D in gastrointestinal immunity. Trends Endocrinol Metab 2019; 30 (7): 459–66. DOI: 10.1016/j.tem.2019.04.005
19. Boubali S, Liopeta K, Virgilio L et al. Calcium/calmodulin-dependent protein kinase II regulates IL-10 production by human T lymphocytes: a distinct target in the calcium dependent pathway. Molec Immunol 2012; 52: 51–60. DOI: 10.1016/j.molimm.2012.04.008
20. Amirzada M, Jin J. Therapeutic applications of interleukin 24 (IL24). Trop J Pharm Res 2012; 11 (6): 1023–7. DOI: 10.4314/tjpr.v11i6.20
21. Zhu Y, Mahon B, Froicu M, Cantorna M. Calcium and 1a,25-dihydroxyvitamin D3 target the TNF-a pathway to suppress experimental inflammatory bowel disease. Eur J Immunol 2005; 35: 217–24. DOI: 10.1002/eji.200425491
22. Ananthakrishnan AN, Khalili H, Higuchi LM et al. Higher predicted vitamin D status is associated with reduced risk of Crohn’s disease. Gastroenterology 2012; 142 (3): 482–9. DOI: 10.1053/j.gastro.2011.11.040
23. Ananthakrishnan AN, Cheng SC, Cai T et al. Association between reduced plasma 25-hydroxy vitamin D and increased risk of cancer in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol 2014; 12 (5): 821–7. DOI: 10.1016/j.cgh.2013.10.011
24. Linnemana Z, Reisa C, Balajib K et al. The vitamin D positive feedback hypothesis of inflammatory bowel diseases. Medical Hypotheses 2019; 127: 154–8. DOI: 10.1016/j.mehy.2019.04.005.9
25. Hanauer SВ. Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis 2006; 12 (1): 3–9. DOI: 10.1097/01.mib.0000195385.19268.68
26. Потрохова Е.А., Соботюк Н.В., Бочанцев С.В., Гапоненко В.П. Витамин D и аутоиммунные заболевания. Рос. вестн. перинатологии и педиатрии. 2017; 62 (1): 26–32. DOI: 10.21508/1027-4065-2017-62-1-26-32
[Potrokhova E.A., Sobotiuk N.V., Bochantsev S.V., Gaponenko V.P. Vitamin D i autoimmunnye zabolevaniia. Ros. vestn. perinatologii i pediatrii. 2017; 62 (1): 26–32. DOI: 10.21508/1027-4065-2017-62-1-26-32 (in Russian).]
27. Meeker S, Seamons A, Maggio-Price L, Paik J. Protective links between vitamin D, inflammatory bowel disease and colon cancer. World J Gastroenterol 2016; 22 (3): 933–48. DOI: 10.3748/wjg.v22.i3.933
28. Raman M, Milestone AN, Walters JR et al. Vitamin D and gastrointestinal diseases: inflammatory bowel disease and colorectal cancer. Therap Adv Gastroenterol 2011; 4 (1): 49–62. DOI: 10.1177/1756283X10377820
29. Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357: 266–81. DOI: 10.1056/NEJMra070553
30. Dunn JA, Jefferson K, MacDonald D et al. Low serum 25-hydroxyvitamin D is associated with increased bladder cancer risk: A systematic review and evidence of a potential mechanism. J Steroid Biochem Mol Biol 2019; 188: 134–40. DOI: 10.1016/j.jsbmb.2019.01.002
31. Arain A, Matthiesen C. Vitamin D deficiency and graft-versus-host disease in hematopoietic stem cell transplant population. Hematol Oncol Stem Cell Therapy 2019; 12 (3): 133–9. DOI: 10.1016/j.hemonc. 2018. 08.001
32. Ros-Soto J, Snowden JA, Salooja N et al. Transplant complications Working Party of the EBMT. Current practice in vitamin D management in allogeneic hematopoietic stem cell transplantation: asurvey by the transplant Complications Working Party of the European Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant 2019; 25 (10): 2079–85. DOI: 10.1016/j.bbmt.2019.06.015
33. Sproat L, Bolwell B, Rybicki L et al. Vitamin D level after allogeneic hematopoietic stem cell transplant. Biol Blood Marrow Transplant 2011; 17: 1079–83. DOI: 10.1016/j.bbmt.2010.12.704
34. Gargari BN, Behmanesh M, Farsani Z et al. Vitamin D supplementation up-regulates IL-6 and IL-17A gene expression in multiple sclerosis patients. International Immunopharmacology. 2015; 28 (1): 414–9. DOI: 10.1016/j.intimp.2015.06.033
35. Murdaca G, Tonacci A, Negrini S et al. Emerging role of vitamin D in autoimmune diseases: An update on evidence and therapeutic implications. Autoimmunity Rev 2019; 18 (9): 102350. DOI: 10.1016/j.autrev.2019.102350
36. Li D, Jeffery LE, Jenkinson C et al. Serum and synovial fluid vitamin D metabolites and rheumatoid arthritis. J Steroid Biochem Mol Biol 2019; 187: 1–8. DOI: 10.1016/j.jsbmb.2018.10.008
37. Velaphi SC, Izu A, Madhi SA, Pettifor JM. Maternal and neonatal vitamin D status at birth in black South Africans. S Afr Med J 2019; 109 (10): 807–13. DOI: 10.7196/SAMJ.2019.v109i10.13651
38. Mansur JL. Vitamin D in pediatrics, pregnancy and lactation. Arch Argent Pediatr 2018; 116 (4): 286–90. DOI: 10.5546/aap.2018.286
39. Morris SK, Pell LG, Rahman MZ et al. Maternal vitamin D supplementation during pregnancy and lactation to prevent acute respiratory infections in infancy in Dhaka, Bangladesh (MDARI trial): protocol for a prospective cohort study nested within a randomized controlled trial. BMC Pregnancy Childbirth 2016; 16 (1): 1–10. DOI: 10.1186/s12884-016-1103-9
40. Захарова И.Н., Курьянинова В.А., Верисокина Н.Е. и др. Витамин D и провоспалительные цитокины у новорожденных от матерей с эндокринной патологией. Тихоокеанский мед. журн. 2019; 78 (4): 66–9.
[Zakharova I.N., Kur'ianinova V.A., Verisokina N.E. et al. Vitamin D i provospalitel'nye tsitokiny u novorozhdennykh ot materei s endokrinnoi patologiei. Tikhookeanskii med. zhurn. 2019; 78 (4): 66–9 (in Russian).]
41. Skowrońska-Jóźwiak E, Lebiedzińska K, Smyczyńska J et al. Effects of maternal vitamin D status on pregnancy outcomes, health of pregnant women and their offspring. Neuro Endocrinol Lett 2014; 35 (5): 367–72.
42. Zhang Q, Chen H, Wang Y et al. Severe vitamin D deficiency in the first trimester is associated with placental inflammation in high-risk singleton pregnancy. Clinical Nutrition 2019; 38 (4): 1921–6. https://doi.org/10.1016/j.clnu.2018.06.978
43. Saggese G, Vierucci F, Prodam F et al. Vitamin D in pediatric age: consensus of the Italian Pediatric Society and the Italian Society of Preventive and Social Pediatrics, jointly with the Italian Federation of Pediatricians. Ital J Pediatr 2018; 44 (1): 1–40. DOI: 10.1186/s13052-018-0488-7
44. Meyzer C, Frange P, Chappuy H et al. Vitamin D deficiency and insufficiency in HIV-infected children and young adults. Pediatr Infect Dis J 2013; 32 (11): 1240–4.
45. Rutstein R, Downes A, Zemel B et al. Vitamin D status in children and young adults with perinatally acquired HIV infection. Clin Nutr 2011; 30 (5): 624–8.
46. Ali A, Cui X, Alexander S, Eyles D. The placental immune response is dysregulated developmentally vitamin D deficient rats: relevance to autism. J Steroid Biochem Mol Biol 2018; 180: 73–80. DOI: 10.1016/j.jsbmb.2018.01.015
47. Dinlen N, Zenciroglu A, Beken S et al. Association of vitamin D deficiency with acute lower respiratory tract infections in newborns. J Matern Fetal Neonatal Med 2016; 29 (6): 928–32. DOI: 10.3109/14767058.2015.1023710
48. Hornsb E, Pfeffer PE, Laranjo N et al. Vitamin D supplementation during pregnancy: Effect on the neonatal immune system in a randomized controlled trial. J Allergy Clin Immunol 2018; 141 (1): 269–78. https://doi.org/10.1016/j.jaci.2017.02.039
49. Munkhbayarlakh S, Kao H, Hou Y et al. Vitamin D plasma concentration and vitamin D receptor genetic variants confer risk of asthma: A comparison study of Taiwanese and Mongolian populations. World Allergy Organization J 2019; 12 (11): 100076. DOI: 10.1016/j.waojou.2019.100076
50. Huang Y, Wang L, Jia X et al. Vitamin D alleviates airway remodeling in asthma by down-regulating the activity of Wnt/b-catenin signaling pathway. Int Immunopharmacol 2019; 68: 88–94. DOI: 10.1016/j.intimp.2018.12.061
51. Yip KH, Kolesnikoff N, Yu C et al. Mechanisms of vitamin D(3) metabolite repression of IgE-dependent mast cell activation. J Allergy Clin Immunol 2014; 133: 1356–64; e1–14. DOI: 10.1016/j.jaci.2013.11.030
52. Matsui T, Tanaka K, Yamashita H et al. Food allergy is linked to season of birth, sun exposure, and vitamin D deficiency. Allergol Int 2019; 68 (2): 172–7. DOI: 10.1016/j.alit.2018.12.003
53. Ramadan A, Sallam SF, Elsheikh MS et al. VDR gene expression in asthmatic children patients in relation to vitamin D status and supplementation. Gene Reports 2019; 15: 100387. DOI: 10.1016/j.genrep.2019.100387
54. Захарова И.Н., Климов Л.Я., Касьянова А.Н. и др. Взаимосвязь инфекционной заболеваемости и недостаточности витамина D: современное состояние проблемы. Инфекционные болезни. 2018; 16 (3): 69–78. DOI: 10.20953/1729-9225-2018-3-69-78
[Zakharova I.N., Klimov L.Ia., Kas'ianova A.N. et al. Vzaimosviaz' infektsionnoi zabolevaemosti i nedostatochnosti vitamina D: sovremennoe sostoianie problemy. Infektsionnye bolezni. 2018; 16 (3): 69–78. DOI: 10.20953/1729-9225-2018-3-69-78 (in Russian).]
55. Martineau AR, Jolliffe DA, Hooper RL et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ 2017; 356: i6583. DOI: 10.1136/bmj.i6583
56. Касьянова А.Н. Уровень паратгормона и продукция дефензинов у детей раннего возраста в зависимости от обеспеченности витамином D. Автореф. дис. … канд. мед. наук. Ставрополь, 2019.
[Kas'ianova A.N. Uroven' paratgormona i produktsiia defenzinov u detei rannego vozrasta v zavisimosti ot obespechennosti vitaminom D. Avtoref. dis. … kand. med. nauk. Stavropol, 2019 (in Russian).]
57. Eroglu С, Demir F, Erge D et al. The relation between serum vitamin D levels, viral infections and severity of attacks in children with recurrent wheezing. Allergol Immunopathol (Madr) 2019; 47 (6): 591–7. DOI: 10.1016/j.aller.2019.05.002
58. Arboleda J, Fernandez G, Urcuqui-Inchima S. Vitamin D-mediated attenuation of miR-155 in human macrophages infected with dengue virus: Implications for the cytokine response. Infection. Genetics Evolution 2019; 69: 12–21. DOI: 10.1016/j.meegid.2018.12.033
59. Bhargava A, Rastogi P, Lal N et al. Relationship between vitamin D and chronic periodontitis. J Oral Biol Craniofacial Res 2019; 9 (2): 177–9. DOI: 10.1016/j.jobcr.2018.07.001
60. Panda S, Tiwari A, Luthra K et al. Status of vitamin D and the associated host factors in pulmonary tuberculosis patients and their household contacts: A cross sectional study. J Steroid Biochem Mol Biol 2019; 193: 105419. DOI: 10.1016/j.jsbmb.2019.105419
61. Cervantes JL, Oak E, Garcia J et al. Vitamin D modulates human macrophage response to Mycobacterium tuberculosis DNA. Tuberculosis 2019; 116 (Suppl.): S131–S137. DOI: 10.1016/j.tube.2019.04.021
62. Xiao D, Zhang X, Ying J et al. Association between vitamin D status and sepsis in children: A meta-analysis of observational studies. Clin Nutr 2019; S0261–5614 (19): 33022–5. DOI: 10.1016/j.clnu.2019.08.010
63. Aguilar-Jimenez W, Zapata W, Rivero-Juárez A et al. Genetic associations of the vitamin D and antiviral pathways with natural resistance to HIV-1 infection are influenced by interpopulation variability. Infect Genet Evolution 2019; 73: 276–86. DOI: 10.1016/j.meegid.2019.05.014
64. Li B, Wang M, Zhou L et al. Association between serum vitamin D and chronic rhinosinusitis: a meta-analysis. Braz J Otorhinolaryngol 2019; 3: S1808–8694(19)30114-4. DOI: 10.1016/j.bjorl.2019.08.007
65. Grant WB, Lahore H, McDonnell SL et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020; 12 (4): 988. DOI: 10.3390/nu12040988
________________________________________________
1. Vinood B. Patel. Molecular Nutrition. Vitamins. Academic Press, 2020. DOI: 10.1016/C2016-0-02103-4
2. Holick MF, Garabedia M. Vitamin D: photobiology, metabolism, mechanism of action, and clinical applications. Primer on the Metabolic Bone diseases and disorders of Mineral Metabolism ed. by M.J. Favus. sixth edition. Chapter 17. Washington, DC: American society for Bone and Mineral Research, 2006; р. 129–37.
3. Mal'tsev S.V., Rylova N.V. Vitamin D i immunitet. Prakticheskaia meditsina. 2015; 86 (1): 114–20 (in Russian).
4. Zakharova I.N., Klimov L.Ia., Kas'ianova A.N. et al. Sovremennye predstavleniia ob immunotropnykh effektakh vitamina D. Voprosy prakticheskoi pediatrii. 2019; 14 (1): 7–17. DOI: 10.20953/1817-7646-2019-1-7-17 (in Russian).
5. Barragan M, Good M, Kolls JK. Regulation of Dendritic Cell Function by Vitamin D. Nutrients 2015; 7 (9): 8127–51. DOI: 10.3390/nu7095383
6. Barker T, Rogers VE, Levy M et al. Supplemental vitamin D increases serum cytokines in those with initially low 25-hydroxyvitamin D: a randomized, double blind, placebo-controlled study. Cytokine 2015; 71: 132–8. DOI: 10.1016/j.cyto.2014.09.012
7. Agraz-Cibriana JM, Giraldob DM, Urcuqui-Inchimab S. 1,25-dihydroxyvitamin D3 induces formation of neutrophil extracellular trap-like structures and modulates the transcription of genes whose products are neutrophil extracellular trap-associated proteins: A pilot study. Steroids 2019; 141 (January): 14–22. DOI: 10.1016/j.steroids.2018.11.001
8. Corripio-Miyar Y, Mellanby RJ, Morrison K, McNeilly TN. 1,25-dihydroxyvitamin D3 modulates the phenotype and function of monocyte derived dendritic cells in cattle. BMC Vet Res 2017; 13 (1): 390. DOI: 10.1186/s12917-017-1309-8
9. Zakharova I.N., Klimov L.Ia., Kas'ianova A.N. et al. Rol' antimikrobnykh peptidov i vitamina D v formirovanii protivoinfektsionnoi zashchity. Pediatriia. Zhurnal im. G.N. Speranskogo. 2017; 96 (4): 171–9 (in Russian).
10. Zakharova I.N., Tsutsaeva A.N., Klimov L.Ia. et al. Vitamin D i produktsiia defenzinov u detei rannego vozrasta. Med. sovet. 2020; 1: 158–69. DOI: 10.21518/2079-701X-2020-1-158-169 (in Russian).
11. Abaturov A.E. Kationnye antimikrobnye peptidy sistemy nespetsificheskoi zashchity respiratornogo trakta: defenziny i katelitsidiny. Defenziny – molekuly, perezhivaiushchie renessans (chast' 1). Zdorov'e rebenka. 2011; 7: 161–71 (in Russian).
12. Agier J, Brzezinska-Blaszczyk E. Cathelicidins and defensins regulate mast cell antimicrobial activity. Postepy Hig Med Dosw (Online) 2016; 70 (0): 618–36. DOI: 10.5604/17322693.1205357
13. Yegorov S, Bromage S, Boldbaatar N, Ganmaa D. Effects of vitamin D supplementation and seasonality on circulating cytokines in adolescents: analysis of data from a feasibility trial in Mongolia. Nutr Immunol 2019; 6: 166. DOI: 10.3389/fnut.2019.00166
14. Esche C, Stellato C, Beck LA. Chemokines: key players in innate and adaptive immunity. J Invest Dermatol 2005; 125: 615–28. DOI: 10.1111/j.0022-202X. 2005.23841.x
15. Chambers ES, Suwannasaen D, Mann EH et al. 1a,25-dihydroxyvitamin D3 in combination with transforming growth factor-b increases the frequency of Foxp3⁺ regulatory T cells through preferential expansion and usage of interleukin-2. Immunology 2014; 143 (1): 52–60. DOI: 10.1111/imm.12289
16. Chen S, Lee LF, Fisher TS et al. Combination of 4-1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model. Cancer Immunol Res 2015; 3 (2): 149–60. DOI: 10.1158/2326-6066
17. Fakhoury MA, Kvietys PR, Kattan WA et al. Vitamin D and intestinal homeostasis: barrier, microbiota, and immune modulation. J Steroid Biochem Mol Biol 2020; 200: 105663. DOI: 10.1016/j.jsbmb.2020.105663
18. Cantorna MT, Rogers CJ, Arora J. Aligning the paradoxical role of vitamin D in gastrointestinal immunity. Trends Endocrinol Metab 2019; 30 (7): 459–66. DOI: 10.1016/j.tem.2019.04.005
19. Boubali S, Liopeta K, Virgilio L et al. Calcium/calmodulin-dependent protein kinase II regulates IL-10 production by human T lymphocytes: a distinct target in the calcium dependent pathway. Molec Immunol 2012; 52: 51–60. DOI: 10.1016/j.molimm.2012.04.008
20. Amirzada M, Jin J. Therapeutic applications of interleukin 24 (IL24). Trop J Pharm Res 2012; 11 (6): 1023–7. DOI: 10.4314/tjpr.v11i6.20
21. Zhu Y, Mahon B, Froicu M, Cantorna M. Calcium and 1a,25-dihydroxyvitamin D3 target the TNF-a pathway to suppress experimental inflammatory bowel disease. Eur J Immunol 2005; 35: 217–24. DOI: 10.1002/eji.200425491
22. Ananthakrishnan AN, Khalili H, Higuchi LM et al. Higher predicted vitamin D status is associated with reduced risk of Crohn’s disease. Gastroenterology 2012; 142 (3): 482–9. DOI: 10.1053/j.gastro.2011.11.040
23. Ananthakrishnan AN, Cheng SC, Cai T et al. Association between reduced plasma 25-hydroxy vitamin D and increased risk of cancer in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol 2014; 12 (5): 821–7. DOI: 10.1016/j.cgh.2013.10.011
24. Linnemana Z, Reisa C, Balajib K et al. The vitamin D positive feedback hypothesis of inflammatory bowel diseases. Medical Hypotheses 2019; 127: 154–8. DOI: 10.1016/j.mehy.2019.04.005.9
25. Hanauer SВ. Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis 2006; 12 (1): 3–9. DOI: 10.1097/01.mib.0000195385.19268.68
26. Potrokhova E.A., Sobotiuk N.V., Bochantsev S.V., Gaponenko V.P. Vitamin D i autoimmunnye zabolevaniia. Ros. vestn. perinatologii i pediatrii. 2017; 62 (1): 26–32. DOI: 10.21508/1027-4065-2017-62-1-26-32 (in Russian).
27. Meeker S, Seamons A, Maggio-Price L, Paik J. Protective links between vitamin D, inflammatory bowel disease and colon cancer. World J Gastroenterol 2016; 22 (3): 933–48. DOI: 10.3748/wjg.v22.i3.933
28. Raman M, Milestone AN, Walters JR et al. Vitamin D and gastrointestinal diseases: inflammatory bowel disease and colorectal cancer. Therap Adv Gastroenterol 2011; 4 (1): 49–62. DOI: 10.1177/1756283X10377820
29. Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357: 266–81. DOI: 10.1056/NEJMra070553
30. Dunn JA, Jefferson K, MacDonald D et al. Low serum 25-hydroxyvitamin D is associated with increased bladder cancer risk: A systematic review and evidence of a potential mechanism. J Steroid Biochem Mol Biol 2019; 188: 134–40. DOI: 10.1016/j.jsbmb.2019.01.002
31. Arain A, Matthiesen C. Vitamin D deficiency and graft-versus-host disease in hematopoietic stem cell transplant population. Hematol Oncol Stem Cell Therapy 2019; 12 (3): 133–9. DOI: 10.1016/j.hemonc. 2018. 08.001
32. Ros-Soto J, Snowden JA, Salooja N et al. Transplant complications Working Party of the EBMT. Current practice in vitamin D management in allogeneic hematopoietic stem cell transplantation: asurvey by the transplant Complications Working Party of the European Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant 2019; 25 (10): 2079–85. DOI: 10.1016/j.bbmt.2019.06.015
33. Sproat L, Bolwell B, Rybicki L et al. Vitamin D level after allogeneic hematopoietic stem cell transplant. Biol Blood Marrow Transplant 2011; 17: 1079–83. DOI: 10.1016/j.bbmt.2010.12.704
34. Gargari BN, Behmanesh M, Farsani Z et al. Vitamin D supplementation up-regulates IL-6 and IL-17A gene expression in multiple sclerosis patients. International Immunopharmacology. 2015; 28 (1): 414–9. DOI: 10.1016/j.intimp.2015.06.033
35. Murdaca G, Tonacci A, Negrini S et al. Emerging role of vitamin D in autoimmune diseases: An update on evidence and therapeutic implications. Autoimmunity Rev 2019; 18 (9): 102350. DOI: 10.1016/j.autrev.2019.102350
36. Li D, Jeffery LE, Jenkinson C et al. Serum and synovial fluid vitamin D metabolites and rheumatoid arthritis. J Steroid Biochem Mol Biol 2019; 187: 1–8. DOI: 10.1016/j.jsbmb.2018.10.008
37. Velaphi SC, Izu A, Madhi SA, Pettifor JM. Maternal and neonatal vitamin D status at birth in black South Africans. S Afr Med J 2019; 109 (10): 807–13. DOI: 10.7196/SAMJ.2019.v109i10.13651
38. Mansur JL. Vitamin D in pediatrics, pregnancy and lactation. Arch Argent Pediatr 2018; 116 (4): 286–90. DOI: 10.5546/aap.2018.286
39. Morris SK, Pell LG, Rahman MZ et al. Maternal vitamin D supplementation during pregnancy and lactation to prevent acute respiratory infections in infancy in Dhaka, Bangladesh (MDARI trial): protocol for a prospective cohort study nested within a randomized controlled trial. BMC Pregnancy Childbirth 2016; 16 (1): 1–10. DOI: 10.1186/s12884-016-1103-9
40. Zakharova I.N., Kur'ianinova V.A., Verisokina N.E. et al. Vitamin D i provospalitel'nye tsitokiny u novorozhdennykh ot materei s endokrinnoi patologiei. Tikhookeanskii med. zhurn. 2019; 78 (4): 66–9 (in Russian).
41. Skowrońska-Jóźwiak E, Lebiedzińska K, Smyczyńska J et al. Effects of maternal vitamin D status on pregnancy outcomes, health of pregnant women and their offspring. Neuro Endocrinol Lett 2014; 35 (5): 367–72.
42. Zhang Q, Chen H, Wang Y et al. Severe vitamin D deficiency in the first trimester is associated with placental inflammation in high-risk singleton pregnancy. Clinical Nutrition 2019; 38 (4): 1921–6. https://doi.org/10.1016/j.clnu.2018.06.978
43. Saggese G, Vierucci F, Prodam F et al. Vitamin D in pediatric age: consensus of the Italian Pediatric Society and the Italian Society of Preventive and Social Pediatrics, jointly with the Italian Federation of Pediatricians. Ital J Pediatr 2018; 44 (1): 1–40. DOI: 10.1186/s13052-018-0488-7
44. Meyzer C, Frange P, Chappuy H et al. Vitamin D deficiency and insufficiency in HIV-infected children and young adults. Pediatr Infect Dis J 2013; 32 (11): 1240–4.
45. Rutstein R, Downes A, Zemel B et al. Vitamin D status in children and young adults with perinatally acquired HIV infection. Clin Nutr 2011; 30 (5): 624–8.
46. Ali A, Cui X, Alexander S, Eyles D. The placental immune response is dysregulated developmentally vitamin D deficient rats: relevance to autism. J Steroid Biochem Mol Biol 2018; 180: 73–80. DOI: 10.1016/j.jsbmb.2018.01.015
47. Dinlen N, Zenciroglu A, Beken S et al. Association of vitamin D deficiency with acute lower respiratory tract infections in newborns. J Matern Fetal Neonatal Med 2016; 29 (6): 928–32. DOI: 10.3109/14767058.2015.1023710
48. Hornsb E, Pfeffer PE, Laranjo N et al. Vitamin D supplementation during pregnancy: Effect on the neonatal immune system in a randomized controlled trial. J Allergy Clin Immunol 2018; 141 (1): 269–78. https://doi.org/10.1016/j.jaci.2017.02.039
49. Munkhbayarlakh S, Kao H, Hou Y et al. Vitamin D plasma concentration and vitamin D receptor genetic variants confer risk of asthma: A comparison study of Taiwanese and Mongolian populations. World Allergy Organization J 2019; 12 (11): 100076. DOI: 10.1016/j.waojou.2019.100076
50. Huang Y, Wang L, Jia X et al. Vitamin D alleviates airway remodeling in asthma by down-regulating the activity of Wnt/b-catenin signaling pathway. Int Immunopharmacol 2019; 68: 88–94. DOI: 10.1016/j.intimp.2018.12.061
51. Yip KH, Kolesnikoff N, Yu C et al. Mechanisms of vitamin D(3) metabolite repression of IgE-dependent mast cell activation. J Allergy Clin Immunol 2014; 133: 1356–64; e1–14. DOI: 10.1016/j.jaci.2013.11.030
52. Matsui T, Tanaka K, Yamashita H et al. Food allergy is linked to season of birth, sun exposure, and vitamin D deficiency. Allergol Int 2019; 68 (2): 172–7. DOI: 10.1016/j.alit.2018.12.003
53. Ramadan A, Sallam SF, Elsheikh MS et al. VDR gene expression in asthmatic children patients in relation to vitamin D status and supplementation. Gene Reports 2019; 15: 100387. DOI: 10.1016/j.genrep.2019.100387
54. Zakharova I.N., Klimov L.Ia., Kas'ianova A.N. et al. Vzaimosviaz' infektsionnoi zabolevaemosti i nedostatochnosti vitamina D: sovremennoe sostoianie problemy. Infektsionnye bolezni. 2018; 16 (3): 69–78. DOI: 10.20953/1729-9225-2018-3-69-78 (in Russian).
55. Martineau AR, Jolliffe DA, Hooper RL et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ 2017; 356: i6583. DOI: 10.1136/bmj.i6583
56. Kas'ianova A.N. Uroven' paratgormona i produktsiia defenzinov u detei rannego vozrasta v zavisimosti ot obespechennosti vitaminom D. Avtoref. dis. … kand. med. nauk. Stavropol, 2019 (in Russian).
57. Eroglu С, Demir F, Erge D et al. The relation between serum vitamin D levels, viral infections and severity of attacks in children with recurrent wheezing. Allergol Immunopathol (Madr) 2019; 47 (6): 591–7. DOI: 10.1016/j.aller.2019.05.002
58. Arboleda J, Fernandez G, Urcuqui-Inchima S. Vitamin D-mediated attenuation of miR-155 in human macrophages infected with dengue virus: Implications for the cytokine response. Infection. Genetics Evolution 2019; 69: 12–21. DOI: 10.1016/j.meegid.2018.12.033
59. Bhargava A, Rastogi P, Lal N et al. Relationship between vitamin D and chronic periodontitis. J Oral Biol Craniofacial Res 2019; 9 (2): 177–9. DOI: 10.1016/j.jobcr.2018.07.001
60. Panda S, Tiwari A, Luthra K et al. Status of vitamin D and the associated host factors in pulmonary tuberculosis patients and their household contacts: A cross sectional study. J Steroid Biochem Mol Biol 2019; 193: 105419. DOI: 10.1016/j.jsbmb.2019.105419
61. Cervantes JL, Oak E, Garcia J et al. Vitamin D modulates human macrophage response to Mycobacterium tuberculosis DNA. Tuberculosis 2019; 116 (Suppl.): S131–S137. DOI: 10.1016/j.tube.2019.04.021
62. Xiao D, Zhang X, Ying J et al. Association between vitamin D status and sepsis in children: A meta-analysis of observational studies. Clin Nutr 2019; S0261–5614 (19): 33022–5. DOI: 10.1016/j.clnu.2019.08.010
63. Aguilar-Jimenez W, Zapata W, Rivero-Juárez A et al. Genetic associations of the vitamin D and antiviral pathways with natural resistance to HIV-1 infection are influenced by interpopulation variability. Infect Genet Evolution 2019; 73: 276–86. DOI: 10.1016/j.meegid.2019.05.014
64. Li B, Wang M, Zhou L et al. Association between serum vitamin D and chronic rhinosinusitis: a meta-analysis. Braz J Otorhinolaryngol 2019; 3: S1808–8694(19)30114-4. DOI: 10.1016/j.bjorl.2019.08.007
65. Grant WB, Lahore H, McDonnell SL et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020; 12 (4): 988. DOI: 10.3390/nu12040988
1 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия;
2 ФГБОУ ВО «Ставропольский государственный медицинский университет»Минздрава России, Ставрополь, Россия;
3 ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия;
4 ГБУЗ МО «Щелковский перинатальный центр», Щелково, Россия;
5 ГБУЗ «Детская городская поликлиника №140» Департамента здравоохранения г. Москвы, Москва, Россия
*zakharova-rmapo@yandex.ru
________________________________________________
Irina N. Zakharova*1, Stanislav V. Maltsev1, Andrei L. Zaplatnikov1, Leonid Ya. Klimov2, Aleksandr N. Pampura3, Viktoriia A. Kuryaninova2, Irina V. Berezhnaya1, Ekaterina D. Zhdakaeva1, Mariia A. Simakova1, Anna N. Tsutsaeva2, Svetlana V. Dolbnya2, Natalia E. Verisokina2, Anatolii A. Krushelnitsky4, Anastasiia V. Makhaeva5, Dmitrii A. Sychev1
1 Russian Medical Academy of Continuous Professional Education, Moscow, Russia;
2 Stavropol State Medical University, Stavropol, Russia;
3 Pirogov Russian National Research Medical University, Moscow, Russia;
4 Shchyolkovo Perinatal Center, Shchyolkovo, Russia;
5 Children's City Clinic №140, Moscow, Russia
*zakharova-rmapo@yandex.ru