Роль ω3-полиненасыщенных жирных кислот в профилактике атерогенных сердечно-сосудистых заболеваний начиная с детского возраста
Роль ω3-полиненасыщенных жирных кислот в профилактике атерогенных сердечно-сосудистых заболеваний начиная с детского возраста
Захарова И.Н., Османов И.М., Пшеничникова И.И., Скоробогатова Е.В., Коба Ю.В., Кузнецова И.С. Роль ω₃-полиненасыщенных жирных кислот в профилактике атерогенных сердечно-сосудистых заболеваний начиная с детского возраста. Педиатрия. Consilium Medicum. 2022;1:33–38.
DOI: 10.26442/26586630.2022.1.201434
________________________________________________
Zakharova IN, Osmanov IM, Pshenichnikova II, Skorobogatova EV, Koba YuV, Kuznetsova IS. The role of ω₃-polyunsaturated fatty acids in the prevention of atherogenic cardiovascular diseases starting in childhood. Pediatrics. Consilium Medicum. 2022;1:33–38. DOI: 10.26442/26586630.2022.1.201434
Роль ω3-полиненасыщенных жирных кислот в профилактике атерогенных сердечно-сосудистых заболеваний начиная с детского возраста
Захарова И.Н., Османов И.М., Пшеничникова И.И., Скоробогатова Е.В., Коба Ю.В., Кузнецова И.С. Роль ω₃-полиненасыщенных жирных кислот в профилактике атерогенных сердечно-сосудистых заболеваний начиная с детского возраста. Педиатрия. Consilium Medicum. 2022;1:33–38.
DOI: 10.26442/26586630.2022.1.201434
________________________________________________
Zakharova IN, Osmanov IM, Pshenichnikova II, Skorobogatova EV, Koba YuV, Kuznetsova IS. The role of ω₃-polyunsaturated fatty acids in the prevention of atherogenic cardiovascular diseases starting in childhood. Pediatrics. Consilium Medicum. 2022;1:33–38. DOI: 10.26442/26586630.2022.1.201434
Болезни сердечно-сосудистой системы являются одной из основных причин заболеваемости, инвалидности и смертности. Один из наиболее значимых факторов риска их развития – атерогенные дислипидемии. Атеросклеротическое повреждение сосудов возникает задолго до клинической манифестации и часто начинает прогрессировать уже в детском возрасте. Именно поэтому дети представляют собой важнейшую когорту для профилактики сердечно-сосудистых заболеваний атеросклеротического генеза. Результаты исследований демонстрируют, что прием ω₃-полиненасыщенных жирных кислот снижает риск развития атеросклеротического поражения сосудов у взрослых и детей. Эффект достигается за счет разнонаправленного влияния на такие факторы риска, как инсулинорезистентность, ожирение, сахарный диабет, дислипидемия, артериальная гипертензия, воспаление и дисфункция эндотелия. У детей с первичной дислипидемией (гетерозиготной семейной гиперхолестеринемией) прием ω₃-полиненасыщенных жирных кислот приводит к нормализации содержания триглицеридов сыворотки и умеренному снижению концентрации общего холестерина и холестерина липопротеинов низкой плотности. Наиболее значимое лечебное и профилактическое воздействие наблюдается у пациентов со вторичными дислипидемиями на фоне ожирения и сахарного диабета, когда помимо снижения уровня триглицеридов и повышения холестерина липопротеинов высокой плотности на фоне приема ω₃-полиненасыщенных жирных кислот возрастает чувствительность клеток и тканей к инсулину, наблюдаются снижение массы тела, увеличение мышечной массы, стабилизация артериального давления и улучшение функции печени. Учитывая плейотропное протекторное действие и хорошую переносимость, ω₃-полиненасыщенные жирные кислоты могут широко применяться для первичной и вторичной профилактики атеросклеротических сердечно-сосудистых заболеваний у детей и подростков.
Diseases of the cardiovascular system are one of the main causes of morbidity, disability and mortality. One of the most significant risk factors for their development is atherogenic dyslipidemia. Atherosclerotic vascular damage occurs long before clinical manifestation and often begins to progress as early as childhood. This is why children represent the most important cohort for the prevention of cardiovascular diseases of atherosclerotic genesis. Studies show that taking ω₃-polyunsaturated fatty acids reduces the risk of atherosclerotic vascular disease in adults and children. The effect is achieved by multidirectional effects on risk factors such as insulin resistance, obesity, diabetes mellitus, dyslipidaemia, arterial hypertension, inflammation and endothelial dysfunction. In children with primary dyslipidemia (heterozygous familial hypercholesterolemia) taking ω₃-polyunsaturated fatty acids leads to normalization of serum triglycerides and a moderate decrease in total cholesterol and low-density lipoprotein cholesterol. The most significant therapeutic and prophylactic effects are observed in patients with secondary dyslipidemias caused by obesity and diabetes mellitus, when, besides the decrease in triglycerides and the increase in HDL cholesterol, ω₃-polyunsaturated fatty acids increase the insulin sensitivity of cells and tissue, body weight reduction, increase in muscle mass, stabilization of blood pressure and improvement of liver function are observed. Considering pleiotropic protective effect and good tolerability, ω₃‑polyunsaturated fatty acids can be widely used for primary and secondary prevention of atherosclerotic cardiovascular diseases in children and adolescents.
1. Ramaswami U, Humphries SE, Priestley-Barnham L, et al. Current management of children and young people with heterozygous familial hypercholesterolaemia-HEART UK statement of care. Atherosclerosis. 2019;290:1-8. DOI:10.1016/j.atherosclerosis.2019.09.005
2. Бубнова М.Г., Парнес Л.Е. Современные принципы управления атерогенной дислипидемией в особых группах больных. CardioСоматика. 2020;11(1):6-15 [Bubnova MG, Parnes LE. Modern principles of atherogenic dyslipidemia management in special groups of patients. CardioSomatics. 2020;11(1):6-15 (in Russian)]. DOI:10.26442/22217185.2020.1.200089
3. Wald DS, Bestwick JP, Morris JK, et al. Child–parent familial hypercholesterolemia screening in primary care. N Engl J Med. 2016;375:1628-37. DOI:10.1056/NEJMoa1602777
4. Метельская В.А., Шальнова С.А., Деев А.Д., и др. Анализ распространенности показателей, характеризующих атерогенность спектра липопротеинов, у жителей Российской Федерации (по данным исследования ЭССЕ-РФ). Профилактическая медицина. 2016;19(1):15-23 [Metelskaya VA, Shalnova SA, Deev AD, et al. Analysis of atherogenic dyslipidemias prevalence among population of Russian Federation (results of the ESSE-RF Study). Profilakticheskaya meditsina. 2016;19(1):15-23 (in Russian)]. DOI:10.17116/profmed201619115-23
5. He H, Pan L, Du J, et al. Prevalence of, and biochemical and anthropometric risk factors for, dyslipidemia in children and adolescents aged 7 to 18 years in China: A cross‐sectional study. Am J Hum Biol. 2019;31(5):e23286. DOI:10.1002/ajhb.23286
6. Camargo JSAA, Zamarchia TBO, Balieiro AAS, et al. Prevalence of obesity, high blood pressure, dyslipidemia and their associated factors in children and adolescents in a municipality in the Brazilian Amazon region. JHGD. 2021;31(1):37-46. DOI:10.36311/jhgd.v31.11209
7. Dathan-Stumpf A, Vogel M, Hiemisch A, et al. Pediatric reference data of serum lipids and prevalence of dyslipidemia: results from a population-based cohort in Germany. Clin Biochem. 2016;49(10-11):740-9. DOI:10.1016/j.clinbiochem.2016.02.010
8. Мешков А.Н., Ершова А.И., Шальнова С.А., и др. Кросс-секционное исследование по оценке распространенности семейной гиперхолестеринемии в отдельных регионах Российской Федерации: актуальность, дизайн исследования и исходные характеристики участников. Рациональная фармакотерапия в кардиологии. 2020;16(1):24-32 [Meshkov AN, Ershova AI, Shalnova SA, et al. Cross-Sectional Study to Estimate the Prevalence of Familial Hypercholesterolemia in Selected Regions of the Russian Federation: Relevance, Design of the Study and Initial Characteristics of the Participants. Rational Pharmacotherapy in Cardiology. 2020;16(1):24-32 (in Russian)].
DOI:10.20996/1819-6446-2020-02-17
9. Kastelein JJP, Reeskamp LF, Hovingh GK. Familial hypercholesterolemia: the most common monogenic disorder in humans. J Am Coll Cardiol. 2020;75(20):2567-9.
DOI:10.1016/j.jacc.2020.03.058
10. Леонтьева И.В. Современная стратегия диагностики и лечения семейной гетерозиготной гиперхолестеринемии у детей. Российский вестник перинатологии и педиатрии. 2020;65(4):27-40 [Leontyeva IV. Modern strategy of diagnosis and treatment of children with heterozygous familial hypercholesterolemia. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2020;65(4):27-40 (in Russian)]. DOI:10.21508/1027-4065-2020-65-4-27-40
11. Мартынова И.Н., Винярская И.В., Терлецкая Р.Н., и др. Вопросы истинной заболеваемости и распространенности ожирения среди детей и подростков. Российский педиатрический журнал. 2016;19(1):23-28 [Martynova IN, Vinyarskaya IV, Terletskaya RN, et al. Questions of true incidence and prevalence of obesity in children and adolescents. Rossiiskiy Pediatricheskiy Zhurnal. 2016;19(1):23-28 (in Russian)]. DOI:10.18821/1560-9561-2016-19-1-23-28
12. Дедов И.И., Шестакова М.В., Петеркова В.А., и др. Сахарный диабет у детей и подростков по данным Федерального регистра Российской Федерации: динамика основных эпидемиологических характеристик за 2013-2016 гг. Сахарный диабет. 2017;20(6):392-402 [Dedov II, Shestakova MV, Peterkova VA, et al. Diabetes mellitus in children and adolescents according to the Federal diabetes registry in the Russian Federation: dynamics of major epidemiological characteristics for 2013-2016. Diabetes Mellitus. 2017;20(6):392-402 (in Russian)]. DOI:10.14341/DM9460
13. Masuda D, Yamashita S. Postprandial hyperlipidemia and remnant lipoproteins. J Atheroscler Thromb. 2017;24(2):95-109. DOI:10.5551/jat.RV16003
14. Протасов К.В. Атерогенная дислипидемия при сахарном диабете. Сообщение 1: патогенез, клиническая и прогностическая значимость, показатели контроля липидного обмена. Сибирский медицинский журнал (Иркутск). 2012;112(5):5-9 [Protasov KV. Atherogenic dyslipidemia in diabetes mellitus. Part 1: Pathogenesis, clinical and prognostic significance, lipid level monitoring indices. Sibirskii meditsinskii zhurnal (Irkutsk). 2012;112(5):5-9 (in Russian)].
15. Dyerberg J. Coronary heart disease in Greenland Inuit: a paradox. Implications for western diet patterns. Arctic Med Res. 1989;48(2):47-54.
16. Ascherio A, Rimm EB, Stampfer MJ, et al. Dietary intake of marine n-3 fatty acids, fish intake, and the risk of coronary disease among men. N Engl J Med. 1995;332(15):977-82. DOI:10.1056/NEJM199504133321501
17. Marckmann P, Gronbaek M. Fish consumption and coronary heart disease mortality. A systematic review of prospective cohort studies. Eur J Clin Nutr. 1999;53(8):585-90. DOI:10.1038/sj.ejcn.1600832
18. Hu FB, Bronner L, Willett WC, et al. Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. JAMA. 2002;287(14):1815-21. DOI:10.1001/jama.287.14.1815
19. Whelton SP, He J, Whelton PK, Muntner P. Meta-analysis of observational studies on fish intake and coronary heart disease. Am J Cardiol. 2004;93(9):1119-23.
DOI:10.1016/j.amjcard.2004.01.038
20. He K, Song Y, Daviglus ML, et al. Accumulated evidence on fish consumption and coronary heart disease mortality: a meta-analysis of cohort studies. Circulation. 2004;109(22):2705‑11. DOI:10.1161/01.CIR.0000132503.19410.6B
21. Iso H, Kobayashi M, Ishihara J, et al. Intake of fish and n3 fatty acids and risk of coronary heart disease among Japanese: the Japan Public Health Center-Based (JPHC) Study Cohort I. Circulation. 2006;113(2):195-202. DOI:10.1161/CIRCULATIONAHA.105.581355
22. de Goede J, Geleijnse JM, Boer JMA, et al. Marine (n-3) fatty acids, fish consumption, and the 10-year risk of fatal and nonfatal coronary heart disease in a large population of Dutch adults with low fish intake. J Nutr. 2010;140(5):1023-28. DOI:10.3945/jn.109.119271
23. Harris WS, Tintle NL, Etherton MR, Vasan RS. Erythrocyte long-chain omega-3 fatty acid levels are inversely associated with mortality and with incident cardiovascular disease: The Framingham Heart Study. J Clin Lipidol. 2018;12(3):718-27.e6. DOI:10.1016/j.jacl.2018.02.010
24. Diffenderfer MR, Rajapakse N, Pham E, et al. Plasma fatty acid profiles: Relationships with sex, age, and state-reported heart disease mortality rates in the United States. J Clin Lipidol. 2022; S1933-2874(21)00352-4. DOI:10.1016/j.jacl.2021.12.005
25. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;74(10):e177-e232. DOI:10.1016/j.jacc.2019.03.010
26. Jacobson TA, Ito MK, Maki KC, et al. National Lipid Association recommendations for patient-centered management of dyslipidemia: part 2. J Clin Lipidol. 2015;9(2):129-69. DOI:10.1016/j.jacl.2015.02.003
27. Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies With the special contribution of the European Association of Preventive Cardiology (EAPC). Eur Heart J. 2021;42(34):3227-337. DOI:10.1093/eurheartj/ehab484
28. Кухарчук В.В., Ежов М.В., Сергиенко И.В., и др. Клинические рекомендации евразийской ассоциации кардиологов (ЕАК)/национального общества по изучению атеросклероза (НОА, Россия) по диагностике и коррекции нарушений липидного обмена с целью профилактики и лечения атеросклероза (2020). Евразийский кардиологический журнал. 2020;2:6-29 [Kukharchuk VV, Ezhov MV, Sergienko IV, et al. Eurasian association of cardiology (EAC)/Russian national atherosclerosis society (RNAS, RUSSIA) guidelines for the diagnosis and correction of dyslipidemia for the prevention and treatment of atherosclerosis (2020). Eurasian Heart Journal. 2020;(2):6-29 (in Russian)]. DOI:10.38109/2225-1685-2020-2-6-29
29. Zehr KR, Walker MK. Omega-3 polyunsaturated fatty acids improve endothelial function in humans at risk for atherosclerosis: A review. Prostaglandins Other Lipid Mediat. 2018;134:131-40. DOI:10.1016/j.prostaglandins.2017.07.005
30. Wheeler E, Walsh-Wilcox M, Shah M, et al. Interactive Effects of Omega-3 Polyunsaturated Fatty Acids and Secondhand Smoke in Mice and Human Subjects. Cardiovasc Toxicol. 2021;21(2):115-26. DOI:10.1007/s12012-020-09601-6
31. Bhatt DL, Steg PG, Miller M, et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N Engl J Med. 2019;380:11-22. DOI:10.1056/nejmoa1812792
32. Shibabaw T. Omega-3 polyunsaturated fatty acids: anti-inflammatory and anti-hypertriglyceridemia mechanisms in cardiovascular disease. Mol Cell Biochem. 2021;476(2):993-1003. DOI:10.1007/s11010-020-03965-7
33. Zhang HJ, Gao X, Guo X-F, et al. Effects of dietary eicosapentaenoic acid and docosahexaenoic acid supplementation on metabolic syndrome: A systematic review and meta-analysis of data from 33 randomized controlled trials. Clin Nutr. 2021;40(7):4538‑50. DOI:10.1016/j.clnu.2021.05.025
34. Kollaretha DJM, Changa CL, Zirpolia H, Deckelbaum RJ. Molecular mechanisms underlying effects of n-3 and n-6 fatty acids in cardiovascular diseases. Lipid Signaling and Metabolism. Academic Press, 2020; p. 427-53. DOI:10.1016/B978-0-12-819404-1.00021-X
35. Эргашева З., Юлдашева Г., Абдурахимов А., и др. Омега-3 и биохимические процессы воспаления в организме. Re-health Journal. 2020;2.3(6):4-8 [Ergasheva Z, Yuldasheva G, Abdurakhimov A, et al. Omega-3 and biochemical processes of in flammation in the body. Re-health Journal. 2020;2.3(6):4-8 (in Russian)]. DOI:10.24411/2181-0443/2020-10075
36. Gao H, Geng T, Huang T, Zhao Q. Fish oil supplementation and insulin sensitivity: a systematic review and meta-analysis. Lipids Health Dis. 2017;16(1):1-9. DOI:10.1016/j.jcjd.2020.11.004
37. Qian F, Ardisson Korat AV, Imamura F, et al. n-3 fatty acid biomarkers and incident type 2 diabetes: an individual participant-level pooling project of 20 prospective cohort studies. Diabetes Care. 2021;44(5):1133-42. DOI:10.2337/dc20-2426
38. Monnard CR, Dulloo AG. Polyunsaturated fatty acids as modulators of fat mass and lean mass in human body composition regulation and cardiometabolic health. Obesity Rev. 2021;22:e13197. DOI:10.1111/obr.13197
39. Sepidarkish M, Rezamand G, Qorbani M, et al. Effect of omega-3 fatty acids supplementation on adipokines: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2021;1-15. DOI:10.1080/10408398.2021.1915743
40. Dionysopoulos G, Kalopitas G, Vadarlis A, et al. The effect of omega-3 fatty acids supplementation on pediatric patients with non-alcoholic fatty liver disease: a systematic review and metaanalysis. Clin Nutr ESPEN. 2021;46:S654-5. DOI:10.1016/j.clnesp.2021.09.319
41. Ni S, Zhong Z, Wei J, et al. Association between dietary intake of polyunsaturated fatty acid and prevalence of hypertension in US adults: A cross-sectional study using data from NHANES 2009-2016. Hypertens Res. 2022;45(3):516-26. DOI:10.1038/s41440-021-00849-1
42. Stanton AV, James K, Brennan MM, et al. Omega-3 index and blood pressure responses to eating foods naturally enriched with omega-3 polyunsaturated fatty acids: a randomized controlled trial. Sci Rep. 2020;10(1):1-10. DOI:10.1038/s41598-020-71801-5
43. Bruun S, van Rossem L, Lauritzen L, et al. Content of n-3 LC-PUFA in Breast Milk Four Months Postpartum is Associated with Infancy Blood Pressure in Boys and Infancy Blood Lipid Profile in Girls. Nutrients. 2019;11(2):235. DOI:10.3390/nu11020235
44. See VHL, Mori TA, Prescott SL, et al. Cardiometabolic risk factors at 5 years after omega-3 fatty acid supplementation in infancy. Pediatrics. 2018;142(1):e20162623.
DOI:10.1542/peds.2016-2623
45. Vuholm S, Rantanen JM, Teisen MN, et al. Effects of oily fish intake on cardiometabolic markers in healthy 8-to 9-y-old children: the FiSK Junior randomized trial. Am J Clin Nutr. 2019;110(6):1296-305. DOI:10.1093/ajcn/nqz233
46. Hou M, Zhou W, Sun L, et al. Effect of Fish Oil on Insulin Sensitivity in Children: A Systematic Review and Meta-Analysis of Randomized, Controlled Trials. Can J Diabetes. 2021;45(6):531‑8.e1. DOI:10.1016/j.jcjd.2020.11.004
47. Liu X, Liu X, Shi Q, et al. Association of telomere length and telomerase methylation with n-3 fatty acids in preschool children with obesity. BMC Pediatr. 2021;21(1):24.
DOI:10.1186/s12887-020-02487-x
48. Zhu H, van der Harst P. Telomere biology in senescence and aging: Focus on cardiovascular traits. Inflammation, Advancing Age and Nutrition. Academic Press, 2014; p. 71-84. DOI:10.1016/B978-0-12-397803-5.00007-1
49. García-Cervera E, Figueroa-Valverde L, Gomez EP, et al. Biological activity exerted by omega-3 fatty acids on body mass index, glucose, total cholesterol and blood pressure in obese children. Integr Obesity Diabetes. 2018;4. DOI:10.15761/IOD.1000199
50. Del-Río-Navarro BE, Miranda-Lora AL, Huang F, et al. Effect of supplementation with omega-3 fatty acids on hypertriglyceridemia in pediatric patients with obesity. J Pediatr Endocrinol Metab. 2019;32(8):811-9. DOI:10.1515/jpem-2018-0409
51. Wu S, Zhu C, Wang Z, et al. Effects of Fish Oil Supplementation on Cardiometabolic Risk Factors in Overweight or Obese Children and Adolescents: A Meta-Analysis of Randomized Controlled Trials. Front Pediatr. 2021;9:604469. DOI:10.3389/fped.2021.604469
52. Alberti G, Gana JC, Santos JL. Fructose, omega 3 fatty acids, and vitamin E: involvement in pediatric non-alcoholic fatty liver disease. Nutrients. 2020;12(11):3531. DOI:10.3390/nu12113531
53. Chen L, Wang Y-F, Xu Q-H, Chen S-S. Omega-3 fatty acids as a treatment for non-alcoholic fatty liver disease in children: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr. 2018;37(2):516-21. DOI:10.1016/j.clnu.2016.12.009
54. Roy G, Boucher A, Couture P, Drouin-Chartier J-P. Impact of Diet on Plasma Lipids in Individuals with Heterozygous Familial Hypercholesterolemia: A Systematic Review of Randomized Controlled Nutritional Studies. Nutrients. 2021;13(1):235. DOI:10.3390/nu13010235
55. Barkas F, Nomikos T, Liberopoulos E, Panagiotakos D. Diet and cardiovascular disease risk among individuals with familial hypercholesterolemia: systematic review and meta-analysis. Nutrients. 2020;12(8):2436. DOI:10.3390/nu12082436
________________________________________________
1. Ramaswami U, Humphries SE, Priestley-Barnham L, et al. Current management of children and young people with heterozygous familial hypercholesterolaemia-HEART UK statement of care. Atherosclerosis. 2019;290:1-8. DOI:10.1016/j.atherosclerosis.2019.09.005
2. Bubnova MG, Parnes LE. Modern principles of atherogenic dyslipidemia management in special groups of patients. CardioSomatics. 2020;11(1):6-15 (in Russian). DOI:10.26442/22217185.2020.1.200089
3. Wald DS, Bestwick JP, Morris JK, et al. Child–parent familial hypercholesterolemia screening in primary care. N Engl J Med. 2016;375:1628-37. DOI:10.1056/NEJMoa1602777
4. Metelskaya VA, Shalnova SA, Deev AD, et al. Analysis of atherogenic dyslipidemias prevalence among population of Russian Federation (results of the ESSE-RF Study). Profilakticheskaya meditsina. 2016;19(1):15-23 (in Russian). DOI:10.17116/profmed201619115-23
5. He H, Pan L, Du J, et al. Prevalence of, and biochemical and anthropometric risk factors for, dyslipidemia in children and adolescents aged 7 to 18 years in China: A cross‐sectional study. Am J Hum Biol. 2019;31(5):e23286. DOI:10.1002/ajhb.23286
6. Camargo JSAA, Zamarchia TBO, Balieiro AAS, et al. Prevalence of obesity, high blood pressure, dyslipidemia and their associated factors in children and adolescents in a municipality in the Brazilian Amazon region. JHGD. 2021;31(1):37-46. DOI:10.36311/jhgd.v31.11209
7. Dathan-Stumpf A, Vogel M, Hiemisch A, et al. Pediatric reference data of serum lipids and prevalence of dyslipidemia: results from a population-based cohort in Germany. Clin Biochem. 2016;49(10-11):740-9. DOI:10.1016/j.clinbiochem.2016.02.010
8. Meshkov AN, Ershova AI, Shalnova SA, et al. Cross-Sectional Study to Estimate the Prevalence of Familial Hypercholesterolemia in Selected Regions of the Russian Federation: Relevance, Design of the Study and Initial Characteristics of the Participants. Rational Pharmacotherapy in Cardiology. 2020;16(1):24-32 (in Russian).
DOI:10.20996/1819-6446-2020-02-17
9. Kastelein JJP, Reeskamp LF, Hovingh GK. Familial hypercholesterolemia: the most common monogenic disorder in humans. J Am Coll Cardiol. 2020;75(20):2567-9.
DOI:10.1016/j.jacc.2020.03.058
10. Leontyeva IV. Modern strategy of diagnosis and treatment of children with heterozygous familial hypercholesterolemia. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2020;65(4):27-40 (in Russian). DOI:10.21508/1027-4065-2020-65-4-27-40
11. Martynova IN, Vinyarskaya IV, Terletskaya RN, et al. Questions of true incidence and prevalence of obesity in children and adolescents. Rossiiskiy Pediatricheskiy Zhurnal. 2016;19(1):23-28 (in Russian). DOI:10.18821/1560-9561-2016-19-1-23-28
12. Dedov II, Shestakova MV, Peterkova VA, et al. Diabetes mellitus in children and adolescents according to the Federal diabetes registry in the Russian Federation: dynamics of major epidemiological characteristics for 2013-2016. Diabetes Mellitus. 2017;20(6):392-402 (in Russian). DOI:10.14341/DM9460
13. Masuda D, Yamashita S. Postprandial hyperlipidemia and remnant lipoproteins. J Atheroscler Thromb. 2017;24(2):95-109. DOI:10.5551/jat.RV16003
14. Protasov KV. Atherogenic dyslipidemia in diabetes mellitus. Part 1: Pathogenesis, clinical and prognostic significance, lipid level monitoring indices. Sibirskii meditsinskii zhurnal (Irkutsk). 2012;112(5):5-9 (in Russian).
15. Dyerberg J. Coronary heart disease in Greenland Inuit: a paradox. Implications for western diet patterns. Arctic Med Res. 1989;48(2):47-54.
16. Ascherio A, Rimm EB, Stampfer MJ, et al. Dietary intake of marine n-3 fatty acids, fish intake, and the risk of coronary disease among men. N Engl J Med. 1995;332(15):977-82. DOI:10.1056/NEJM199504133321501
17. Marckmann P, Gronbaek M. Fish consumption and coronary heart disease mortality. A systematic review of prospective cohort studies. Eur J Clin Nutr. 1999;53(8):585-90. DOI:10.1038/sj.ejcn.1600832
18. Hu FB, Bronner L, Willett WC, et al. Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. JAMA. 2002;287(14):1815-21. DOI:10.1001/jama.287.14.1815
19. Whelton SP, He J, Whelton PK, Muntner P. Meta-analysis of observational studies on fish intake and coronary heart disease. Am J Cardiol. 2004;93(9):1119-23.
DOI:10.1016/j.amjcard.2004.01.038
20. He K, Song Y, Daviglus ML, et al. Accumulated evidence on fish consumption and coronary heart disease mortality: a meta-analysis of cohort studies. Circulation. 2004;109(22):2705‑11. DOI:10.1161/01.CIR.0000132503.19410.6B
21. Iso H, Kobayashi M, Ishihara J, et al. Intake of fish and n3 fatty acids and risk of coronary heart disease among Japanese: the Japan Public Health Center-Based (JPHC) Study Cohort I. Circulation. 2006;113(2):195-202. DOI:10.1161/CIRCULATIONAHA.105.581355
22. de Goede J, Geleijnse JM, Boer JMA, et al. Marine (n-3) fatty acids, fish consumption, and the 10-year risk of fatal and nonfatal coronary heart disease in a large population of Dutch adults with low fish intake. J Nutr. 2010;140(5):1023-28. DOI:10.3945/jn.109.119271
23. Harris WS, Tintle NL, Etherton MR, Vasan RS. Erythrocyte long-chain omega-3 fatty acid levels are inversely associated with mortality and with incident cardiovascular disease: The Framingham Heart Study. J Clin Lipidol. 2018;12(3):718-27.e6. DOI:10.1016/j.jacl.2018.02.010
24. Diffenderfer MR, Rajapakse N, Pham E, et al. Plasma fatty acid profiles: Relationships with sex, age, and state-reported heart disease mortality rates in the United States. J Clin Lipidol. 2022; S1933-2874(21)00352-4. DOI:10.1016/j.jacl.2021.12.005
25. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;74(10):e177-e232. DOI:10.1016/j.jacc.2019.03.010
26. Jacobson TA, Ito MK, Maki KC, et al. National Lipid Association recommendations for patient-centered management of dyslipidemia: part 2. J Clin Lipidol. 2015;9(2):129-69. DOI:10.1016/j.jacl.2015.02.003
27. Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies With the special contribution of the European Association of Preventive Cardiology (EAPC). Eur Heart J. 2021;42(34):3227-337. DOI:10.1093/eurheartj/ehab484
28. Kukharchuk VV, Ezhov MV, Sergienko IV, et al. Eurasian association of cardiology (EAC)/Russian national atherosclerosis society (RNAS, RUSSIA) guidelines for the diagnosis and correction of dyslipidemia for the prevention and treatment of atherosclerosis (2020). Eurasian Heart Journal. 2020;(2):6-29 (in Russian). DOI:10.38109/2225-1685-2020-2-6-29
29. Zehr KR, Walker MK. Omega-3 polyunsaturated fatty acids improve endothelial function in humans at risk for atherosclerosis: A review. Prostaglandins Other Lipid Mediat. 2018;134:131-40. DOI:10.1016/j.prostaglandins.2017.07.005
30. Wheeler E, Walsh-Wilcox M, Shah M, et al. Interactive Effects of Omega-3 Polyunsaturated Fatty Acids and Secondhand Smoke in Mice and Human Subjects. Cardiovasc Toxicol. 2021;21(2):115-26. DOI:10.1007/s12012-020-09601-6
31. Bhatt DL, Steg PG, Miller M, et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N Engl J Med. 2019;380:11-22. DOI:10.1056/nejmoa1812792
32. Shibabaw T. Omega-3 polyunsaturated fatty acids: anti-inflammatory and anti-hypertriglyceridemia mechanisms in cardiovascular disease. Mol Cell Biochem. 2021;476(2):993-1003. DOI:10.1007/s11010-020-03965-7
33. Zhang HJ, Gao X, Guo X-F, et al. Effects of dietary eicosapentaenoic acid and docosahexaenoic acid supplementation on metabolic syndrome: A systematic review and meta-analysis of data from 33 randomized controlled trials. Clin Nutr. 2021;40(7):4538‑50. DOI:10.1016/j.clnu.2021.05.025
34. Kollaretha DJM, Changa CL, Zirpolia H, Deckelbaum RJ. Molecular mechanisms underlying effects of n-3 and n-6 fatty acids in cardiovascular diseases. Lipid Signaling and Metabolism. Academic Press, 2020; p. 427-53. DOI:10.1016/B978-0-12-819404-1.00021-X
35. Ergasheva Z, Yuldasheva G, Abdurakhimov A, et al. Omega-3 and biochemical processes of in flammation in the body. Re-health Journal. 2020;2.3(6):4-8 (in Russian). DOI:10.24411/2181-0443/2020-10075
36. Gao H, Geng T, Huang T, Zhao Q. Fish oil supplementation and insulin sensitivity: a systematic review and meta-analysis. Lipids Health Dis. 2017;16(1):1-9. DOI:10.1016/j.jcjd.2020.11.004
37. Qian F, Ardisson Korat AV, Imamura F, et al. n-3 fatty acid biomarkers and incident type 2 diabetes: an individual participant-level pooling project of 20 prospective cohort studies. Diabetes Care. 2021;44(5):1133-42. DOI:10.2337/dc20-2426
38. Monnard CR, Dulloo AG. Polyunsaturated fatty acids as modulators of fat mass and lean mass in human body composition regulation and cardiometabolic health. Obesity Rev. 2021;22:e13197. DOI:10.1111/obr.13197
39. Sepidarkish M, Rezamand G, Qorbani M, et al. Effect of omega-3 fatty acids supplementation on adipokines: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2021;1-15. DOI:10.1080/10408398.2021.1915743
40. Dionysopoulos G, Kalopitas G, Vadarlis A, et al. The effect of omega-3 fatty acids supplementation on pediatric patients with non-alcoholic fatty liver disease: a systematic review and metaanalysis. Clin Nutr ESPEN. 2021;46:S654-5. DOI:10.1016/j.clnesp.2021.09.319
41. Ni S, Zhong Z, Wei J, et al. Association between dietary intake of polyunsaturated fatty acid and prevalence of hypertension in US adults: A cross-sectional study using data from NHANES 2009-2016. Hypertens Res. 2022;45(3):516-26. DOI:10.1038/s41440-021-00849-1
42. Stanton AV, James K, Brennan MM, et al. Omega-3 index and blood pressure responses to eating foods naturally enriched with omega-3 polyunsaturated fatty acids: a randomized controlled trial. Sci Rep. 2020;10(1):1-10. DOI:10.1038/s41598-020-71801-5
43. Bruun S, van Rossem L, Lauritzen L, et al. Content of n-3 LC-PUFA in Breast Milk Four Months Postpartum is Associated with Infancy Blood Pressure in Boys and Infancy Blood Lipid Profile in Girls. Nutrients. 2019;11(2):235. DOI:10.3390/nu11020235
44. See VHL, Mori TA, Prescott SL, et al. Cardiometabolic risk factors at 5 years after omega-3 fatty acid supplementation in infancy. Pediatrics. 2018;142(1):e20162623.
DOI:10.1542/peds.2016-2623
45. Vuholm S, Rantanen JM, Teisen MN, et al. Effects of oily fish intake on cardiometabolic markers in healthy 8-to 9-y-old children: the FiSK Junior randomized trial. Am J Clin Nutr. 2019;110(6):1296-305. DOI:10.1093/ajcn/nqz233
46. Hou M, Zhou W, Sun L, et al. Effect of Fish Oil on Insulin Sensitivity in Children: A Systematic Review and Meta-Analysis of Randomized, Controlled Trials. Can J Diabetes. 2021;45(6):531‑8.e1. DOI:10.1016/j.jcjd.2020.11.004
47. Liu X, Liu X, Shi Q, et al. Association of telomere length and telomerase methylation with n-3 fatty acids in preschool children with obesity. BMC Pediatr. 2021;21(1):24.
DOI:10.1186/s12887-020-02487-x
48. Zhu H, van der Harst P. Telomere biology in senescence and aging: Focus on cardiovascular traits. Inflammation, Advancing Age and Nutrition. Academic Press, 2014; p. 71-84. DOI:10.1016/B978-0-12-397803-5.00007-1
49. García-Cervera E, Figueroa-Valverde L, Gomez EP, et al. Biological activity exerted by omega-3 fatty acids on body mass index, glucose, total cholesterol and blood pressure in obese children. Integr Obesity Diabetes. 2018;4. DOI:10.15761/IOD.1000199
50. Del-Río-Navarro BE, Miranda-Lora AL, Huang F, et al. Effect of supplementation with omega-3 fatty acids on hypertriglyceridemia in pediatric patients with obesity. J Pediatr Endocrinol Metab. 2019;32(8):811-9. DOI:10.1515/jpem-2018-0409
51. Wu S, Zhu C, Wang Z, et al. Effects of Fish Oil Supplementation on Cardiometabolic Risk Factors in Overweight or Obese Children and Adolescents: A Meta-Analysis of Randomized Controlled Trials. Front Pediatr. 2021;9:604469. DOI:10.3389/fped.2021.604469
52. Alberti G, Gana JC, Santos JL. Fructose, omega 3 fatty acids, and vitamin E: involvement in pediatric non-alcoholic fatty liver disease. Nutrients. 2020;12(11):3531. DOI:10.3390/nu12113531
53. Chen L, Wang Y-F, Xu Q-H, Chen S-S. Omega-3 fatty acids as a treatment for non-alcoholic fatty liver disease in children: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr. 2018;37(2):516-21. DOI:10.1016/j.clnu.2016.12.009
54. Roy G, Boucher A, Couture P, Drouin-Chartier J-P. Impact of Diet on Plasma Lipids in Individuals with Heterozygous Familial Hypercholesterolemia: A Systematic Review of Randomized Controlled Nutritional Studies. Nutrients. 2021;13(1):235. DOI:10.3390/nu13010235
55. Barkas F, Nomikos T, Liberopoulos E, Panagiotakos D. Diet and cardiovascular disease risk among individuals with familial hypercholesterolemia: systematic review and meta-analysis. Nutrients. 2020;12(8):2436. DOI:10.3390/nu12082436
1 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия;
2 ГБУЗ «Детская городская клиническая больница им. З.А. Башляевой» Департамента здравоохранения г. Москвы, Москва, Россия
*zakharova-rmapo@yandex.ru
________________________________________________
Irina N. Zakharova*1, Ismail M. Osmanov2, Irina I. Pshenichnikova1, Ekaterina V. Skorobogatova2, Yulia V. Koba1, Irina S. Kuznetsova1
1 Russian Medical Academy of Continuous Professional Education, Moscow, Russia;
2 Bashlyaeva Children's City Clinical Hospital, Moscow, Russia
*zakharova-rmapo@yandex.ru