Zakharova IN, Berezhnaya IV, Dubovets NF, Skorobogatova EV, Dubovets EA, Dubovets AA. Mysterious Akkermansia muciniphila. What do we know about it? A review. Pediatrics. Consilium Medicum. 2023;1:74–80.
DOI: 10.26442/26586630.2023.1.202190
Загадочная Akkermansia muciniphila. Что мы знаем о ней сегодня?
Захарова И.Н., Бережная И.В., Дубовец Н.Ф., Скоробогатова Е.В., Дубовец Е.А., Дубовец А.А. Загадочная Akkermansia muciniphila. Что мы знаем о ней сегодня? Педиатрия. Consilium Medicum. 2023;1:74–80.
DOI: 10.26442/26586630.2023.1.202190
Zakharova IN, Berezhnaya IV, Dubovets NF, Skorobogatova EV, Dubovets EA, Dubovets AA. Mysterious Akkermansia muciniphila. What do we know about it? A review. Pediatrics. Consilium Medicum. 2023;1:74–80.
DOI: 10.26442/26586630.2023.1.202190
«Микробы и человек» – тема, которая последнее десятилетие непрерывно изучается. Многочисленные современные работы показывают, что количественные и качественные изменения состава микробиоты желудочно-кишечного тракта оказывают как прямое, так и опосредованное воздействие на развитие метаболических изменений макроорганизма. Во многих странах запущены проекты по изучению микробиома и возможностей влияния на здоровье с помощью изменения среды, введения пробитика, метабиотика или синбиотика в организм. Значительное внимание уделяется метаболическим нарушениям и ожирению, поскольку это проблемы, которые приобретают масштабы глобальной прогрессирующей эпидемии. Более 2 млрд человек страдают избыточной массой тела и ожирением, в связи с чем многие специалисты продолжают искать перспективные методы борьбы с ним. Особую группу высокого риска развития ожирения составляют дети. Статистические данные показывают у детей неуклонный рост ожирения. За последние 10 лет этот рост демонстрировал стремительные темпы: с 6,7%, по данным 2010 г., до 9,1% к 2020 г. В этом контексте среди всех бактерий, населяющих желудочно-кишечный тракт, особое внимание привлекает Akkermansia muciniphila, у которой выявлен потенциал для лечения инсулинорезистентности, ожирения, сахарного диабета. В данной статье представлены обзор новых мировых исследований влияния А. muciniphila на макроорганизм и изучение способов коррекции метаболизма с помощью проботиков.
"Microbes and humans" is a topic that has been continuously studied over the past decade. Numerous recent studies show that quantitative and qualitative changes in the composition of the gastrointestinal tract microbiota have direct and indirect effects on metabolic changes in the host. Many countries are researching the microbiome and opportunities to influence health through environmental modification and introducing a probiotic, a metabiotic, or a synbiotic into the body. Considerable attention is paid to metabolic disorders and obesity, as these are issues that are becoming a progressive global epidemic. More than 2 billion people are overweight and obese, and many experts continue to look for promising methods to combat it. A special group of high risk for obesity is children. Statistics show a steady upward trend of obesity in children. Over the past 10 years, this trend has shown a rapid pace: from 6.7%, according to 2010, to 9.1% by 2020. In this context, Akkermansia muciniphila attracts special attention among all bacteria inhabiting the gastrointestinal tract due to its potential to treat insulin resistance, obesity, and diabetes mellitus. This article reviews new research on the A. muciniphila effects on the host and ways to correct metabolism using probiotics.
1. O'Neill S, O'Driscoll L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes Rev. 2015;16(1):1-12. DOI:10.1111/obr.12229
2. Malik VS, Willett WC, Hu FB. Global obesity: trends, risk factors and policy implications. Nat Rev Endocrinol. 2013;9(1):13-27. DOI:10.1038/nrendo.2012.199
3. Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;28;110(22):9066-71. DOI:10.1073/pnas.1219451110
4. Zhao L. The gut microbiota and obesity: fr om correlation to causality. Nat Rev Microbiol. 2013;11(9):639-47. DOI:10.1038/nrmicro3089
5. Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23(1):107-13. DOI:10.1038/nm.4236
6. Liang D, Leung RKK, Guan W, Au WW. Involvement of gut microbiome in human health and disease: Brief overview, knowledge gaps and research opportunities. Gut Pathog. 2018;10:3. DOI:10.1186/s13099-018-0230-4
7. Gao Z, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509-17. DOI:10.2337/db08-1637
8. Cani PD, Everard A, Duparc T. Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol. 2013;13(6):935-40. DOI:10.1016/j.coph.2013.09.008
9. Gnauck A, Lentle RG, Kruger MC. The Characteristics and Function of Bacterial Lipopolysaccharides and Their Endotoxic Potential in Humans. Int Rev Immunol. 2015;35(3):189-218. DOI:10.3109/08830185.2015.1087518
10. De Santis S, Ecavalcanti E, Emastronardi M, et al. Nutritional keys for intestinal barrier modulation. Front Immunol. 2015;6:612. DOI:10.3389/fimmu.2015.00612
11. Jumpertz R, Le DS, Turnbaugh PJ, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr. 2011;94(1):58-65. DOI:10.3945/ajcn.110.010132
12. Yoon HS, Cho CH, Yun MS, et al. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat Microbiol. 2021;6(5):563-73. DOI:10.1038/s41564-021-00880-5
13. Shin NR, Lee JC, Lee HY, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63(5):727-35. DOI:10.1136/gutjnl-2012-303839
14. Derrien M, Vaughan EE, Plugge CM, De Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-de- grading bacterium. Int J Syst Evol Microbiol. 2004;54(Pt. 5):1469-76. DOI:10.1099/ijs.0.02873-0
15. Collado MC, Derrien M, Isolauri E, et al. Intestinal integrity and Akkermansia muciniphila, a mucin-degrad- ing member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol. 2007;73(23):7767-70. DOI:10.1128/AEM.01477-07
16. Derrien M, Collado MC, Ben-Amor K, et al. The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol. 2008;74(5):1646-8. DOI:10.1128/AEM.01226-07
17. Ouwerkerk JP, Van der Ark KCH, Davids M, et al. Adaptation of Akkermansia muciniphila to the Oxic-Anoxic Interface of the Mucus Layer. Appl Environ Microbiol. 2016;82(23):6983-93. DOI:10.1128/AEM.01641-16
18. Zhang T, Li Q, Cheng L, et al. Akkermansia muciniphila is a promising probiotic. Microb Biotechnol. 2019;12(1):1-17. DOI:10.1111/1751-7915.13410
19. Ottman N, Geerlings SY, Aalvink S, et al. Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Pract Res Clin Gastroenterol. 2017;31(6):637-42. DOI:10.1016/j.bpg.2017.10.001
20. Geerlings SY, Kostopoulos I, de Vos WM, Belzer C. Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Wh ere, and How? Microorganisms. 2018;6(3):75. DOI:10.3390/ microorganisms6030075
21. Li J, Lin S, Vanhoutte PM, et al. Akkermansia Muciniphila Protects Against Atherosclerosis by Preventing Metabolic Endotoxemia-Induced Inflammation in Apoe−/− Mice. Circulation. 2016;133(24):2434-46. DOI:10.1161/CIRCULATIONAHA.115.019645
22. Cani PD, Knauf C. A newly identified protein from Akkermansia muciniphila stimulates GLP-1 secretion. Cell Metabolism. 2021;33(1):1073-75. DOI:10.1016/j.cmet.2021.05.004
23. Бабенко А.Ю., Красильникова Е.И., Лихоносов Н.П., и др. Влияние различных групп сахароснижающих препаратов на вариабельность гликемии у больных сахарным диабетом 2 типа. Сахарный диабет. 2014;17(4):72-80 [Babenko AIu, Krasilnikova EI, Likhonosov NP, et al. Different antihyperglycaemic drug effects on glycaemic variability in Type 2 diabetic patients. Diabetes mellitus. 2014;17(4):72-80 (in Russian)]. DOI:10.14341/DM2014472-80
24. Rodriquez de Fonseca F, Navarro M, Alvarez E, et al. Peripheral versus central effects of glucagon-like peptide-1 receptor agonists on satiety and body weight loss in Zucker obese rats. Metabolism. 2000;49(6):709-17. DOI:10.1053/мета.2000.6251
25. Depommier C, Everard A, Druart C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25(7):1096-103. DOI:10.1038/s41591-019-0495-2
26. Derrien M, van Passel MW, van de Bovenkamp JH, et al. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes. 2010;1(4):254-68. DOI:10.4161/gmic.1.4.12778
27. Jian H, Liu Y, Wang X, et al. Akkermansia muciniphila as a Next-Generation Probiotic in Modulating Human Metabolic Homeostasis and Disease Progression: A Role Mediated by Gut–Liver–Brain Axes? Int J Mol Sci. 2023;24(3900):1-32. DOI:10.3390/ijms24043900
28. Caruso R, Lo BC, Núñez G. Host–microbiota interactions in inflammatory bowel disease. Nat Rev Immunol. 2020;20(7):411-26. DOI:10.1038/s41577-019-0268-7
29. Kamitani Y, Kurumi H, Kanda T, et al. Comparative study between histochemical mucus volume, histopathological findings, and endocytoscopic scores in patients with ulcerative colitis. Medicine (Baltimore). 2023;102(9):e33033. DOI:10.1097/MD.0000000000033033
30. Harel J, Fairbrother J, Forget K, et al. Virulence factors associated with F165-positive strains of Escherichia coli isolated from piglets and calves. Vet Microbiol. 1993;38(1-2):139-55. DOI:10.1016/0378-1135(93)90081-h
31. Ouwerkerk JP, de Vos WM, Belzer K. Glycobiome: bacteria and mucus on the surface of the epithelium interface. Best Pract Res Clin Gastroenterol. 2013;27(1):25‑38. doi:10.1016/j.bpg.2013.03.001
32. Martens EK, Chang HK, Gordon JI. The search for mucosal glycans improves the fitness and transmission of the human gut saccharolytic bacterial symbiont. Cellular Host Microbe. 2008;4(5):447-57. DOI:10.1016/j.chom.2008.09.007
33. Jonker N, Skrypek N, Frenoy F, Van Seningen I. Membrane-associated modular mucin domains: from structure to function. Biochemistry. 2013;95(6):1077-86. DOI:10.1016/j.biochi.2012.11.005
34. Shreiner AB, Kao JY, Young V. The gut microbiome in health and in disease. Curr Opin Gastroenterol. 2015;31(1):69-75. DOI:10.1097/MOG.0000000000000139
35. Le Poul E, Loison C, Struyf S, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem. 2003;278(28):25481-9. DOI:10.1074/jbc.M301403200
36. Samuel BS, Shaito A, Motoike T, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A. 2008;105(43):16767-72. DOI:10.1073/pnas.0808567105
37. Dao MC, Everard A, Aron-Wisnewsky J, et al. Akkermansia Muciniphila and Improved Metabolic Health During a Dietary Intervention in Obesity: Relationship With Gut Microbiome Richness and Ecology. Gut. 2016;65(3):426‑36. DOI:10.1136/gutjnl-2014-308778
38. Everard A, Lazarevic V, Derrien M, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011;60(11):2775-86. DOI:10.2337/db11-0227
39. Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat med. 2012;18(3):363-74. DOI:10.1038/nm.2627
40. Depommier C, Van Hul M, Everarda A, et al. Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes. 2020;11(5):1231-45. DOI:10.1080/19490976.2020.1737307
41. Zhou Q, Zhang Y, Wang X, et al. Gut bacteria Akkermansia is associated with reduced risk of obesity: evidence from the American Gut Project. Nutr Metab (Lond). 2020;17:90. DOI:10.1186/s12986-020-00516-1
42. Boix-Amorósa A, Puente-Sánchezhttps F, Du Toitd E, et al. Mycobiome Profiles in Breast Milk from Healthy Women Depend on Mode of Delivery, Geographic Location, and Interaction with Bacteria. Microbial Ecology. 2019;85(9):e02994-18. DOI:10.1128/AEM.02994-18
43. Ma J, Li Z, Zhang W, et al. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants. Sci Rep. 2020;10(1):15792. DOI:10.1038/s41598-020-72635-x
44. Roger LS, Costabile A, Holland DT, et al. The study of fecal populations of bifidobacteria in children who are breastfed and artificially fed during the first 18 months of life. Microbiology (Reading). 2010;156(Pt. 11):3329-41. DOI:10.1099/mic.0.043224-0
45. Lewis ZT. Fecal microbial community of infants from Armenia and Georgia. Sci Rep. 2017;7:40932. DOI:10.1038/srep40932
46. Björksten B, Sepp E, Julge K, et al. Allergy development and gut microflora during the first year of life. J Allergy Clin Immunol. 2001;108(4):516-20. DOI:10.1067 /mai.2001.118130
47. Dogra S, Sakwinska O, Ngom-Bru C, et al. Infant gut microbiota dynamics are influenced by mode of delivery and duration of pregnancy, which is associated with subsequent obesity. mBio. 2015;6(1):e02419-2514. DOI:10.1128/mBio.02419-14
48. Huda MNM, Lewis Z, Kalanetra KM, et al. Stool microbiota and infant response to vaccine. Pediatrics. 2014;134(2):e362-72. DOI:10.1542/ peds.2013-3937
49. Kostopoulos I, Elzinga J, Ottman N, et al. Akkermansia muciniphila uses human milk oligosaccharides to thrive in the early life conditions in vitro. Sci Rep. 2020;10(1):14330. DOI:10.1038/s41598-020-71113-8
50. Van den Abbeele P, Gérard P, Rabot S, et al. Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats. Environ Microbiol. 2011;13(10):2667-80. DOI:10.1111/j.1462-2920.2011.02533.x
51. Anhe FF, Pilon G, Roy D, et al. Triggering Akkermansia with dietary polyphenols: a new weapon to combat the metabolic syndrome? Gut Microbes. 2016;7(2):146‑53. DOI:10.1080/19490976.2016.1142036
52. Zhao S, Liu W, Wang J, et al. Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice. J Mol Endocrinol. 2017;58(1):1-14. DOI:10.1530/jme-16-0054
53. Wang Y, Xu Y, Liu Q, et al. Myosin IIA-related actomyosin contractility mediates oxidative stress-induced neuronal apoptosis. Front Mol Neurosci. 2017;10:75. DOI:10.3389/fnmol.2017.00075
54. Hanninen A, Toivonen R, Poysti S, et al. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut. 2017;67(8):1445-53. DOI:10.1136/gutjnl-2017-314508
55. Etxeberria U, Arias N, Boque N, et al. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J Nutr Biochem. 2015;26(6):651-60. DOI:10.1016/j.jnutbio.2015.01.002
56. Shang Q, Wang Y, Pan L, et al. Dietary Polysaccharide from Enteromorpha Clathrata Modulates Gut Microbiota and Promotes the Growth of Akkermansia muciniphila, Bifidobacterium spp. and Lactobacillus spp. Mar Drugs. 2018;16(5):167. DOI:10.3390/md16050167
57. Fukizawa S, Yamashita M, Wakabayashi KI, et al. Anti-obesity effect of a hop-derived prenylflavonoid isoxanthohumol in a high-fat diet-induced obese mouse model. Biosci Microbiota Food Health. 2020;39(3):175-82. DOI:10.12938/bmfh.2019-040
58. Hamm AK, Manter DK, Kirkwood JS, et al. The effect of hops (Humulus lupulus L.) extract supplementation on weight gain, adiposity and intestinal function in ovariectomized mice. Nutrients. 2019;11(12):3004. DOI:10.3390/nu11123004
59. Masumoto S, Terao A, Yamamoto Y, et al. Non-absorbable apple procyanidins prevent obesity associated with gut microbial. Sci Rep. 2016;6:31208. DOI:10.1038/srep31208
60. De La Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, et al. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care. 2017;40(1):54-62. DOI:10.2337/dc16-1324
61. Xu Y, Wang N, Tan HY, et al. Function of Akkermansia muciniphila in Obesity: Interactions With Lipid Metabolism, Immune Response and Gut Systems. Front Microbiol. 2020;11:219. DOI:10.3389/fmicb.2020.00219
62. Schneeberger M, Everard A, Gómez-Valadés AG, et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep. 2015;13(5):16643. DOI:10.1038/srep16643
63. Han MS, White A, Perry RJ, et al. Regulation of adipose tissue inflammation by interleukin 6. Proc Natl Acad Sci U S A. 2020;117(6):2751-60. DOI:10.1073/pnas.1920004117
64. Lopez-Siles M, Enrich-Capó N, Aldeguer X, et al. Alterations in the Abundance and Co-occurrence of Akkermansia muciniphila and Faecalibacterium prausnitzii in the Colonic Mucosa of Inflammatory Bowel Disease Subjects. Front Cell Infect Microbiol. 2018;7(8):281. DOI:10.3389/fcimb.2018.00281
65. Llevenes P, Rodriguez-Dies R, Kros-Bruns L, et al. Beneficial effect of the multi-layered synbiotic Prodefen® Plus on systemic and vascular changes associated with metabolic syndrome in rats: the role of neuronal nitric oxide synthase and protein kinase A. Nutrients. 2020;1;12(1):117. DOI:10.3390/nu12010117
66. Blanco-Rivero J. Beneficial effects of Prodefen® Plus multilayer synbiotic on systemic and vascular changes associated with metabolic syndrome in rats: the role of neuronal nitric oxide synthase and protein kinase A. Nutrients. 2020;12(1):117. DOI:10.3390/nu12010117
________________________________________________
1. O'Neill S, O'Driscoll L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes Rev. 2015;16(1):1-12. DOI:10.1111/obr.12229
2. Malik VS, Willett WC, Hu FB. Global obesity: trends, risk factors and policy implications. Nat Rev Endocrinol. 2013;9(1):13-27. DOI:10.1038/nrendo.2012.199
3. Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;28;110(22):9066-71. DOI:10.1073/pnas.1219451110
4. Zhao L. The gut microbiota and obesity: fr om correlation to causality. Nat Rev Microbiol. 2013;11(9):639-47. DOI:10.1038/nrmicro3089.
5. Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23(1):107-13. DOI:10.1038/nm.4236
6. Liang D, Leung RKK, Guan W, Au WW. Involvement of gut microbiome in human health and disease: Brief overview, knowledge gaps and research opportunities. Gut Pathog. 2018;10:3. DOI:10.1186/s13099-018-0230-4
7. Gao Z, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509-17. DOI:10.2337/db08-1637
8. Cani PD, Everard A, Duparc T. Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol. 2013;13(6):935-40. DOI:10.1016/j.coph.2013.09.008
9. Gnauck A, Lentle RG, Kruger MC. The Characteristics and Function of Bacterial Lipopolysaccharides and Their Endotoxic Potential in Humans. Int Rev Immunol. 2015;35:189-218. DOI:10.3109/08830185.2015.1087518
10. De Santis S, Ecavalcanti E, Emastronardi M, et al. Nutritional keys for intestinal barrier modulation. Front Immunol. 2015;6:612. DOI:10.3389/fimmu.2015.00612
11. Jumpertz R, Le DS, Turnbaugh PJ, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr. 2011;94:58-65. DOI:10.3945/ajcn.110.010132
12. Yoon HS, Cho CH, Yun MS, et al. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat Microbiol. 2021;6(5):563-73. DOI:10.1038/s41564-021-00880-5
13. Shin NR, Lee JC, Lee HY, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63(5):727-35. DOI:10.1136/gutjnl-2012-303839
14. Derrien M, Vaughan EE, Plugge CM, De Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-de- grading bacterium. Int J Syst Evol Microbiol. 2004;54:1469-76. DOI:10.1099/ijs.0.02873-0
15. Collado MC, Derrien M, Isolauri E, et al. Intestinal integrity and Akkermansia muciniphila, a mucin-degrad- ing member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol. 2007;73:7767-70. DOI:10.1128/AEM.01477-07
16. Derrien M, Collado MC, Ben-Amor K, et al. The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol. 2008;74(5):1646-8. DOI:10.1128/AEM.01226-07
17. Ouwerkerk JP, Van der Ark KCH, Davids M, et al. Adaptation of Akkermansia muciniphila to the Oxic-Anoxic Interface of the Mucus Layer. Appl Environ Microbiol. 2016;82(23):6983-93. DOI:10.1128/AEM.01641-16
18. Zhang T, Li Q, Cheng L, et al. Akkermansia muciniphila is a promising probiotic. Microb Biotechnol. 2019;12(1):1-17. DOI:10.1111/1751-7915.13410
19. Ottman N, Geerlings SY, Aalvink S, et al. Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Pract Res Clin Gastroenterol. 2017;31(6):637-42. DOI:10.1016/j.bpg.2017.10.001
20. Geerlings SY, Kostopoulos I, de Vos WM, Belzer C. Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Wh ere, and How? Microorganisms. 2018;6(3):75. DOI:10.3390/ microorganisms6030075
21. Li J, Lin S, Vanhoutte P.M, et al. Akkermansia Muciniphila Protects Against Atherosclerosis by Preventing Metabolic Endotoxemia-Induced Inflammation in Apoe−/− Mice. Circulation. 2016;133(24):2434-46. DOI:10.1161/CIRCULATIONAHA.115.019645
22. Cani PD, Knauf C. A newly identified protein from Akkermansia muciniphila stimulates GLP-1 secretion. Cell Metabolism. 2021;33(1):1073-75. DOI:10.1016/j.cmet.2021.05.004
23. Babenko AIu, Krasilnikova EI, Likhonosov NP, et al. Different antihyperglycaemic drug effects on glycaemic variability in Type 2 diabetic patients. Diabetes mellitus. 2014;17(4):72-80 (in Russian). DOI:10.14341/DM2014472-80
24. Rodriquez de Fonseca F, Navarro M, Alvarez E, et al. Peripheral versus central effects of glucagon-like peptide-1 receptor agonists on satiety and body weight loss in Zucker obese rats. Metabolism. 2000;49(6):709-17. DOI:10.1053/мета.2000.6251
25. Depommier C, Everard A, Druart C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25(7):1096-103. DOI:10.1038/s41591-019-0495-2
26. Derrien M, van Passel MW, van de Bovenkamp JH, et al. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes. 2010;1(4):254-68. DOI:10.4161/gmic.1.4.12778
27. Jian H, Liu Y, Wang X, et al. Akkermansia muciniphila as a Next-Generation Probiotic in Modulating Human Metabolic Homeostasis and Disease Progression: A Role Mediated by Gut–Liver–Brain Axes? Int J Mol Sci. 2023;24(3900):1-32. DOI:10.3390/ijms24043900
28. Caruso R, Lo BC, Núñez G. Host–microbiota interactions in inflammatory bowel disease. Nat Rev Immunol. 2020;20:411-26. DOI:10.1038/s41577-019-0268-7.
29. Kamitani Y, Kurumi H, Kanda T, et al. Comparative study between histochemical mucus volume, histopathological findings, and endocytoscopic scores in patients with ulcerative colitis. Medicine (Baltimore). 2023;102(9):e33033. DOI:10.1097/MD.0000000000033033
30. Harel J, Fairbrother J, Forget K, et al. Virulence factors associated with F165-positive strains of Escherichia coli isolated from piglets and calves. Vet Microbiol. 1993;38:139-55. DOI:10.1016/0378-1135(93)90081-h.
31. Overkerk JP, de Vos WM, Belzer K. Glycobiome: bacteria and mucus on the surface of the epithelium. Best practice. Res. wedge. Gastroenterol. 2013;27:25‑38. doi:10.1016/j.bpg.2013.03.001.
32. Martens EK, Chang HK, Gordon JI. The search for mucosal glycans improves the fitness and transmission of the human gut saccharolytic bacterial symbiont. Cellular Host Microbe. 2008;4:447-57. DOI:10.1016/j.chom.2008.09.007
33. Jonker N, Skrypek N, Frenoy F, Van Seningen I. Membrane-associated modular mucin domains: from structure to function. Biochemistry. 2013;95:1077-86. DOI:10.1016/j.biochi.2012.11.005
34. Shreiner AB, Kao JY, Young V. The gut microbiome in health and in disease. Curr Opin Gastroenterol. 2015;31(1):69-75. DOI:10.1097/MOG.0000000000000139
35. Le Poul E, Loison C, Struyf S, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem. 2003;278(28):25481-9. DOI:10.1074/jbc.M301403200
36. Samuel BS, Shaito A, Motoike T, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A. 2008;105(43):16767-72. DOI:10.1073/pnas.0808567105
37. Dao MC, Everard A, Aron-Wisnewsky J, et al. Akkermansia Muciniphila and Improved Metabolic Health During a Dietary Intervention in Obesity: Relationship With Gut Microbiome Richness and Ecology. Gut. 2016;65:426-36. DOI:10.1136/gutjnl-2014-308778
38. Everard A, Lazarevic V, Derrien M, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011;60(11):2775–2786. DOI:10.2337/db11-0227
39. Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat med. 2012 6;18(3):363-74. DOI:10.1038/nm.2627
40. Depommier C, Van Hul M, Everarda A, et al. Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes. 2020;11(5):1231-45. DOI:10.1080/19490976.2020.1737307
41. Zhou Q, Zhang Y, Wang X, et al. Gut bacteria Akkermansia is associated with reduced risk of obesity: evidence from the American Gut Project. Nutr Metab (Lond). 2020;17:90. DOI:10.1186/s12986-020-00516-1
42. Boix-Amorósa A, Puente-Sánchezhttps F, Du Toitd E, et al. Mycobiome Profiles in Breast Milk from Healthy Women Depend on Mode of Delivery, Geographic Location, and Interaction with Bacteria. Microbial Ecology. 2019;85(9):e02994-18. DOI:10.1128/AEM.02994-18
43. Ma J, Li Z, Zhang W, et al. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants. Sci Rep. 2020;10:15792.
DOI:10.1038/s41598-020-72635-x
44. Roger LS, Costabile A, Holland DT, et al. The study of fecal populations of bifidobacteria in children who are breastfed and artificially fed during the first 18 months of life. Microbiology. 2010;156:3329-41. DOI:10.1099/mic.0.043224-0
45. Lewis ZT. Fecal microbial community of infants from Armenia and Georgia. Sci Rep. 2017;7:40932. DOI:10.1038/srep40932
46. Björksten B, Sepp E, Julge K, et al. Allergy development and gut microflora during the first year of life. J Allergy Clean. Immunol. 2001;108:516-20. DOI:10.1067 /mai.2001.118130
47. Dogra S, Sakwinska O, Ngom-Bru C, et al. Infant gut microbiota dynamics are influenced by mode of delivery and duration of pregnancy, which is associated with subsequent obesity. MBio. 2015;6:e02419-2514. DOI:10.1128/mBio.02419-14
48. Huda MNM, Lewis Z, Kalanetra KM, et al. Stool microbiota and infant response to vaccine. Pediatrics. 2014;134:e362-72. DOI:10.1542/ peds.2013-3937
49. Kostopoulos I, Elzinga J, Ottman N, et al. Akkermansia muciniphila uses human milk oligosaccharides to thrive in the early life conditions in vitro. Sci Rep. 2020;10:14330. DOI:10.1038/s41598-020-71113-8
50. Van den Abbeele P, Gérard P, Rabot S, et al. Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats. Environ Microbiol. 2011;13:2667-80. DOI:10.1111/j.1462-2920.2011.02533.x
51. Anhe FF, Pilon G, Roy D, et al. Triggering Akkermansia with dietary polyphenols: a new weapon to combat the metabolic syndrome? Gut Microbes. 2016;7:146-53. DOI:10.1080/19490976.2016.1142036
52. Zhao S, Liu W, Wang J, et al. Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice. J Mol Endocrinol. 2017;58:1-14.
DOI:10.1530/jme-16-0054
53. Wang Y, Xu Y, Liu Q, et al. Myosin IIA-related actomyosin contractility mediates oxidative stress-induced neuronal apoptosis. Front Mol Neurosci. 2017;10:75. DOI:10.3389/fnmol.2017.00075
54. Hanninen A, Toivonen R, Poysti S, et al. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut. 2017;67:1445-53. DOI:10.1136/gutjnl-2017-314508
55. Etxeberria U, Arias N, Boque N, et al. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J Nutr Biochem. 2015;26:651-60. DOI:10.1016/j.jnutbio.2015.01.002
56. Shang Q, Wang Y, Pan L, et al. Dietary Polysaccharide from Enteromorpha Clathrata Modulates Gut Microbiota and Promotes the Growth of Akkermansia muciniphila, Bifidobacterium spp. and Lactobacillus spp. Mar Drugs. 2018;16(5):167. DOI:10.3390/md16050167
57. Fukizawa S, Yamashita M, Wakabayashi KI, et al.. Anti-obesity effect of a hop-derived prenylflavonoid isoxanthohumol in a high-fat diet-induced obese mouse model. Biosci Microbiota Food Health. 2020;39:175-82. DOI:10.12938/bmfh.2019-040
58. Hamm AK, Manter DK, Kirkwood JS, et al. The effect of hops (Humulus lupulus L.) extract supplementation on weight gain, adiposity and intestinal function in ovariectomized mice. Nutrients. 2019;11(12):3004. DOI:10.3390/nu11123004
59. Masumoto S, Terao A, Yamamoto Y, et al. Non-absorbable apple procyanidins prevent obesity associated with gut microbial. Sci Rep. 2016;6:31208. DOI:10.1038/srep31208
60. De La Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, et al. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care. 2017;40:54-62. DOI:10.2337/dc16-1324
61. Xu Y, Wang N, Tan HY, et al. Function of Akkermansia muciniphila in Obesity: Interactions With Lipid Metabolism, Immune Response and Gut Systems. Front Microbiol. 2020;11:219. DOI:10.3389/fmicb.2020.00219
62. Schneeberger M, Everard A, Gómez-Valadés AG, et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep. 2015;13(5):16643. DOI:10.1038/srep16643
63. Han MS, White A, Perry RJ, et al. Regulation of adipose tissue inflammation by interleukin 6. Proc Natl Acad Sci U S A. 2020;117(6):2751-60. DOI:10.1073/pnas.1920004117
64. Lopez-Siles M, Enrich-Capó N, Aldeguer X, et al. Alterations in the Abundance and Co-occurrence of Akkermansia muciniphila and Faecalibacterium prausnitzii in the Colonic Mucosa of Inflammatory Bowel Disease Subjects. Front Cell Infect Microbiol. 2018;7(8):281. DOI:10.3389/fcimb.2018.00281
65. Llevenes P, Rodriguez-Dies R, Kros-Bruns L, et al. Beneficial effect of the multi-layered synbiotic Prodefen® Plus on systemic and vascular changes associated with metabolic syndrome in rats: the role of neuronal nitric oxide synthase and protein kinase A. Nutrients. 2020;1;12(1):117. DOI:10.3390/nu12010117
66. Blanco-Rivero J. Beneficial effects of Prodefen® Plus multilayer synbiotic on systemic and vascular changes associated with metabolic syndrome in rats: the role of neuronal nitric oxide synthase and protein kinase A. Nutrients. 2020;1,12(1):117. DOI:10.3390/nu12010117
1 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия;
2 ГБУЗ «Детская городская клиническая больница им. З.А. Башляевой» Департамента здравоохранения г. Москвы, Москва, Россия;
3 ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия;
4 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
*zakharova-rmapo@yandex.ru
________________________________________________
Irina N. Zakharova*1, Irina V. Berezhnaya1,2, Natalia F. Dubovets2, Ekaterina V. Skorobogatova2, Ekaterina A. Dubovets3, Alexandra A. Dubovets4
1 Russian Medical Academy of Continuous Professional Education, Moscow, Russia;
2 Bashlyaeva Children`s City Clinical Hospital, Moscow, Russia;
3 Pirogov Russian National Research Medical University, Moscow, Russia;
4 Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
*zakharova-rmapo@yandex.ru