Дисанапсис и его роль в развитии хронических обструктивных заболеваний дыхательных путей у детей и взрослых
Дисанапсис и его роль в развитии хронических обструктивных заболеваний дыхательных путей у детей и взрослых
Храмова Р.Н., Елисеева Т.И., Туш Е.В., Карпенко М.А., Овсянников Д.Ю. Дисанапсис и его роль в развитии хронических обструктивных заболеваний дыхательных путей у детей и взрослых. Педиатрия. Consilium Medicum. 2023;3:153–158. DOI: 10.26442/26586630.2023.3.202313
Khramova RN, Eliseeva TI, Tush EV, Karpenko MA, Ovsyannikov DYu. Dysanapsis and its role in the occurrence of chronic obstructive respiratory diseases in children and adults: A review. Pediatrics. Consilium Medicum. 2023;3:153–158. DOI: 10.26442/26586630.2023.3.202313
Дисанапсис и его роль в развитии хронических обструктивных заболеваний дыхательных путей у детей и взрослых
Храмова Р.Н., Елисеева Т.И., Туш Е.В., Карпенко М.А., Овсянников Д.Ю. Дисанапсис и его роль в развитии хронических обструктивных заболеваний дыхательных путей у детей и взрослых. Педиатрия. Consilium Medicum. 2023;3:153–158. DOI: 10.26442/26586630.2023.3.202313
Khramova RN, Eliseeva TI, Tush EV, Karpenko MA, Ovsyannikov DYu. Dysanapsis and its role in the occurrence of chronic obstructive respiratory diseases in children and adults: A review. Pediatrics. Consilium Medicum. 2023;3:153–158. DOI: 10.26442/26586630.2023.3.202313
Обзор литературы, написанный на основании мировых литературных данных и результатов собственных исследований авторов, посвящен важному патогенетическому механизму развития и прогрессирования хронических обструктивных заболеваний легких у детей и взрослых – дисанапсису, под которым понимают несоответствие размера или роста дыхательных путей объему или росту паренхимы легких, при этом диаметр дыхательных путей диспропорционально меньше объема паренхимы легких. Современные методы диагностики дисанапсиса основаны на использовании компьютерной томографии органов грудной клетки, спирометрии (учет показателей объема форсированного выдоха за 1-ю секунду, форсированной жизненной емкости легких, расчет коэффициента дисанапсиса). Дисанапсис, имеющий генетические и возраст-зависимые механизмы формирования, вносит серьезный вклад в развитие бронхиальной гиперреактивности и бронхиальной астмы, в особенности в сочетании с избыточной массой тела и ожирением, определяя неконтролируемое течение астмы. Явлением дисанапсиса можно объяснить клинико-функциональные показатели респираторной системы (гипоксемию, бронхиальную обструкцию) у недоношенных детей, включая пациентов с бронхолегочной дисплазией, больных с постинфекционным облитерирующим бронхиолитом. Кроме того, дисанапсис – серьезный патогенетический компонент хронической обструктивной болезни легких, обусловливающий поражение данным заболеванием независимо от наличия и стажа курения.
The literature review, written on the basis of world literature data and the results of the authors' own research, is devoted to an important pathogenetic mechanism of development and progression of chronic obstructive pulmonary diseases in children and adults – dysanapsis, which is understood as a mismatch in the size or growth of the airways to the volume or growth of the lung parenchyma, while the diameter of the airways is disproportionately smaller than the volume of the lung parenchyma. Modern methods of diagnosis of dysanapsis are based on the use of computed tomography of the chest organs, spirometry (accounting for the volume of forced exhalation in 1 second, forced vital capacity of the lungs, calculation of the coefficient of dysanapsis). Dysanapsis, which has genetic and age-dependent mechanisms of formation, makes an important contribution to the development of bronchial hyperreactivity and bronchial asthma, especially in combination with overweight and obesity, determining the uncontrolled course of asthma. The phenomenon of dysanapsis can be explained by the clinical and functional indicators of the respiratory system (hypoxemia, bronchial obstruction) in premature infants, including patients with bronchopulmonary dysplasia, patients with postinfectious obliterating bronchiolitis. In addition, imbalance is an important pathogenetic component of chronic obstructive pulmonary disease, causing the defeat of patients with this disease, regardless of the presence and length of smoking.
1. GBD 2017: a fragile world. Lancet. 2018;392(10159):1683. DOI:10.1016/S0140-6736(18)32858-7
2. Овсянников Д.Ю., Фурман Е.Г., Елисеева Т.И. Бронхиальная астма у детей: монография. Под ред. Д.Ю. Овсянникова. М.: РУДН, 2019 [Ovsiannikov DIu, Furman EG, Eliseeva TI. Bronkhial'naia astma u detei: monografiia. Pod red. DIu Ovsiannikova. Moscow: RUDN, 2019 (in Russian)].
3. Boonpiyathad T, Sözener ZC, Satitsuksanoa P, Akdis CA. Immunologic mechanisms in asthma. Semin Immunol. 2019;46:101333. DOI:10.1016/j.smim.2019.101333
4. Alobaidi AH, Alsamarai AM, Alsamarai MA. Inflammation in Asthma Pathogenesis: Role of T Cells, Macrophages, Epithelial Cells and Type 2 Inflammation. Antiinflamm Antiallergy Agents Med Chem. 2021;20(4):317-32. DOI:10.2174/1871523020666210920100707
5. Barnes PJ. Cellular and molecular mechanisms of asthma and COPD. Clin Sci (Lond). 2017;131(13):1541-58. DOI:10.1042/CS20160487
6. Givi ME, Redegeld FA, Folkerts G, Mortaz E. Dendritic cells in pathogenesis of COPD. Curr Pharm Des. 2012;18(16):2329-35. DOI:10.2174/138161212800166068
7. Brightling C, Greening N. Airway inflammation in COPD: progress to precision medicine. Eur Respir J. 2019;54(2):1900651. DOI:10.1183/13993003.00651-2019
8. Habib N, Pasha MA, Tang DD. Current Understanding of Asthma Pathogenesis and Biomarkers. Cells. 2022;11(17):2764. DOI:10.3390/cells11172764
9. Green M, Mead J, Turner JM. Variability of maximum expiratory flow-volume curves. J Appl Physiol. 1974;37(1):67-74. DOI:10.1152/jappl.1974.37.1.67
10. Mead J. Dysanapsis in normal lungs assessed by the relationship between maximal flow, static recoil, and vital capacity. Am Rev Respir Dis. 1980;121(2):339‑42. DOI:10.1164/arrd.1980.121.2.339
11. Forno E, Celedón JC. The effect of obesity, weight gain, and weight loss on asthma inception and control. Curr Opin Allergy Clin Immunol. 2017;17(2):123-30. DOI:10.1097/ACI.0000000000000339
12. Deolmi M, Decarolis NM, Motta M, et al. Early Origins of Chronic Obstructive Pulmonary Disease: Prenatal and Early Life Risk Factors. Int J Environ Res Public Health. 2023;20(3):2294. DOI:10.3390/ijerph20032294
13. Vameghestahbanati M, Hiura GT, Barr RG, et al. CT-Assessed Dysanapsis and Airflow Obstruction in Early and Mid Adulthood. Chest. 2022;161(2):389-91. DOI:10.1016/j.chest.2021.08.038
14. Bourbeau J, Doiron D, Biswas S, et al; CanCOLD Collaborative Research Group and the Canadian Respiratory Research Network. Ambient Air Pollution and Dysanapsis: Associations with Lung Function and Chronic Obstructive Pulmonary Disease in the Canadian Cohort Obstructive Lung Disease Study. Am J Respir Crit Care Med. 2022;206(1):44-55. DOI:10.1164/rccm.202106-1439OC
15. Maetani T, Tanabe N, Terada S, et al. Physiological impacts of computed tomography airway dysanapsis, fractal dimension, and branch count in asymptomatic never smokers. J Appl Physiol (1985). 2023;134(1):20-7. DOI:10.1152/japplphysiol.00385.2022
16. Forno E, Weiner DJ, Mullen J, et al. Obesity and Airway Dysanapsis in Children with and without Asthma. Am J Respir Crit Care Med. 2017;195(3):314-23.
DOI:10.1164/rccm.201605-1039OC
17. Strunk RC, Weiss ST, Yates KP, et al; CAMP Research Group. Mild to moderate asthma affects lung growth in children and adolescents. J Allergy Clin Immunol. 2006;118(5):1040-7. DOI:10.1016/j.jaci.2006.07.053
18. Weiss ST, Tosteson TD, Segal MR, et al. Effects of asthma on pulmonary function in children. A longitudinal population-based study. Am Rev Respir Dis. 1992;145(1):58-64. DOI:10.1164/ajrccm/145.1.58
19. Jones MH, Roncada C, Fernandes MTC, et al. Asthma and Obesity in Children Are Independently Associated with Airway Dysanapsis. Front Pediatr. 2017;5:270. DOI:10.3389/fped.2017.00270
20. Храмова Р.Н., Елисеева Т.И., Овсянников Д.Ю., и др. Влияние возраста и антропометрических характеристик на встречаемость дисанапсиса у детей и подростков с бронхиальной астмой. Педиатрия им. Г.Н. Сперанского. 2023;102(2):52-6 [Khramova RN, Eliseeva TI, Ovsyannikov DYu, et al. Impact of age and anthropometric features on the prevalence of disanapsis in children and adolescents with bronchial asthma. Pediatria n.a. G.N. Speransky. 2023;102(2):52-6 (in Russian)]. DOI:10.24110/0031-403X-2023-102-2-52-56
21. Marillier M, Bernard AC, Reimao G, et al. Breathing at Extremes: The Restrictive Consequences of Super- and Super-Super Obesity in Men and Women. Chest. 2020;158(4):1576-85. DOI:10.1016/j.chest.2020.04.006
22. Jung Y, Jean T, Morphew T, Galant SP. Peripheral Airway Impairment and Dysanapsis Define Risk of Uncontrolled Asthma in Obese Asthmatic Children. J Allergy Clin Immunol Pract. 2022;10(3):759-67.e1. DOI:10.1016/j.jaip.2021.09.029
23. Arismendi E, Bantulà M, Perpiñá M, Picado C. Effects of Obesity and Asthma on Lung Function and Airway Dysanapsis in Adults and Children. J Clin Med. 2020;9(11):3762. DOI:10.3390/jcm9113762
24. Forno E, Han YY, Mullen J, Celedón JC. Overweight, Obesity, and Lung Function in Children and Adults-A Meta-analysis. J Allergy Clin Immunol Pract. 2018;6(2):570-81.e10. DOI:10.1016/j.jaip.2017.07.010
25. Khramova RN, Tush EV, Khramov AA, et al. Relationship of Nutritional Status and Spirometric Parameters in Children with Bronchial Asthma. Sovrem Tekhnologii Med.
2021;12(3):12-23. DOI:10.17691/stm2020.12.3.02
26. Храмова Р.Н., Туш Е.В., Овсянников Д.Ю., и др. Взаимосвязь индекса массы тела, относительного индекса массы тела и показателей бронхиальной проходимости у детей с бронхиальной астмой. Педиатрия им. Г.Н. Сперанского. 2021;100(5):21-7 [Khramova RN, Tush EV, Ovsyannikov DYu, et al. Connection between body mass index, relative body mass index and bronchial patency indicators in children with bronchial asthma. Pediatria n.a. G.N. Speransky. 2021;100(5):21-7 (in Russian)].
DOI:10.24110/0031-403X-2021-100-5-21-27
27. Храмова Р.Н., Елисеева Т.И., Туш Е.В., и др. Влияние абдоминального типа ожирения на параметры внешнего дыхания у детей и подростков с бронхиальной астмой. Педиатрия им. Г.Н. Сперанского. 2022;101(2):12‑8 [Khramova RN, Eliseeva TI, Tush EV, et al. The effect of abdominal obesity and external respiration function in children and adolescents with bronchial asthma. Pediatria n.a. G.N. Speransky. 2022;101(2):12-8 (in Russian)]. DOI:10.24110/0031-403X-2022-101-2-12-18
28. Bekkers MB, Wijga AH, Gehring U, et al. BMI, waist circumference at 8 and 12 years of age and FVC and FEV1 at 12 years of age; the PIAMA birth cohort study. BMC Pulm Med. 2015;15:39. DOI:10.1186/s12890-015-0032-0
29. Ekström S, Hallberg J, Kull I, et al. Body mass index status and peripheral airway obstruction in school-age children: a population-based cohort study. Thorax. 2018;73(6):538-45. DOI:10.1136/thoraxjnl-2017-210716
30. Strunk RC, Colvin R, Bacharier LB, et al; Childhood Asthma Management Program Research Group. Airway Obstruction Worsens in Young Adults with Asthma Who Become Obese. J Allergy Clin Immunol Pract. 2015;3(5):765-71.e2. DOI:10.1016/j.jaip.2015.05.009
31. Forno E, Young OM, Kumar R, et al. Maternal obesity in pregnancy, gestational weight gain, and risk of childhood asthma. Pediatrics. 2014;134(2):e535-46.
DOI:10.1542/peds.2014-0439
32. Dumas O, Varraso R, Gillman MW, et al. Longitudinal study of maternal body mass index, gestational weight gain, and offspring asthma. Allergy. 2016;71(9):1295-304. DOI:10.1111/all.12876
33. Huang K, Rabold R, Abston E, et al. Effects of leptin deficiency on postnatal lung development in mice. J Appl Physiol (1985).
2008;105(1):249-59. DOI:10.1152/japplphysiol.00052.2007
34. Kirwin SM, Bhandari V, Dimatteo D, et al. Leptin enhances lung maturity in the fetal rat. Pediatr Res. 2006;60(2):200-4. DOI:10.1203/01.pdr.0000227478.29271.52
35. Hansel NN, Gao L, Rafaels NM, et al. Leptin receptor polymorphisms and lung function decline in COPD. Eur Respir J. 2009;34(1):103-10. DOI:10.1183/09031936.00120408
36. van den Borst B, Souren NY, Loos RJ, et al. Genetics of maximally attained lung function: a role for leptin? Respir Med. 2012;106(2):235-42. DOI:10.1016/j.rmed.2011.08.001
37. Torday JS, Sun H, Wang L, et al. Leptin mediates the parathyroid hormone-related protein paracrine stimulation of fetal lung maturation. Am J Physiol Lung Cell Mol Physiol. 2002;282(3):L405-10. DOI:10.1152/ajplung.2002.282.3.L405
38. Parker AL, Abu-Hijleh M, McCool FD. Ratio between forced expiratory flow between 25% and 75% of vital capacity and FVC is a determinant of airway reactivity and sensitivity to methacholine. Chest. 2003;124(1):63-9. DOI:10.1378/chest.124.1.63
39. Kraemer R, Smith HJ, Sigrist T, et al. Diagnostic accuracy of methacholine challenge tests assessing airway hyperreactivity in asthmatic patients – a multifunctional approach. Respir Res. 2016;17(1):154. DOI:10.1186/s12931-016-0470-0
40. Litonjua AA, Sparrow D, Weiss ST. The FEF25-75/FVC ratio is associated with methacholine airway responsiveness. The normative aging study. Am J Respir Crit Care Med. 1999;159(5 Pt. 1):1574-9. DOI:10.1164/ajrccm.159.5.9803063
41. Abman SH, Bancalari E, Jobe A. The Evolution of Bronchopulmonary Dysplasia after 50 Years. Am J Respir Crit Care Med. 2017;195(4):421-4.
DOI:10.1164/rccm.201611-2386ED
42. Овсянников Д.Ю., Бойцова Е.В., Давыдова И.В., и др. Бронхолегочная дисплазия: от Норсвея до наших дней: монография. Под ред. Д.Ю. Овсянникова. М.: РУДН, 2016 [Ovsiannikov DIu, Boitsova EV, Davydova IV, et al. Bronkholegochnaia displaziia: ot Norsveia do nashikh dnei: monografiia. Pod red. DIu Ovsiannikova. Moscow: RUDN, 2016 (in Russian)].
43. Duke JW, Gladstone IM, Sheel AW, Lovering AT. Premature birth affects the degree of airway dysanapsis and mechanical ventilatory constraints. Exp Physiol. 2018;103(2):261-75. DOI:10.1113/EP086588
44. Овсянников Д.Ю., Дегтярева Е.А., Мирошниченко В.П., и др. Факторы риска, диагностика, скрининг и терапия легочной гипертензии у детей с бронхолегочной дисплазией. Доктор.Ру. 2022;21(7):12-9 [Ovsyannikov DYu, Degtyareva EA, Miroshnichenko VP, et al. Risk factors, diagnosis, screening and therapy of pulmonary hypertension in children with bronchopulmonary dysplasia. Doctor.Ru. 2022;21(7):12-9 (in Russian)]. DOI:10.31550/1727-2378-2022-21-7-12-19
45. Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2017;313(6):L1101-53. DOI:10.1152/ajplung.00343.2017
46. Nelin LD, Kielt MJ, Jebbia M, et al. Bronchodilator responsiveness and dysanapsis in bronchopulmonary dysplasia. ERJ Open Res. 2022;8(3):00682‑2021. DOI:10.1183/23120541.00682-2021
47. Кравчук Д.А., Овсянников Д.Ю. Эпидемиология бронхиальной астмы у недоношенных детей: метаанализ. Аллергология и иммунология в педиатрии. 2019;3(58):27-32 [Kravchuk DA, Ovsyannikov DYu. Epidemiology of bronchial asthma in prematural children: meta-analysis. Allergologiia i immunologiia v pediatrii. 2019;3(58):27-32 (in Russian)].
48. Кравчук Д.А., Овсянников Д.Ю., Болибок А.М., и др. Частота, факторы риска, особенности бронхиальной астмы у детей с бронхолегочной дисплазией и ведение коморбидных пациентов. Неонатология: новости, мнения, обучение. 2019;7(3):27-39 [Kravchuk DA, Ovsyannikov DYu, Bolibok AM, et al. Frequency, risk factors, features of bronchial asthma in children with bronchopulmonary dysplasia and management of comorbid patients. Neonatologiia: novosti, mneniia, obuchenie. 2019;7(3):27-39 (in Russian)]. DOI:10.24411/2308-2402-2019-13004
49. Karnaushkina MA, Strutinskaya AD, Ovsyannikov DYu. Prematurity and Early Childhood Infection of Lower Respiratory Tract as Risk Factors of Developing Chronic Obstructive Bronchopulmonary Pathology in Adults. Pediatric Predictors of the Development of Chronic Obstructive Bronchopulmonary Pathology in Adults. 2017;9(1):129-33. DOI:10.17691/stm2017.9.1.17
50. Петряйкина Е.С., Бойцова Е.В., Овсянников Д.Ю., и др. Современные представления об облитерирующем бронхиолите у детей. Педиатрия. Журнал им. Г.Н. Сперанского. 2020;99(2):255-62 [Petriaikina ES, Boitsova EV, Ovsyannikov DYu, et al. Modern ideas about obliterating bronchiolitis in children. Pediatriia. Zhurnal im. G.N. Speranskogo. 2020;99(2):255-62 (in Russian)]. DOI:10.24110/0031-403X-2020-99-2-255-262
51. Colom AJ, Maffey A, Garcia Bournissen F, Teper A. Pulmonary function of a paediatric cohort of patients with postinfectious bronchiolitis obliterans. A long term follow-up. Thorax. 2015;70(2):169-74. DOI:10.1136/thoraxjnl-2014-205328
52. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am J Respir Crit Care Med. 2017;195(5):557-82. DOI:10.1164/rccm.201701-0218PP
53. Smith BM, Hoffman EA, Barr RG. Dysanapsis and COPD-Reply. JAMA. 2020;324(15):1572. DOI:10.1001/jama.2020.15654
54. Adeloye D, Chua S, Lee C, et al; Global Health Epidemiology Reference Group (GHERG). Global and regional estimates of COPD prevalence: Systematic review and meta-analysis. J Glob Health. 2015;5(2):020415. DOI:10.7189/jogh.05.020415
55. Tan WC, Sin DD, Bourbeau J, et al; CanCOLD Collaborative Research Group. Characteristics of COPD in never-smokers and ever-smokers in the general population: results from the CanCOLD study. Thorax. 2015;70(9):822-9. DOI:10.1136/thoraxjnl-2015-206938
________________________________________________
1. GBD 2017: a fragile world. Lancet. 2018;392(10159):1683. DOI:10.1016/S0140-6736(18)32858-7
2. Ovsiannikov DIu, Furman EG, Eliseeva TI. Bronkhial'naia astma u detei: monografiia. Pod red. DIu Ovsiannikova. Moscow: RUDN, 2019 (in Russian).
3. Boonpiyathad T, Sözener ZC, Satitsuksanoa P, Akdis CA. Immunologic mechanisms in asthma. Semin Immunol. 2019;46:101333. DOI:10.1016/j.smim.2019.101333
4. Alobaidi AH, Alsamarai AM, Alsamarai MA. Inflammation in Asthma Pathogenesis: Role of T Cells, Macrophages, Epithelial Cells and Type 2 Inflammation. Antiinflamm Antiallergy Agents Med Chem. 2021;20(4):317-32. DOI:10.2174/1871523020666210920100707
5. Barnes PJ. Cellular and molecular mechanisms of asthma and COPD. Clin Sci (Lond). 2017;131(13):1541-58. DOI:10.1042/CS20160487
6. Givi ME, Redegeld FA, Folkerts G, Mortaz E. Dendritic cells in pathogenesis of COPD. Curr Pharm Des. 2012;18(16):2329-35. DOI:10.2174/138161212800166068
7. Brightling C, Greening N. Airway inflammation in COPD: progress to precision medicine. Eur Respir J. 2019;54(2):1900651. DOI:10.1183/13993003.00651-2019
8. Habib N, Pasha MA, Tang DD. Current Understanding of Asthma Pathogenesis and Biomarkers. Cells. 2022;11(17):2764. DOI:10.3390/cells11172764
9. Green M, Mead J, Turner JM. Variability of maximum expiratory flow-volume curves. J Appl Physiol. 1974;37(1):67-74. DOI:10.1152/jappl.1974.37.1.67
10. Mead J. Dysanapsis in normal lungs assessed by the relationship between maximal flow, static recoil, and vital capacity. Am Rev Respir Dis. 1980;121(2):339‑42. DOI:10.1164/arrd.1980.121.2.339
11. Forno E, Celedón JC. The effect of obesity, weight gain, and weight loss on asthma inception and control. Curr Opin Allergy Clin Immunol. 2017;17(2):123-30. DOI:10.1097/ACI.0000000000000339
12. Deolmi M, Decarolis NM, Motta M, et al. Early Origins of Chronic Obstructive Pulmonary Disease: Prenatal and Early Life Risk Factors. Int J Environ Res Public Health. 2023;20(3):2294. DOI:10.3390/ijerph20032294
13. Vameghestahbanati M, Hiura GT, Barr RG, et al. CT-Assessed Dysanapsis and Airflow Obstruction in Early and Mid Adulthood. Chest. 2022;161(2):389-91. DOI:10.1016/j.chest.2021.08.038
14. Bourbeau J, Doiron D, Biswas S, et al; CanCOLD Collaborative Research Group and the Canadian Respiratory Research Network. Ambient Air Pollution and Dysanapsis: Associations with Lung Function and Chronic Obstructive Pulmonary Disease in the Canadian Cohort Obstructive Lung Disease Study. Am J Respir Crit Care Med. 2022;206(1):44-55. DOI:10.1164/rccm.202106-1439OC
15. Maetani T, Tanabe N, Terada S, et al. Physiological impacts of computed tomography airway dysanapsis, fractal dimension, and branch count in asymptomatic never smokers. J Appl Physiol (1985). 2023;134(1):20-7. DOI:10.1152/japplphysiol.00385.2022
16. Forno E, Weiner DJ, Mullen J, et al. Obesity and Airway Dysanapsis in Children with and without Asthma. Am J Respir Crit Care Med. 2017;195(3):314-23.
DOI:10.1164/rccm.201605-1039OC
17. Strunk RC, Weiss ST, Yates KP, et al; CAMP Research Group. Mild to moderate asthma affects lung growth in children and adolescents. J Allergy Clin Immunol. 2006;118(5):1040-7. DOI:10.1016/j.jaci.2006.07.053
18. Weiss ST, Tosteson TD, Segal MR, et al. Effects of asthma on pulmonary function in children. A longitudinal population-based study. Am Rev Respir Dis. 1992;145(1):58-64. DOI:10.1164/ajrccm/145.1.58
19. Jones MH, Roncada C, Fernandes MTC, et al. Asthma and Obesity in Children Are Independently Associated with Airway Dysanapsis. Front Pediatr. 2017;5:270. DOI:10.3389/fped.2017.00270
20. Khramova RN, Eliseeva TI, Ovsyannikov DYu, et al. Impact of age and anthropometric features on the prevalence of disanapsis in children and adolescents with bronchial asthma. Pediatria n.a. G.N. Speransky. 2023;102(2):52-6 (in Russian). DOI:10.24110/0031-403X-2023-102-2-52-56
21. Marillier M, Bernard AC, Reimao G, et al. Breathing at Extremes: The Restrictive Consequences of Super- and Super-Super Obesity in Men and Women. Chest. 2020;158(4):1576-85. DOI:10.1016/j.chest.2020.04.006
22. Jung Y, Jean T, Morphew T, Galant SP. Peripheral Airway Impairment and Dysanapsis Define Risk of Uncontrolled Asthma in Obese Asthmatic Children. J Allergy Clin Immunol Pract. 2022;10(3):759-67.e1. DOI:10.1016/j.jaip.2021.09.029
23. Arismendi E, Bantulà M, Perpiñá M, Picado C. Effects of Obesity and Asthma on Lung Function and Airway Dysanapsis in Adults and Children. J Clin Med. 2020;9(11):3762. DOI:10.3390/jcm9113762
24. Forno E, Han YY, Mullen J, Celedón JC. Overweight, Obesity, and Lung Function in Children and Adults-A Meta-analysis. J Allergy Clin Immunol Pract. 2018;6(2):570-81.e10. DOI:10.1016/j.jaip.2017.07.010
25. Khramova RN, Tush EV, Khramov AA, et al. Relationship of Nutritional Status and Spirometric Parameters in Children with Bronchial Asthma. Sovrem Tekhnologii Med.
2021;12(3):12-23. DOI:10.17691/stm2020.12.3.02
26. Khramova RN, Tush EV, Ovsyannikov DYu, et al. Connection between body mass index, relative body mass index and bronchial patency indicators in children with bronchial asthma. Pediatria n.a. G.N. Speransky. 2021;100(5):21-7 (in Russian). DOI:10.24110/0031-403X-2021-100-5-21-27
27. Khramova RN, Eliseeva TI, Tush EV, et al. The effect of abdominal obesity and external respiration function in children and adolescents with bronchial asthma. Pediatria n.a. G.N. Speransky. 2022;101(2):12-8 (in Russian). DOI:10.24110/0031-403X-2022-101-2-12-18
28. Bekkers MB, Wijga AH, Gehring U, et al. BMI, waist circumference at 8 and 12 years of age and FVC and FEV1 at 12 years of age; the PIAMA birth cohort study. BMC Pulm Med. 2015;15:39. DOI:10.1186/s12890-015-0032-0
29. Ekström S, Hallberg J, Kull I, et al. Body mass index status and peripheral airway obstruction in school-age children: a population-based cohort study. Thorax. 2018;73(6):538-45. DOI:10.1136/thoraxjnl-2017-210716
30. Strunk RC, Colvin R, Bacharier LB, et al; Childhood Asthma Management Program Research Group. Airway Obstruction Worsens in Young Adults with Asthma Who Become Obese. J Allergy Clin Immunol Pract. 2015;3(5):765-71.e2. DOI:10.1016/j.jaip.2015.05.009
31. Forno E, Young OM, Kumar R, et al. Maternal obesity in pregnancy, gestational weight gain, and risk of childhood asthma. Pediatrics. 2014;134(2):e535-46.
DOI:10.1542/peds.2014-0439
32. Dumas O, Varraso R, Gillman MW, et al. Longitudinal study of maternal body mass index, gestational weight gain, and offspring asthma. Allergy. 2016;71(9):1295-304. DOI:10.1111/all.12876
33. Huang K, Rabold R, Abston E, et al. Effects of leptin deficiency on postnatal lung development in mice. J Appl Physiol (1985).
2008;105(1):249-59. DOI:10.1152/japplphysiol.00052.2007
34. Kirwin SM, Bhandari V, Dimatteo D, et al. Leptin enhances lung maturity in the fetal rat. Pediatr Res. 2006;60(2):200-4. DOI:10.1203/01.pdr.0000227478.29271.52
35. Hansel NN, Gao L, Rafaels NM, et al. Leptin receptor polymorphisms and lung function decline in COPD. Eur Respir J. 2009;34(1):103-10. DOI:10.1183/09031936.00120408
36. van den Borst B, Souren NY, Loos RJ, et al. Genetics of maximally attained lung function: a role for leptin? Respir Med. 2012;106(2):235-42. DOI:10.1016/j.rmed.2011.08.001
37. Torday JS, Sun H, Wang L, et al. Leptin mediates the parathyroid hormone-related protein paracrine stimulation of fetal lung maturation. Am J Physiol Lung Cell Mol Physiol. 2002;282(3):L405-10. DOI:10.1152/ajplung.2002.282.3.L405
38. Parker AL, Abu-Hijleh M, McCool FD. Ratio between forced expiratory flow between 25% and 75% of vital capacity and FVC is a determinant of airway reactivity and sensitivity to methacholine. Chest. 2003;124(1):63-9. DOI:10.1378/chest.124.1.63
39. Kraemer R, Smith HJ, Sigrist T, et al. Diagnostic accuracy of methacholine challenge tests assessing airway hyperreactivity in asthmatic patients – a multifunctional approach. Respir Res. 2016;17(1):154. DOI:10.1186/s12931-016-0470-0
40. Litonjua AA, Sparrow D, Weiss ST. The FEF25-75/FVC ratio is associated with methacholine airway responsiveness. The normative aging study. Am J Respir Crit Care Med. 1999;159(5 Pt. 1):1574-9. DOI:10.1164/ajrccm.159.5.9803063
41. Abman SH, Bancalari E, Jobe A. The Evolution of Bronchopulmonary Dysplasia after 50 Years. Am J Respir Crit Care Med. 2017;195(4):421-4.
DOI:10.1164/rccm.201611-2386ED
42. Ovsiannikov DIu, Boitsova EV, Davydova IV, et al. Bronkholegochnaia displaziia: ot Norsveia do nashikh dnei: monografiia. Pod red. DIu Ovsiannikova. Moscow: RUDN, 2016 (in Russian).
43. Duke JW, Gladstone IM, Sheel AW, Lovering AT. Premature birth affects the degree of airway dysanapsis and mechanical ventilatory constraints. Exp Physiol. 2018;103(2):261-75. DOI:10.1113/EP086588
44. Ovsyannikov DYu, Degtyareva EA, Miroshnichenko VP, et al. Risk factors, diagnosis, screening and therapy of pulmonary hypertension in children with bronchopulmonary dysplasia. Doctor.Ru. 2022;21(7):12-9 (in Russian). DOI:10.31550/1727-2378-2022-21-7-12-19
45. Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2017;313(6):L1101-53. DOI:10.1152/ajplung.00343.2017
46. Nelin LD, Kielt MJ, Jebbia M, et al. Bronchodilator responsiveness and dysanapsis in bronchopulmonary dysplasia. ERJ Open Res. 2022;8(3):00682‑2021. DOI:10.1183/23120541.00682-2021
47. Kravchuk DA, Ovsyannikov DYu. Epidemiology of bronchial asthma in prematural children: meta-analysis. Allergologiia i immunologiia v pediatrii. 2019;3(58):27-32 (in Russian).
48. Kravchuk DA, Ovsyannikov DYu, Bolibok AM, et al. Frequency, risk factors, features of bronchial asthma in children with bronchopulmonary dysplasia and management of comorbid patients. Neonatologiia: novosti, mneniia, obuchenie. 2019;7(3):27-39 (in Russian). DOI:10.24411/2308-2402-2019-13004
49. Karnaushkina MA, Strutinskaya AD, Ovsyannikov DYu. Prematurity and Early Childhood Infection of Lower Respiratory Tract as Risk Factors of Developing Chronic Obstructive Bronchopulmonary Pathology in Adults. Pediatric Predictors of the Development of Chronic Obstructive Bronchopulmonary Pathology in Adults. 2017;9(1):129-33. DOI:10.17691/stm2017.9.1.17
50. Petriaikina ES, Boitsova EV, Ovsyannikov DYu, et al. Modern ideas about obliterating bronchiolitis in children. Pediatriia. Zhurnal im. G.N. Speranskogo. 2020;99(2):255-62 (in Russian). DOI:10.24110/0031-403X-2020-99-2-255-262
51. Colom AJ, Maffey A, Garcia Bournissen F, Teper A. Pulmonary function of a paediatric cohort of patients with postinfectious bronchiolitis obliterans. A long term follow-up. Thorax. 2015;70(2):169-74. DOI:10.1136/thoraxjnl-2014-205328
52. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am J Respir Crit Care Med. 2017;195(5):557-82. DOI:10.1164/rccm.201701-0218PP
53. Smith BM, Hoffman EA, Barr RG. Dysanapsis and COPD-Reply. JAMA. 2020;324(15):1572. DOI:10.1001/jama.2020.15654
54. Adeloye D, Chua S, Lee C, et al; Global Health Epidemiology Reference Group (GHERG). Global and regional estimates of COPD prevalence: Systematic review and meta-analysis. J Glob Health. 2015;5(2):020415. DOI:10.7189/jogh.05.020415
55. Tan WC, Sin DD, Bourbeau J, et al; CanCOLD Collaborative Research Group. Characteristics of COPD in never-smokers and ever-smokers in the general population: results from the CanCOLD study. Thorax. 2015;70(9):822-9. DOI:10.1136/thoraxjnl-2015-206938
1ФГБОУ ВО «Приволжский исследовательский медицинский университет» Минздрава России, Нижний Новгород, Россия; 2ФГАОУ ВО «Российский университет дружбы народов», Москва, Россия
*reg1705@yandex.ru
________________________________________________
Regina N. Khramova*1, Tatyana I. Eliseeva1, Elena V. Tush1, Maxim A. Karpenko2, Dmitriy Yu. Ovsyannikov2
1Volga Region Research Medical University, Nizhny Novgorod, Russia; 2People’s Friendship University of Russia (RUDN University), Moscow, Russia
*reg1705@yandex.ru