Нарушение формирования микробиома младенца: что важно знать педиатру
Нарушение формирования микробиома младенца: что важно знать педиатру
Захарова И.Н., Бережная И.В., Дмитриева Д.К. Нарушение формирования микробиома младенца: что важно знать педиатру. Педиатрия. Consilium Medicum. 2023;3:108–113.
DOI: 10.26442/26586630.2023.3.202392
Zakharova IN, Berezhnaya IV, Dmitrieva DK. Derangement of the infant microbiome development: what a pediatrician needs to know. A review. Pediatrics. Consilium Medicum. 2023;3:108–113.
DOI: 10.26442/26586630.2023.3.202392
Нарушение формирования микробиома младенца: что важно знать педиатру
Захарова И.Н., Бережная И.В., Дмитриева Д.К. Нарушение формирования микробиома младенца: что важно знать педиатру. Педиатрия. Consilium Medicum. 2023;3:108–113.
DOI: 10.26442/26586630.2023.3.202392
Zakharova IN, Berezhnaya IV, Dmitrieva DK. Derangement of the infant microbiome development: what a pediatrician needs to know. A review. Pediatrics. Consilium Medicum. 2023;3:108–113.
DOI: 10.26442/26586630.2023.3.202392
Изучение микробиома и микробиоты разных экологических ниш человека и их влияния на формирование здоровья человека ознаменовалось значительным прорывом в последнее десятилетие. Известно, что незначительная микробная контаминация присутствует у плода уже внутриутробно, что формирует иммунологическую резистентность. Сразу после рождения ребенок подвергается быстрой колонизации микроорганизмами матери и окружающей среды. От способа родоразрешения зависит не только обилие микробов, но и их состав и дальнейшее влияние на изменение иммунного ответа младенца. Высокий риск раннего дебюта атопического марша описан у детей, рожденных путем кесарева сечения и получивших терапию антибактериальными препаратами в ранний период жизни. В данной работе проведен обзор результатов последних исследований влияния пробиотика из двух наиболее исследованных штаммов Lactobacillus rhamnosus GG и Bifidobacterium lactis BS01 (Пробиэль Бэби) на формирование микробиоты кишечника и возможности коррекции нарушений у детей с высоким риском атопии.
The research on the microbiome and microbiota of different human ecological niches and their impact on human health showed a significant breakthrough in the last decade. It is known that minor microbial contamination is present even in the fetus in utero, inducing immunological resistance. Immediately after birth, the baby rapidly becomes colonized by maternal and environmental microorganisms. The mode of delivery impacts the number of microbes and species composition and subsequent changes in the infant's immune response. A high risk of early onset of atopic march has been reported in children born by cesarean section and treated with antibacterial drugs in early life. This paper reviews the results of recent studies of the effect of the probiotic based on the two most studied strains of Lactobacillus rhamnosus GG and Bifidobacterium lactis BS01 (Probielle Baby) on intestinal microbiota development and the prospects of its use for correcting disorders in children at high risk of atopy.
1. Schirmer M, Frantsosa EA, Lloyd-Price J, et al. Metatranscriptional dynamics in the gut microbiome in inflammatory bowel disease. Nat Microbiol. 2018;3(3):337‑46. DOI:10.1038/s41564-017-0089-z
2. Landman C, Quévrain E. Gut microbiota: Description, role and pathophysiologic implications. Rev Med Interne. 2016;37(6):418-23 (in French). DOI:10.1016/j.revmed.2015.12.012
3. Bardos J, Fiorentino D, Longman RE, Paidas M. Immunological Role of the Maternal Uterine Microbiome in Pregnancy: Pregnancies Pathologies and Alterated Microbiota. Front Immunol. 2020;10:2823. DOI:10.3389/fimmu.2019.02823
4. Ravel J, Guyer P, Abdo Z, et al. The vaginal microbiome of women of reproductive age. Proc Natl Acad Sci U S A. 2011;108 Suppl. 1(Suppl. 1):4680-7. DOI:10.1073/pnas.1002611107
5. Kosti I, Lyalina S, Pollard KS, Sirota M. A meta-analysis of vaginal microbiome data provides new insight into preterm birth. Front Microbiol. 2020;11:476. DOI:10.3389/fmicb.2020.00476
6. Payne MS, Newnham JP, Doherty DA, et al. A specific bacterial DNA signature in the vagina of Australian women in mid-pregnancy predicts a high risk of spontaneous preterm birth (Predict1000 study). Am J Obstet Ginecol. 2021;224(2):206.e1-23. DOI:10.1016/j.ajog.2020.08.034
7. Fettweis JM, Serrano MG, Brooks JP, et al. The vaginal microbiome and preterm birth. Nat Med. 2019;25(6):1012-21. DOI:10.1038/s41591-019-0450-2
8. Blazer MJ, Devkota S, McCoy KD, et al. Lessons learned from the prenatal microbiome controversy. Microbiome. 2021;9(1):8-7. DOI:10.1186/s40168-020-00946-2
9. Walter J, Hornef MW. A Philosophical Perspective on the Prenatal Microbiome Debate. Microbiome. 2021;9:1-9. DOI:10.1186/s40168-020-00979-7
10. Shen L, Wang W, Hou W, et al. The function and mechanism of action of uterine microecology in pregnancy immunity and its complications. Front Cell Infect Microbiol. 2023;12:1025714. DOI:10.3389/fcimb.2022.1025714
11. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971-5. DOI:10.1073/pnas.1002601107
12. Makino CH, Kushiro A, Ishikawa E, et al. Transmission of intestinal strains of bifidobacteria from mother to child affects the early development of the microbiota of the child born naturally. PLoS One. 2013;8:e78331. DOI:10.1371/journal.pone.0078331
13. Korpela K, Help O, Kolkho KL, et al. Maternal fecal microbiota transplantation in neonates delivered by caesarean section rapidly restores normal gut microbial development: a proof-of-concept study. Cell. 2020;183:324-34.e5. DOI:10.1016/j.cell.2020.08.047
14. Ferretti P, Pasolli E, Tett A, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe.
2018;24(1):133-45. DOI:10.1016/j.chom.2018.06.005
15. Yu ZT, Chen C, Newburg DS. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology. 2013;23:1281-92. DOI:10.1093/glycob/cwt065
16. Duranti S, Lugli GA, Mancabelli L, et al. Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. Microbiome. 2017;5:66. DOI:10.1186/s40168-017-0282-6
17. Korpela K, de Vos WM. Early life colonization of the human gut: microbes matter everywhere. Curr Opin Microbiol. 2018;44:70-8. DOI:10.1016/j.mib.2018.06.003
18. Caesarean section rates continue to rise, amid growing inequalities in access. Available at: https://www.who.int/news/item/16-06-2021-caesarean-section-rates-continue-to-rise-amid-growing-inequ.... Accessed: 15.05.2023.
19. Гурьев Д.Л., Охапкин М.Б., Гурьева М.С., и др. Снижение частоты кесарева сечения и перинатальных потерь в стационаре уровня 3А с использованием классификации Робсона. Доктор.Ру. 2019;4(159):8-13 [Guriev DL, Okhapkin MB, Gurieva DD, et al. Using the Robson classification of reduce ratees of cesarian section and perinatal loss in 3A-level hospital. Doctor.Ru. 2019;4(159):8-13 (in Russian)]. DOI:10.31550/1727-2378-2019-159-4-8-13
20. Shao Y, Forster SC, Tsaliki E, et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature. 2019;574:117-21. DOI:10.1038/s41586-019-1560-1
21. Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants' life: a systematic review. BMC Gastroenterol. 2016;16(1):86. DOI:10.1186/s12876-016-0498-0
22. Grönlund MM, Lehtonen OP, Eerola E, Kero P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr. 1999;28(1):19-25. DOI:10.1097/00005176-199901000-00007
23. Del Chierico F, Vernocchi P, Petrucca A, et al. Phylogenetic and Metabolic Tracking of Gut Microbiota during Perinatal Development. PLoS One. 2015;10(9):e0137347. DOI:10.1371/journal.pone.0137347
24. Bokulich NA, Chung J, Battaglia T, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8(343):343ra82. DOI:10.1126/scitranslmed.aad7121
25. La Rosa PS, Warner BB, Zhou Y, et al. Patterned progression of bacterial populations in the premature infant gut. Proc Natl Acad Sci U S A. 2014;111(34):12522-7. DOI:10.1073/pnas.1409497111
26. Madan JC, Salari RC, Saxena D, et al. Gut microbial colonisation in premature neonates predicts neonatal sepsis. Arch Dis Child Fetal Neonatal Ed. 2012;97(6):456-62. DOI:10.1136/fetalneonatal-2011-301373
27. Vandenplas Y, Berger B, Carnielli VP, et al. Human Milk Oligosaccharides: 2'-Fucosyllactose (2'-FL) and Lacto-N-Neotetraose (LNnT) in Infant Formula. Nutrients. 2018;10(9):1161. DOI:10.3390/nu10091161
28. Koletzko B, Bergmann K, Brenna JT, et al. Should formula for infants provide arachidonic acid along with DHA? A position paper of the European Academy of Paediatrics and the Child Health Foundation. Am J Clin Nutr. 2020;111(1):10-6. DOI:10.1093/ajcn/nqz252
29. Ma J, Li Z, Zhang W, et al. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants. Sci Rep. 2020;10(1):15792. DOI:10.1038/s41598-020-72635-x
30. Roger LC, Costabile A, Holland DT, et al. Examination of faecal bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology. 2010;156:3329-41. DOI:10.1099/mic.0.043224-0
31. Koenig JE, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A. 2011;108 Suppl. 1(Suppl. 1):4578-85. DOI:10.1073/pnas.1000081107
32. Ruiz-Ojeda FJ, Plaza-Diaz J, Morales J, et al. Effects of a Novel Infant Formula on the Fecal Microbiota in the First Six Months of Life: The INNOVA 2020 Study. Int J Mol Sci. 2023;24:3034. DOI:10.3390/ijms24033034
33. Pärnänen KMM, Hultman J, Markkanen M, et al. Early-life formula feeding is associated with infant gut microbiota alterations and an increased antibiotic resistance load. Am J Clin Nutr. 2022;115(2):407-21. DOI:10.1093/ajcn/nqab353
34. Bokulich NA, Chung J, Battaglia T, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8(343):343ra82. DOI:10.1126/scitranslmed.aad7121
35. Mukhopadhyay S, Eichenwald EC, Puopolo KM. Neonatal early-onset sepsis evaluations among well-appearing infants: projected impact of changes in CDC GBS guidelines. J Perinatol. 2013;33(3):198-205. DOI:10.1038/jp.2012.96
36. Reyman M, van Houten MA, Watson RL, et al. Effects of early-life antibiotics on the developing infant gut microbiome and resistome: a randomized trial. Nat Commun. 2022;13(1):893. DOI:10.1038/s41467-022-28525-z
37. Rogawski ET, Westreich D, Becker-Dreps S, et al. The effect of early life antibiotic exposures on diarrheal rates among young children in Vellore, India. Pediatr Infect Dis J. 2015;34(6):583-8. DOI:10.1097/INF.0000000000000679
38. Bisgaard H, Li N, Bonnelykke K, et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol. 2011;128(3):646-52.e1-5. DOI:10.1016/j.jaci.2011.04.060
39. Kostic AD, Gevers D, Siljander H, et al; DIABIMMUNE Study Group; Xavier RJ. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe. 2015;17(2):260-73. DOI:10.1016/j.chom.2015.01.001
40. Doron S, Snydman DR, Gorbach SL. Lactobacillus GG: bacteriology and clinical applications. Gastroenterol Clin North Am. 2005;34(3):483-98, ix. DOI:10.1016/j.gtc.2005.05.011
41. Czajeczny D, Kabzińska K, Wójciak RW. Effects of Bifidobacterium Lactis BS01 and Lactobacillus Acidophilus LA02 on cognitive functioning in healthy women. Appl Neuropsychol Adult. 2021;7:1-9. DOI:10.1080/23279095.2021.1967155
42. Czajeczny D, Kabzińska-Milewska K, Wojciak, Rafal W. Bifidobacterium lactis BS01 and Lactobacillus acidophilus LA02 supplementation may change the mineral balance in healthy young women. J Elementology. 2021;26:849-59. DOI:10.5601/jelem.2021.26.1.2121
43. Микробиота. Под ред. Е.Л. Никонова, Е.Н. Поповой. М.: Медиа Сфера, 2019 [Mikrobiota. Pod red. EL Nikonova, EN. Popovoi. Moscow: Media Sfera, 2019 (in Russian)].
44. Akimbekov NS, Digel I, Sherelkhan DK, et al. Vitamin D and the Host-Gut Microbiome: A Brief Overview. Acta Histochem Cytochem. 2020;53(3):33-42.
45. Farina C, Arosio M, Mangia M, Moioli F. Lactobacillus casei subsp. rhamnosus sepsis in a patient with ulcerative colitis. J Clin Gastroenterol. 2001;33(3):251-2. DOI:10.1097/00004836-200109000-00019
________________________________________________
1. Schirmer M, Frantsosa EA, Lloyd-Price J, et al. Metatranscriptional dynamics in the gut microbiome in inflammatory bowel disease. Nat Microbiol. 2018;3(3):337‑46. DOI:10.1038/s41564-017-0089-z
2. Landman C, Quévrain E. Gut microbiota: Description, role and pathophysiologic implications. Rev Med Interne. 2016;37(6):418-23 (in French). DOI:10.1016/j.revmed.2015.12.012
3. Bardos J, Fiorentino D, Longman RE, Paidas M. Immunological Role of the Maternal Uterine Microbiome in Pregnancy: Pregnancies Pathologies and Alterated Microbiota. Front Immunol. 2020;10:2823. DOI:10.3389/fimmu.2019.02823
4. Ravel J, Guyer P, Abdo Z, et al. The vaginal microbiome of women of reproductive age. Proc Natl Acad Sci U S A. 2011;108 Suppl. 1(Suppl. 1):4680-7. DOI:10.1073/pnas.1002611107
5. Kosti I, Lyalina S, Pollard KS, Sirota M. A meta-analysis of vaginal microbiome data provides new insight into preterm birth. Front Microbiol. 2020;11:476. DOI:10.3389/fmicb.2020.00476
6. Payne MS, Newnham JP, Doherty DA, et al. A specific bacterial DNA signature in the vagina of Australian women in mid-pregnancy predicts a high risk of spontaneous preterm birth (Predict1000 study). Am J Obstet Ginecol. 2021;224(2):206.e1-23. DOI:10.1016/j.ajog.2020.08.034
7. Fettweis JM, Serrano MG, Brooks JP, et al. The vaginal microbiome and preterm birth. Nat Med. 2019;25(6):1012-21. DOI:10.1038/s41591-019-0450-2
8. Blazer MJ, Devkota S, McCoy KD, et al. Lessons learned from the prenatal microbiome controversy. Microbiome. 2021;9(1):8-7. DOI:10.1186/s40168-020-00946-2
9. Walter J, Hornef MW. A Philosophical Perspective on the Prenatal Microbiome Debate. Microbiome. 2021;9:1-9. DOI:10.1186/s40168-020-00979-7
10. Shen L, Wang W, Hou W, et al. The function and mechanism of action of uterine microecology in pregnancy immunity and its complications. Front Cell Infect Microbiol. 2023;12:1025714. DOI:10.3389/fcimb.2022.1025714
11. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971-5. DOI:10.1073/pnas.1002601107
12. Makino CH, Kushiro A, Ishikawa E, et al. Transmission of intestinal strains of bifidobacteria from mother to child affects the early development of the microbiota of the child born naturally. PLoS One. 2013;8:e78331. DOI:10.1371/journal.pone.0078331
13. Korpela K, Help O, Kolkho KL, et al. Maternal fecal microbiota transplantation in neonates delivered by caesarean section rapidly restores normal gut microbial development: a proof-of-concept study. Cell. 2020;183:324-34.e5. DOI:10.1016/j.cell.2020.08.047
14. Ferretti P, Pasolli E, Tett A, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe.
2018;24(1):133-45. DOI:10.1016/j.chom.2018.06.005
15. Yu ZT, Chen C, Newburg DS. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology. 2013;23:1281-92. DOI:10.1093/glycob/cwt065
16. Duranti S, Lugli GA, Mancabelli L, et al. Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. Microbiome. 2017;5:66. DOI:10.1186/s40168-017-0282-6
17. Korpela K, de Vos WM. Early life colonization of the human gut: microbes matter everywhere. Curr Opin Microbiol. 2018;44:70-8. DOI:10.1016/j.mib.2018.06.003
18. Caesarean section rates continue to rise, amid growing inequalities in access. Available at: https://www.who.int/news/item/16-06-2021-caesarean-section-rates-continue-to-rise-amid-growing-inequ.... Accessed: 15.05.2023.
19. Guriev DL, Okhapkin MB, Gurieva DD, et al. Using the Robson classification of reduce ratees of cesarian section and perinatal loss in 3A-level hospital. Doctor.Ru. 2019;4(159):8-13 (in Russian). DOI:10.31550/1727-2378-2019-159-4-8-13
20. Shao Y, Forster SC, Tsaliki E, et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature. 2019;574:117-21. DOI:10.1038/s41586-019-1560-1
21. Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants' life: a systematic review. BMC Gastroenterol. 2016;16(1):86. DOI:10.1186/s12876-016-0498-0
22. Grönlund MM, Lehtonen OP, Eerola E, Kero P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr. 1999;28(1):19-25. DOI:10.1097/00005176-199901000-00007
23. Del Chierico F, Vernocchi P, Petrucca A, et al. Phylogenetic and Metabolic Tracking of Gut Microbiota during Perinatal Development. PLoS One. 2015;10(9):e0137347. DOI:10.1371/journal.pone.0137347
24. Bokulich NA, Chung J, Battaglia T, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8(343):343ra82. DOI:10.1126/scitranslmed.aad7121
25. La Rosa PS, Warner BB, Zhou Y, et al. Patterned progression of bacterial populations in the premature infant gut. Proc Natl Acad Sci U S A. 2014;111(34):12522-7. DOI:10.1073/pnas.1409497111
26. Madan JC, Salari RC, Saxena D, et al. Gut microbial colonisation in premature neonates predicts neonatal sepsis. Arch Dis Child Fetal Neonatal Ed. 2012;97(6):456-62. DOI:10.1136/fetalneonatal-2011-301373
27. Vandenplas Y, Berger B, Carnielli VP, et al. Human Milk Oligosaccharides: 2'-Fucosyllactose (2'-FL) and Lacto-N-Neotetraose (LNnT) in Infant Formula. Nutrients. 2018;10(9):1161. DOI:10.3390/nu10091161
28. Koletzko B, Bergmann K, Brenna JT, et al. Should formula for infants provide arachidonic acid along with DHA? A position paper of the European Academy of Paediatrics and the Child Health Foundation. Am J Clin Nutr. 2020;111(1):10-6. DOI:10.1093/ajcn/nqz252
29. Ma J, Li Z, Zhang W, et al. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants. Sci Rep. 2020;10(1):15792. DOI:10.1038/s41598-020-72635-x
30. Roger LC, Costabile A, Holland DT, et al. Examination of faecal bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology. 2010;156:3329-41. DOI:10.1099/mic.0.043224-0
31. Koenig JE, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A. 2011;108 Suppl. 1(Suppl. 1):4578-85. DOI:10.1073/pnas.1000081107
32. Ruiz-Ojeda FJ, Plaza-Diaz J, Morales J, et al. Effects of a Novel Infant Formula on the Fecal Microbiota in the First Six Months of Life: The INNOVA 2020 Study. Int J Mol Sci. 2023;24:3034. DOI:10.3390/ijms24033034
33. Pärnänen KMM, Hultman J, Markkanen M, et al. Early-life formula feeding is associated with infant gut microbiota alterations and an increased antibiotic resistance load. Am J Clin Nutr. 2022;115(2):407-21. DOI:10.1093/ajcn/nqab353
34. Bokulich NA, Chung J, Battaglia T, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8(343):343ra82. DOI:10.1126/scitranslmed.aad7121
35. Mukhopadhyay S, Eichenwald EC, Puopolo KM. Neonatal early-onset sepsis evaluations among well-appearing infants: projected impact of changes in CDC GBS guidelines. J Perinatol. 2013;33(3):198-205. DOI:10.1038/jp.2012.96
36. Reyman M, van Houten MA, Watson RL, et al. Effects of early-life antibiotics on the developing infant gut microbiome and resistome: a randomized trial. Nat Commun. 2022;13(1):893. DOI:10.1038/s41467-022-28525-z
37. Rogawski ET, Westreich D, Becker-Dreps S, et al. The effect of early life antibiotic exposures on diarrheal rates among young children in Vellore, India. Pediatr Infect Dis J. 2015;34(6):583-8. DOI:10.1097/INF.0000000000000679
38. Bisgaard H, Li N, Bonnelykke K, et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol. 2011;128(3):646-52.e1-5. DOI:10.1016/j.jaci.2011.04.060
39. Kostic AD, Gevers D, Siljander H, et al; DIABIMMUNE Study Group; Xavier RJ. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe. 2015;17(2):260-73. DOI:10.1016/j.chom.2015.01.001
40. Doron S, Snydman DR, Gorbach SL. Lactobacillus GG: bacteriology and clinical applications. Gastroenterol Clin North Am. 2005;34(3):483-98, ix. DOI:10.1016/j.gtc.2005.05.011
41. Czajeczny D, Kabzińska K, Wójciak RW. Effects of Bifidobacterium Lactis BS01 and Lactobacillus Acidophilus LA02 on cognitive functioning in healthy women. Appl Neuropsychol Adult. 2021;7:1-9. DOI:10.1080/23279095.2021.1967155
42. Czajeczny D, Kabzińska-Milewska K, Wojciak, Rafal W. Bifidobacterium lactis BS01 and Lactobacillus acidophilus LA02 supplementation may change the mineral balance in healthy young women. J Elementology. 2021;26:849-59. DOI:10.5601/jelem.2021.26.1.2121
43. Mikrobiota. Pod red. EL Nikonova, EN. Popovoi. Moscow: Media Sfera, 2019 (in Russian).
44. Akimbekov NS, Digel I, Sherelkhan DK, et al. Vitamin D and the Host-Gut Microbiome: A Brief Overview. Acta Histochem Cytochem. 2020;53(3):33-42.
45. Farina C, Arosio M, Mangia M, Moioli F. Lactobacillus casei subsp. rhamnosus sepsis in a patient with ulcerative colitis. J Clin Gastroenterol. 2001;33(3):251-2. DOI:10.1097/00004836-200109000-00019
Авторы
И.Н. Захарова*, И.В. Бережная, Д.К. Дмитриева
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия
*zakharova-rmapo@yandex.ru
________________________________________________
Irina N. Zakharova*, Irina V. Berezhnaya, Diana K. Dmitrieva
Russian Medical Academy of Continuous Professional Education, Moscow, Russia
*zakharova-rmapo@yandex.ru