Формирование микробиоты младенца в зависимости от характера вскармливания
Формирование микробиоты младенца в зависимости от характера вскармливания
Захарова И.Н., Сугян Н.Г., Оробинская Я.В. Формирование микробиоты младенца в зависимости от характера вскармливания. Педиатрия. Consilium Medicum. 2024;2:106–111.
DOI: 10.26442/26586630.2024.2.202939
Zakharova IN, Sugian NG, Orobinskaya YaV. Development of the infant’s microbiota depending on the nature of feeding: A review. Pediatrics. Consilium Medicum. 2024;2:106–111. DOI: 10.26442/26586630.2024.2.202939
Формирование микробиоты младенца в зависимости от характера вскармливания
Захарова И.Н., Сугян Н.Г., Оробинская Я.В. Формирование микробиоты младенца в зависимости от характера вскармливания. Педиатрия. Consilium Medicum. 2024;2:106–111.
DOI: 10.26442/26586630.2024.2.202939
Zakharova IN, Sugian NG, Orobinskaya YaV. Development of the infant’s microbiota depending on the nature of feeding: A review. Pediatrics. Consilium Medicum. 2024;2:106–111. DOI: 10.26442/26586630.2024.2.202939
Олигосахариды грудного молока (ОГМ) представляют собой короткие полимеры простых сахаров, которые в высоких концентрациях присутствуют в ГМ женщины. Их содержание динамично меняется с течением времени. На уровень ОГМ особое влияние оказывают генетические факторы, а также имеют значение продолжительность лактации, особенности окружающей среды. ОГМ могут поддерживать развитие иммунной системы и обеспечивать защиту от инфекционных заболеваний непосредственно через взаимодействие эпителиальных клеток кишечника или косвенно через модуляцию кишечной микробиоты, включая стимуляцию роста Bifidobacterium. Клинические данные свидетельствуют о том, что добавление ОГМ в детские молочные смеси способствует нормальному росту новорожденного и приносит пользу его здоровью. Добавление 1 или 2 ОГМ в молочные смеси безопасно и приближает их состав к ГМ, позволяя ребенку гармонично развиваться.
Breast milk oligosaccharides (BMOs) are short polymers of simple sugars that are present in high concentrations in a woman’s breast milk (BM). Their content changes fast over time. Genetic factors, the duration of lactation, and environmental factors particularly influence the level of BMOs. BMOs can facilitate the development of the immune system and protect against infectious diseases directly through the interaction of intestinal epithelial cells or indirectly through the modulation of the intestinal microbiota, including stimulating Bifidobacterium growth. Clinical data suggest that adding BMOs to infant formula promotes normal neonatal growth and benefits infant health. Adding 1 or 2 BMOs to infant formulas is safe and brings their composition closer to the BM, allowing the child to develop harmoniously.
Keywords: breastfeeding, breast milk, breast milk oligosaccharides, formula feeding, formulae, intestinal microbiota, galacto-oligosaccharides, 2’-fucosyllactose
1. Smilowitz JT, Lebrilla CB, Mills DA, et al. Breast milk oligosaccharides: structure-function relationships in the neonate. Annu Rev Nutr. 2014;34:143-69.
DOI:10.1146/annurev-nutr-071813-105721
2. Ventura M, Milani C, Lugli GA, van Sinderen D. Health benefits conferred by the human gut microbiota during infancy. Microb Biotechnol. 2019;12(2):243-8.
DOI:10.1111/1751-7915.13334
3. Ho NT, Li F, Lee-Sarwar KA, et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat Commun. 2018;9(1):4169.
DOI:10.1038/s41467-018-06473-x
4. Noel G, In JG, Lemme-Dumit JM, et al. Human Breast Milk Enhances Intestinal Mucosal Barrier Function and Innate Immunity in a Healthy Pediatric Human Enteroid Model. Front Cell Dev Biol. 2021;9:685171. DOI:10.3389/fcell.2021.685171
5. Guo M. Introduction: trends and issues in breastfeeding and the use of infant formula. Human Milk Biochemistry and Infant Formula Manufacturing Technology. 2014;1-16. DOI:10.1533/9780857099150.1
6. Gila-Diaz A, Arribas SM, Algara A, et al. A Review of Bioactive Factors in Human Breastmilk: A Focus on Prematurity. Nutrients. 2019;11(6). DOI:10.3390/nu11061307
7. Urashima T, Asakuma S, Leo F, et al. The predominance of type I oligosaccharides is a feature specific to human breast milk. Adv Nutr.
2012;3(3):473S-82S. DOI:10.3945/an.111.001412
8. Zivkovic AM, Lewis ZT, German JB, Mills DA. Establishment of a milk-oriented microbiota (MOM) in early life: how babies meet their MOMs. Funct Food Rev. 2013;5:3-12. DOI:10.2310/6180.2009.00035
9. Newburg DS, Ruiz-Palacios GM, Morrow AL. Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr.
2005;25:37-58. DOI:10.1146/annurev.nutr.25.050304.092553
10. Chichlowski M, De Lartigue G, German JB, et al. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. J Pediatr Gastroenterol Nutr. 2012;55(3):321-7. DOI:10.1097/MPG.0b013e31824fb899
11. Zivkovic AM, German JB, Lebrilla CB, Mills DA. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci U S A.
2011;108 Suppl. 1(Suppl. 1):4653-8. DOI:10.1073/pnas.1000083107
12. Fürst A, Ford B, Hentschel H, Bode L. Human Milk Oligosaccharides in Antenatal Colostrum: A Case Study. Breastfeed Med. 2024;19(8):652-8. DOI:10.1089/bfm.2024.0048
13. Wang H, Zhang X, Kang P, et al. Variations in Oligosaccharides and N/O-Glycans in Human Milk through the Eight-Month Lactation Period. J Agric Food Chem. 2022;70(44):14272-83. DOI:10.1021/acs.jafc.2c05869
14. Bermejo-Haro MY, Camacho-Pacheco RT, Brito-Pérez Y, Mancilla-Herrera I. The hormonal physiology of immune components in breast milk and their impact on the infant immune response. Mol Cell Endocrinol. 2023;572:111956. DOI:10.1016/j.mce.2023.111956
15. Barnum CR, Paviani B, Couture G, et al. Engineered plants provide a photosynthetic platform for the production of diverse human milk oligosaccharides. Nat Food. 2024;5(6):480-90. DOI:10.1038/s43016-024-00996-x
16. Orczyk-Pawiłowicz M, Lis-Kuberka J. The Impact of Dietary Fucosylated Oligosaccharides and Glycoproteins of Human Milk on Infant Well-Being. Nutrients. 2020;12(4). DOI:10.3390/nu12041105
17. Ruhaak LR, Lebrilla CB. Analysis and role of oligosaccharides in milk. BMB Rep. 2012;45(8):442-51. DOI:10.5483/BMBRep.2012.45.8.161
18. Sprenger N, Tytgat HLP, Binia A, et al. Biology of human milk oligosaccharides: From basic science to clinical evidence. J Hum Nutr Diet. 2022;35(2):280-99. DOI:10.1111/jhn.12990
19. Plows JF, Berger PK, Jones RB, et al. Longitudinal Changes in Human Milk Oligosaccharides (HMOs) Over the Course of 24 Months of Lactation. J Nutr. 2021;151(4):876-82. DOI:10.1093/jn/nxaa427
20. De Leoz ML, Gaerlan SC, Strum JS, et al. Lacto-N-tetraose, fucosylation, and secretor status are highly variable in human milk oligosaccharides from women delivering preterm. J Proteome Res. 2012;11(9):4662-72. DOI:10.1021/pr3004979
21. Ma X, Nan F, Liang H, et al. Excessive intake of sugar: An accomplice of inflammation. Front Immunol. 2022;13:988481. DOI:10.3389/fimmu.2022.988481
22. Mokhtari P, Schmidt KA, Zamanian H, et al. Maternal Diet Associated with Oligosaccharide Abundances in Human Milk from Latina Mothers. Nutrients. 2024;16(12). DOI:10.3390/nu16121795
23. Gómez-Gallego C, Morales JM, Monleón D, et al. Human Breast Milk NMR Metabolomic Profile across Specific Geographical Locations and Its Association with the Milk Microbiota. Nurients. 2018;10(10). DOI:10.3390/nu10101355
24. Akkerman R, Faas MM, de Vos P. Non-digestible carbohydrates in infant formula as substitution for human milk oligosaccharide functions: Effects on microbiota and gut maturation. Crit Rev Food Sci Nutr. 2019;59(9):1486-97. DOI:10.1080/10408398.2017.1414030
25. Vandenplas Y, Berger B, Carnielli VP, et al. Human Milk Oligosaccharides: 2’-Fucosyllactose (2’-FL) and Lacto-N-Neotetraose (LNnT) in Infant Formula. Nutrients. 2018;10(9). DOI:10.3390/nu10091161
26. Fassio F, Facioni MS, Guagnini F. Lactose Maldigestion, Malabsorption, and Intolerance: A Comprehensive Review with a Focus on Current Management and Future Perspectives. Nutrients. 2018;10(11). DOI:10.3390/nu10111599
27. Cheong KL, Chen S, Teng B, et al. Oligosaccharides as Potential Regulators of Gut Microbiota and Intestinal Health in Post-COVID-19 Management. Pharmaceuticals (Basel). 2023;16(6). DOI:10.3390/ph16060860
28. Moukarzel S, Bode L. Human Milk Oligosaccharides and the Preterm Infant: A Journey in Sickness and in Health. Clin Perinatol. 2017;44(1):193-207. DOI:10.1016/j.clp.2016.11.014
29. Lawson MAE, O’Neill IJ, Kujawska M, et al. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J. 2020;14(2):635-48. DOI:10.1038/s41396-019-0553-2
30. Gurung M, Schlegel BT, Rajasundaram D, et al. Microbiota from human infants consuming secretors or non-secretors mothers’ milk impacts the gut and immune system in mice. mSystems. 2024;9(4):e0029424. DOI:10.1128/msystems.00294-24
31. Tonon KM, Morais TB, Taddei CR, et al. Gut microbiota comparison of vaginally and cesarean born infants exclusively breastfed by mothers secreting α1-2 fucosylated oligosaccharides in breast milk. PLoS One. 2021;16(2):e0246839. DOI:10.1371/journal.pone.0246839
32. Kirmiz N, Robinson RC, Shah IM, et al. Milk Glycans and Their Interaction with the Infant-Gut Microbiota. Annu Rev Food Sci Technol. 2018;9:429-50.
DOI:10.1146/annurev-food-030216-030207
33. Pekdemir B, Karav S. Exploring the diverse biological significance and roles of fucosylated oligosaccharides. Front Mol Biosci. 2024;11:1403727. DOI:10.3389/fmolb.2024.1403727
34. Salli K, Hirvonen J, Anglenius H, et al. The Effect of Human Milk Oligosaccharides and Bifidobacterium longum subspecies infantis Bi-26 on Simulated Infant Gut Microbiome and Metabolites. Microorganisms. 2023;11(6). DOI:10.3390/microorganisms11061553
35. Lamberti LM, Fischer Walker CL, Noiman A, et al. Breastfeeding and the risk for diarrhea morbidity and mortality. BMC Public Health. 2011;11(Suppl. 3):S15.
DOI:10.1186/1471-2458-11-S3-S15
36. Yu S, Liu JJ, Yun EJ, et al. Production of a human milk oligosaccharide 2’-fucosyllactose by metabolically engineered Saccharomyces cerevisiae. Microb Cell Fact. 2018;17(1):101. DOI:10.1186/s12934-018-0947-2
37. Wang Y, Zou Y, Wang J, et al. The Protective Effects of 2’-Fucosyllactose against E. Coli O157 Infection Are Mediated by the Regulation of Gut Microbiota and the Inhibition of Pathogen Adhesion. Nutrients. 2020;12(5). DOI:10.3390/nu12051284
38. Ruiz-Palacios GM, Cervantes LE, Ramos P, et al. Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem. 2003;278(16):14112-20. DOI:10.1074/jbc.M207744200
39. Hoeflinger JL, Davis SR, Chow J, Miller MJ. In vitro impact of human milk oligosaccharides on Enterobacteriaceae growth. J Agric Food Chem.
2015;63(12):3295-302. DOI:10.1021/jf505721p
40. Paone P, Latousakis D, Terrasi R, et al. Human milk oligosaccharide 2’-fucosyllactose protects against high-fat diet-induced obesity by changing intestinal mucus production, composition and degradation linked to changes in gut microbiota and faecal proteome profiles in mice. Gut. 2024. DOI:10.1136/gutjnl-2023-330301
41. Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol. 2019;12(4):843-50. DOI:10.1038/s41385-019-0160-6
42. Sodhi CP, Ahmad R, Fulton WB, et al. Human milk oligosaccharides reduce necrotizing enterocolitis-induced neuroinflammation and cognitive impairment in mice. Am J Physiol Gastrointest Liver Physiol. 2023;325(1):G23-41. DOI:10.1152/ajpgi.00233.2022
43. Pak ME, Kim YJ, Kim H, et al. Anti-Neuroinflammatory Effects of the Human Milk Oligosaccharide, 2’-Fucosyllactose, Exerted via Modulation of M2 Microglial Activation in a Mouse Model of Ischemia-Reperfusion Injury. Antioxidants (Basel). 2023;12(6). DOI:10.3390/antiox12061281
44. Gao H, Fang B, Sun Z, et al. Effect of Human Milk Oligosaccharides on Learning and Memory in Mice with Alzheimer’s Disease. J Agric Food Chem. 2024;72(2):1067-81. DOI:10.1021/acs.jafc.3c05949
45. Berger PK, Plows JF, Jones RB, et al. Human milk oligosaccharide 2’-fucosyllactose links feedings at 1 month to cognitive development at 24 months in infants of normal and overweight mothers. PLoS One. 2020;15(2):e0228323. DOI:10.1371/journal.pone.0228323
46. Smith-Brown P, Morrison M, Krause L, Davies PS. Mothers Secretor Status Affects Development of Childrens Microbiota Composition and Function: A Pilot Study. PLoS One. 2016;11(9):e0161211. DOI:10.1371/journal.pone.0161211
47. Saraf MK, Piccolo BD, Bowlin AK, et al. Formula diet driven microbiota shifts tryptophan metabolism from serotonin to tryptamine in neonatal porcine colon. Microbiome. 2017;5(1):77. DOI:10.1186/s40168-017-0297-z
48. Захарова И.Н., Оробинская Я.В., Сугян Н.Г., и др. Олигосахариды грудного молока: что мы знаем о них сегодня? Педиатрия. Consilium Medicum. 2022;3:204-12 [Zakharova IN, Orobinskaia IaV, Sugian NG, et al. Breast milk oligosaccharides: what do we know today? Pediatrics. Consilium Medicum. 2022;3:204-12 (in Russian)]. DOI:10.26442/26586630.2022.3.201851
49. Puccio G, Alliet P, Cajozzo C, et al. Effects of Infant Formula With Human Milk Oligosaccharides on Growth and Morbidity: A Randomized Multicenter Trial. J Pediatr Gastroenterol Nutr. 2017;64(4):624-31. DOI:10.1097/MPG.0000000000001520
50. Marriage BJ, Buck RH, Goehring KC, et al. Infants Fed a Lower Calorie Formula With 2’FL Show Growth and 2’FL Uptake Like Breast-Fed Infants. J Pediatr Gastroenterol Nutr. 2015;61(6):649-58. DOI:10.1097/MPG.0000000000000889
51. Kajzer J, Oliver J, Marriage B. Gastrointestinal tolerance of formula supplemented with oligosaccharides. FASEB J.
2016;30(Suppl. 1):671-4. DOI:10.1096/fasebj.30.1_supplement.671.4
52. Mortaz E, Nomani M, Adcock I, et al. Galactooligosaccharides and 2’-fucosyllactose can directly suppress growth of specific pathogenic microbes and affect phagocytosis of neutrophils. Nutrition. 2022;96:111601. DOI:10.1016/j.nut.2022.111601
53. Weichert S, Jennewein S, Hüfner E, et al. Bioengineered 2’-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines. Nutr Res. 2013;33(10):831-8. DOI:10.1016/j.nutres.2013.07.009
54. Bozorgmehr T, Boutin RCT, Woodward SE, et al. Early Life Exposure to Human Milk Oligosaccharides Reduces Allergic Response in a Murine Asthma Model. J Immunol Res. 2023;2023:9603576. DOI:10.1155/2023/9603576
55. Krumbeck JA, Rasmussen HE, Hutkins RW, et al. Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome. 2018;6(1):121. DOI:10.1186/s40168-018-0494-4
56. Horigome A, Hisata K, Odamaki T, et al. Colonization of Supplemented Bifidobacterium breve M-16V in Low Birth Weight Infants and Its Effects on Their Gut Microbiota Weeks Post-administration. Front Microbiol. 2021;12:610080. DOI:10.3389/fmicb.2021.610080
57. Yang N, Lan T, Han Y, et al. Tributyrin alleviates gut microbiota dysbiosis to repair intestinal damage in antibiotic-treated mice. PLoS One. 2023;18(7):e0289364. DOI:10.1371/journal.pone.0289364
58. Xi M, Hao G, Yao Q, et al. Galactooligosaccharide Mediates NF-κB Pathway to Improve Intestinal Barrier Function and Intestinal Microbiota. Molecules. 2023;28(22). DOI:10.3390/molecules28227611
59. Zhang S, Li T, Xie J, et al. Gold standard for nutrition: a review of human milk oligosaccharide and its effects on infant gut microbiota. Microb Cell Fact. 2021;20(1):108. DOI:10.1186/s12934-021-01599-y
60. Goehring KC, Marriage BJ, Oliver JS, et al. Similar to Those Who Are Breastfed, Infants Fed a Formula Containing 2’-Fucosyllactose Have Lower Inflammatory Cytokines in a Randomized Controlled Trial. J Nutr. 2016;146(12):2559-66. DOI:10.3945/jn.116.236919
61. He Y, Liu S, Kling DE, et al. The human milk oligosaccharide 2’-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation. Gut. 2016;65(1):33-46. DOI:10.1136/gutjnl-2014-307544
62. Moro G, Arslanoglu S, Stahl B, et al. A mixture of prebiotic oligosaccharides reduces the incidence of atopic dermatitis during the first six months of age. Arch Dis Child. 2006;91(10):814-9. DOI:10.1136/adc.2006.098251
63. Sprenger N, Odenwald H, Kukkonen AK, et al. FUT2-dependent breast milk oligosaccharides and allergy at 2 and 5 years of age in infants with high hereditary allergy risk. Eur J Nutr. 2017;56(3):1293-301. DOI:10.1007/s00394-016-1180-6
________________________________________________
1. Smilowitz JT, Lebrilla CB, Mills DA, et al. Breast milk oligosaccharides: structure-function relationships in the neonate. Annu Rev Nutr. 2014;34:143-69.
DOI:10.1146/annurev-nutr-071813-105721
2. Ventura M, Milani C, Lugli GA, van Sinderen D. Health benefits conferred by the human gut microbiota during infancy. Microb Biotechnol. 2019;12(2):243-8.
DOI:10.1111/1751-7915.13334
3. Ho NT, Li F, Lee-Sarwar KA, et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat Commun. 2018;9(1):4169.
DOI:10.1038/s41467-018-06473-x
4. Noel G, In JG, Lemme-Dumit JM, et al. Human Breast Milk Enhances Intestinal Mucosal Barrier Function and Innate Immunity in a Healthy Pediatric Human Enteroid Model. Front Cell Dev Biol. 2021;9:685171. DOI:10.3389/fcell.2021.685171
5. Guo M. Introduction: trends and issues in breastfeeding and the use of infant formula. Human Milk Biochemistry and Infant Formula Manufacturing Technology. 2014;1-16. DOI:10.1533/9780857099150.1
6. Gila-Diaz A, Arribas SM, Algara A, et al. A Review of Bioactive Factors in Human Breastmilk: A Focus on Prematurity. Nutrients. 2019;11(6). DOI:10.3390/nu11061307
7. Urashima T, Asakuma S, Leo F, et al. The predominance of type I oligosaccharides is a feature specific to human breast milk. Adv Nutr.
2012;3(3):473S-82S. DOI:10.3945/an.111.001412
8. Zivkovic AM, Lewis ZT, German JB, Mills DA. Establishment of a milk-oriented microbiota (MOM) in early life: how babies meet their MOMs. Funct Food Rev. 2013;5:3-12. DOI:10.2310/6180.2009.00035
9. Newburg DS, Ruiz-Palacios GM, Morrow AL. Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr.
2005;25:37-58. DOI:10.1146/annurev.nutr.25.050304.092553
10. Chichlowski M, De Lartigue G, German JB, et al. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. J Pediatr Gastroenterol Nutr. 2012;55(3):321-7. DOI:10.1097/MPG.0b013e31824fb899
11. Zivkovic AM, German JB, Lebrilla CB, Mills DA. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci U S A.
2011;108 Suppl. 1(Suppl. 1):4653-8. DOI:10.1073/pnas.1000083107
12. Fürst A, Ford B, Hentschel H, Bode L. Human Milk Oligosaccharides in Antenatal Colostrum: A Case Study. Breastfeed Med. 2024;19(8):652-8. DOI:10.1089/bfm.2024.0048
13. Wang H, Zhang X, Kang P, et al. Variations in Oligosaccharides and N/O-Glycans in Human Milk through the Eight-Month Lactation Period. J Agric Food Chem. 2022;70(44):14272-83. DOI:10.1021/acs.jafc.2c05869
14. Bermejo-Haro MY, Camacho-Pacheco RT, Brito-Pérez Y, Mancilla-Herrera I. The hormonal physiology of immune components in breast milk and their impact on the infant immune response. Mol Cell Endocrinol. 2023;572:111956. DOI:10.1016/j.mce.2023.111956
15. Barnum CR, Paviani B, Couture G, et al. Engineered plants provide a photosynthetic platform for the production of diverse human milk oligosaccharides. Nat Food. 2024;5(6):480-90. DOI:10.1038/s43016-024-00996-x
16. Orczyk-Pawiłowicz M, Lis-Kuberka J. The Impact of Dietary Fucosylated Oligosaccharides and Glycoproteins of Human Milk on Infant Well-Being. Nutrients. 2020;12(4). DOI:10.3390/nu12041105
17. Ruhaak LR, Lebrilla CB. Analysis and role of oligosaccharides in milk. BMB Rep. 2012;45(8):442-51. DOI:10.5483/BMBRep.2012.45.8.161
18. Sprenger N, Tytgat HLP, Binia A, et al. Biology of human milk oligosaccharides: From basic science to clinical evidence. J Hum Nutr Diet. 2022;35(2):280-99. DOI:10.1111/jhn.12990
19. Plows JF, Berger PK, Jones RB, et al. Longitudinal Changes in Human Milk Oligosaccharides (HMOs) Over the Course of 24 Months of Lactation. J Nutr. 2021;151(4):876-82. DOI:10.1093/jn/nxaa427
20. De Leoz ML, Gaerlan SC, Strum JS, et al. Lacto-N-tetraose, fucosylation, and secretor status are highly variable in human milk oligosaccharides from women delivering preterm. J Proteome Res. 2012;11(9):4662-72. DOI:10.1021/pr3004979
21. Ma X, Nan F, Liang H, et al. Excessive intake of sugar: An accomplice of inflammation. Front Immunol. 2022;13:988481. DOI:10.3389/fimmu.2022.988481
22. Mokhtari P, Schmidt KA, Zamanian H, et al. Maternal Diet Associated with Oligosaccharide Abundances in Human Milk from Latina Mothers. Nutrients. 2024;16(12). DOI:10.3390/nu16121795
23. Gómez-Gallego C, Morales JM, Monleón D, et al. Human Breast Milk NMR Metabolomic Profile across Specific Geographical Locations and Its Association with the Milk Microbiota. Nurients. 2018;10(10). DOI:10.3390/nu10101355
24. Akkerman R, Faas MM, de Vos P. Non-digestible carbohydrates in infant formula as substitution for human milk oligosaccharide functions: Effects on microbiota and gut maturation. Crit Rev Food Sci Nutr. 2019;59(9):1486-97. DOI:10.1080/10408398.2017.1414030
25. Vandenplas Y, Berger B, Carnielli VP, et al. Human Milk Oligosaccharides: 2’-Fucosyllactose (2’-FL) and Lacto-N-Neotetraose (LNnT) in Infant Formula. Nutrients. 2018;10(9). DOI:10.3390/nu10091161
26. Fassio F, Facioni MS, Guagnini F. Lactose Maldigestion, Malabsorption, and Intolerance: A Comprehensive Review with a Focus on Current Management and Future Perspectives. Nutrients. 2018;10(11). DOI:10.3390/nu10111599
27. Cheong KL, Chen S, Teng B, et al. Oligosaccharides as Potential Regulators of Gut Microbiota and Intestinal Health in Post-COVID-19 Management. Pharmaceuticals (Basel). 2023;16(6). DOI:10.3390/ph16060860
28. Moukarzel S, Bode L. Human Milk Oligosaccharides and the Preterm Infant: A Journey in Sickness and in Health. Clin Perinatol. 2017;44(1):193-207. DOI:10.1016/j.clp.2016.11.014
29. Lawson MAE, O’Neill IJ, Kujawska M, et al. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J. 2020;14(2):635-48. DOI:10.1038/s41396-019-0553-2
30. Gurung M, Schlegel BT, Rajasundaram D, et al. Microbiota from human infants consuming secretors or non-secretors mothers’ milk impacts the gut and immune system in mice. mSystems. 2024;9(4):e0029424. DOI:10.1128/msystems.00294-24
31. Tonon KM, Morais TB, Taddei CR, et al. Gut microbiota comparison of vaginally and cesarean born infants exclusively breastfed by mothers secreting α1-2 fucosylated oligosaccharides in breast milk. PLoS One. 2021;16(2):e0246839. DOI:10.1371/journal.pone.0246839
32. Kirmiz N, Robinson RC, Shah IM, et al. Milk Glycans and Their Interaction with the Infant-Gut Microbiota. Annu Rev Food Sci Technol. 2018;9:429-50.
DOI:10.1146/annurev-food-030216-030207
33. Pekdemir B, Karav S. Exploring the diverse biological significance and roles of fucosylated oligosaccharides. Front Mol Biosci. 2024;11:1403727. DOI:10.3389/fmolb.2024.1403727
34. Salli K, Hirvonen J, Anglenius H, et al. The Effect of Human Milk Oligosaccharides and Bifidobacterium longum subspecies infantis Bi-26 on Simulated Infant Gut Microbiome and Metabolites. Microorganisms. 2023;11(6). DOI:10.3390/microorganisms11061553
35. Lamberti LM, Fischer Walker CL, Noiman A, et al. Breastfeeding and the risk for diarrhea morbidity and mortality. BMC Public Health. 2011;11(Suppl. 3):S15.
DOI:10.1186/1471-2458-11-S3-S15
36. Yu S, Liu JJ, Yun EJ, et al. Production of a human milk oligosaccharide 2’-fucosyllactose by metabolically engineered Saccharomyces cerevisiae. Microb Cell Fact. 2018;17(1):101. DOI:10.1186/s12934-018-0947-2
37. Wang Y, Zou Y, Wang J, et al. The Protective Effects of 2’-Fucosyllactose against E. Coli O157 Infection Are Mediated by the Regulation of Gut Microbiota and the Inhibition of Pathogen Adhesion. Nutrients. 2020;12(5). DOI:10.3390/nu12051284
38. Ruiz-Palacios GM, Cervantes LE, Ramos P, et al. Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem. 2003;278(16):14112-20. DOI:10.1074/jbc.M207744200
39. Hoeflinger JL, Davis SR, Chow J, Miller MJ. In vitro impact of human milk oligosaccharides on Enterobacteriaceae growth. J Agric Food Chem.
2015;63(12):3295-302. DOI:10.1021/jf505721p
40. Paone P, Latousakis D, Terrasi R, et al. Human milk oligosaccharide 2’-fucosyllactose protects against high-fat diet-induced obesity by changing intestinal mucus production, composition and degradation linked to changes in gut microbiota and faecal proteome profiles in mice. Gut. 2024. DOI:10.1136/gutjnl-2023-330301
41. Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol. 2019;12(4):843-50. DOI:10.1038/s41385-019-0160-6
42. Sodhi CP, Ahmad R, Fulton WB, et al. Human milk oligosaccharides reduce necrotizing enterocolitis-induced neuroinflammation and cognitive impairment in mice. Am J Physiol Gastrointest Liver Physiol. 2023;325(1):G23-41. DOI:10.1152/ajpgi.00233.2022
43. Pak ME, Kim YJ, Kim H, et al. Anti-Neuroinflammatory Effects of the Human Milk Oligosaccharide, 2’-Fucosyllactose, Exerted via Modulation of M2 Microglial Activation in a Mouse Model of Ischemia-Reperfusion Injury. Antioxidants (Basel). 2023;12(6). DOI:10.3390/antiox12061281
44. Gao H, Fang B, Sun Z, et al. Effect of Human Milk Oligosaccharides on Learning and Memory in Mice with Alzheimer’s Disease. J Agric Food Chem. 2024;72(2):1067-81. DOI:10.1021/acs.jafc.3c05949
45. Berger PK, Plows JF, Jones RB, et al. Human milk oligosaccharide 2’-fucosyllactose links feedings at 1 month to cognitive development at 24 months in infants of normal and overweight mothers. PLoS One. 2020;15(2):e0228323. DOI:10.1371/journal.pone.0228323
46. Smith-Brown P, Morrison M, Krause L, Davies PS. Mothers Secretor Status Affects Development of Childrens Microbiota Composition and Function: A Pilot Study. PLoS One. 2016;11(9):e0161211. DOI:10.1371/journal.pone.0161211
47. Saraf MK, Piccolo BD, Bowlin AK, et al. Formula diet driven microbiota shifts tryptophan metabolism from serotonin to tryptamine in neonatal porcine colon. Microbiome. 2017;5(1):77. DOI:10.1186/s40168-017-0297-z
48. Zakharova IN, Orobinskaia IaV, Sugian NG, et al. Breast milk oligosaccharides: what do we know today? Pediatrics. Consilium Medicum. 2022;3:204-12 (in Russian). DOI:10.26442/26586630.2022.3.201851
49. Puccio G, Alliet P, Cajozzo C, et al. Effects of Infant Formula With Human Milk Oligosaccharides on Growth and Morbidity: A Randomized Multicenter Trial. J Pediatr Gastroenterol Nutr. 2017;64(4):624-31. DOI:10.1097/MPG.0000000000001520
50. Marriage BJ, Buck RH, Goehring KC, et al. Infants Fed a Lower Calorie Formula With 2’FL Show Growth and 2’FL Uptake Like Breast-Fed Infants. J Pediatr Gastroenterol Nutr. 2015;61(6):649-58. DOI:10.1097/MPG.0000000000000889
51. Kajzer J, Oliver J, Marriage B. Gastrointestinal tolerance of formula supplemented with oligosaccharides. FASEB J.
2016;30(Suppl. 1):671-4. DOI:10.1096/fasebj.30.1_supplement.671.4
52. Mortaz E, Nomani M, Adcock I, et al. Galactooligosaccharides and 2’-fucosyllactose can directly suppress growth of specific pathogenic microbes and affect phagocytosis of neutrophils. Nutrition. 2022;96:111601. DOI:10.1016/j.nut.2022.111601
53. Weichert S, Jennewein S, Hüfner E, et al. Bioengineered 2’-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines. Nutr Res. 2013;33(10):831-8. DOI:10.1016/j.nutres.2013.07.009
54. Bozorgmehr T, Boutin RCT, Woodward SE, et al. Early Life Exposure to Human Milk Oligosaccharides Reduces Allergic Response in a Murine Asthma Model. J Immunol Res. 2023;2023:9603576. DOI:10.1155/2023/9603576
55. Krumbeck JA, Rasmussen HE, Hutkins RW, et al. Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome. 2018;6(1):121. DOI:10.1186/s40168-018-0494-4
56. Horigome A, Hisata K, Odamaki T, et al. Colonization of Supplemented Bifidobacterium breve M-16V in Low Birth Weight Infants and Its Effects on Their Gut Microbiota Weeks Post-administration. Front Microbiol. 2021;12:610080. DOI:10.3389/fmicb.2021.610080
57. Yang N, Lan T, Han Y, et al. Tributyrin alleviates gut microbiota dysbiosis to repair intestinal damage in antibiotic-treated mice. PLoS One. 2023;18(7):e0289364. DOI:10.1371/journal.pone.0289364
58. Xi M, Hao G, Yao Q, et al. Galactooligosaccharide Mediates NF-κB Pathway to Improve Intestinal Barrier Function and Intestinal Microbiota. Molecules. 2023;28(22). DOI:10.3390/molecules28227611
59. Zhang S, Li T, Xie J, et al. Gold standard for nutrition: a review of human milk oligosaccharide and its effects on infant gut microbiota. Microb Cell Fact. 2021;20(1):108. DOI:10.1186/s12934-021-01599-y
60. Goehring KC, Marriage BJ, Oliver JS, et al. Similar to Those Who Are Breastfed, Infants Fed a Formula Containing 2’-Fucosyllactose Have Lower Inflammatory Cytokines in a Randomized Controlled Trial. J Nutr. 2016;146(12):2559-66. DOI:10.3945/jn.116.236919
61. He Y, Liu S, Kling DE, et al. The human milk oligosaccharide 2’-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation. Gut. 2016;65(1):33-46. DOI:10.1136/gutjnl-2014-307544
62. Moro G, Arslanoglu S, Stahl B, et al. A mixture of prebiotic oligosaccharides reduces the incidence of atopic dermatitis during the first six months of age. Arch Dis Child. 2006;91(10):814-9. DOI:10.1136/adc.2006.098251
63. Sprenger N, Odenwald H, Kukkonen AK, et al. FUT2-dependent breast milk oligosaccharides and allergy at 2 and 5 years of age in infants with high hereditary allergy risk. Eur J Nutr. 2017;56(3):1293-301. DOI:10.1007/s00394-016-1180-6
Авторы
И.Н. Захарова*1, Н.Г. Сугян1,2, Я.В. Оробинская1,2 1ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия; 2ГБУЗ МО «Химкинская больница», Химки, Россия
*zakharova-rmapo@yandex.ru
________________________________________________
Irina N. Zakharova*1, Narine G. Sugian1,2, Yana V. Orobinskaya1,2
1Russian Medical Academy of Continuous Professional Education, Moscow, Russia; 2Khimki Hospital, Khimki, Russia
*zakharova-rmapo@yandex.ru