Zakharova IN, Berezhnaya IV, Dmitrieva DK, Pupykina VV. Axis "microbiota – gut – eye": A review. Pediatrics. Consilium Medicum. 2024;2:179–186. DOI: 10.26442/26586630.2024.2.202976
Zakharova IN, Berezhnaya IV, Dmitrieva DK, Pupykina VV. Axis "microbiota – gut – eye": A review. Pediatrics. Consilium Medicum. 2024;2:179–186. DOI: 10.26442/26586630.2024.2.202976
Каждый орган человеческого организма обладает собственной микробиотой, и глаз, сложный многокомпонентный орган, не является исключением. За счет ограничения традиционных методов исследования подробное изучение микробиома (МБ) глаза началось только в 2010 г. в рамках проекта «Глазной микробиом», когда благодаря прогрессу методов изучения удалось получить подробные данные, хотя ранее возникали споры, способны ли вообще микроорганизмы прикрепляться к поверхности глаза – слоям слезной пленки, обладающей антибактериальными свойствами. Структуры поверхности глаза формируют роговица, конъюнктива, слезные железы и слезная пленка, мейбомиевы железы, которые дополняются за счет МБ; вместе они противостоят раздражителям, аллергенам и патогенам. Для сохранения здоровья органа зрения критически важен гомеостаз микробиоты глаза. Большинство микроорганизмов располагаются на роговице и конъюнктиве, и современные методы исследования, в том числе секвенирование 16S рРНК, позволили установить «ядро» микробиоты поверхности глаза, выделив наиболее распространенные типы: Staphylococcus, Corynebacterium, Propionibacterium и Streptococcus, хотя вопрос точного состава «ядра» остается дискутабельным. На состав МБ способны оказывать влияние многие факторы, в числе которых возраст, ношение контактных линз, прием офтальмологических препаратов и антибиотиков. Как и на МБ многих других органов, на МБ поверхности глаза оказывает влияние МБ кишечника: данная связь названа осью «микробиота – кишечник – глаз». В рамках оси «кишечник – глаз» здоровая микробиота кишечника производит короткоцепочечные жирные кислоты, индолы, полиамины и другие вещества, благотворно воздействующие на иммунную систему и здоровье сетчатки глаза. Состояние дисбиоза может приводить к нарушению гомеостаза, а нарастающая воспалительная реакция – способствовать повреждению зрительного нерва и прогрессированию заболевания глаз. Некоторые офтальмологические заболевания, например диабетическая ретинопатия, возрастная макулярная дегенерация, хориоидальная неоваскуляризация, увеит, первичная открытоугольная глаукома, синдром Шёгрена, синдром сухого глаза, вероятно, связаны с изменением микробного состава кишечника. Коррекция дисбиоза кишечника с применением различных методов приводит к снижению риска развития заболеваний глаз, хотя требуются дополнительные исследования для обнаружения новых методов лечения офтальмологических патологий по оси «микробиота – кишечник – глаз».
Every organ in the human body has its own microbiota, and the eye, a complex multi-component organ, is no exception. Due to the limitations of traditional methods, detailed study of the ocular microbiome began only in 2010 as part of the Eye Microbiome Project, when advances in research methods made it possible to obtain detailed data, although there had been debate previously about whether microorganisms were even able to attach to the ocular surface due to the layers of the tear film, which have antibacterial properties. The cornea, conjunctiva, lacrimal glands and tear film, meibomian glands and microbiome form the microenvironment of the ocular surface, interacting together and resisting irritants, allergens and pathogens. Homeostasis of the ocular microbiota is critical for maintaining the health of the visual organ. Most microorganisms are found on the cornea and conjunctiva, and modern research methods, including 16S rRNA sequencing, have allowed us to establish the "core" of the ocular surface microbiota, identifying the most common types: Staphylococcus, Corynebacterium, Propionibacterium, and Streptococcus, although the exact composition of the “core” remains debatable. Many factors can influence the composition of the microbiome, including age, contact lens wear, ophthalmic medications, and antibiotics. Like the microbiome of many other organs, the ocular surface microbiome is influenced by the gut microbiome: this relationship has been called the "microbiota – gut – eye" axis. Within the "gut – eye" axis, healthy gut microbiota produce short-chain fatty acids, indoles, polyamines, and other substances that have a beneficial effect on the immune system and retinal health. The state of dysbiosis leads to disruption of homeostasis, and the increasing inflammatory reaction can contribute to damage to the optic nerve and progression of eye disease. Some ophthalmologic diseases, such as diabetic retinopathy, age-related macular degradation, choroidal neovascularization, uveitis, primary open-angle glaucoma, Sjogren's syndrome, dry eye syndrome are associated with dysbiosis of the intestinal microbial composition. Correction of intestinal dysbiosis using various methods can lead to a decrease in the risk of eye diseases, although additional research is needed to discover new methods for treating ophthalmologic pathologies along the "microbiota – gut – eye" axis.
1 Zhang X, M VJ, Qu Y, et al. Dry eye management: Targeting the ocular surface microenvironment. Int J Mol Sci. 2017;18(7):1398. DOI:10.3390/ijms18071398
2. Kureshi AK, Dziasko M, Funderburgh JL, Daniels JT. Human corneal stromal stem cells support limbal epithelial cells cultured on RAFT tissue equivalents. Sci Rep. 2015;5:16186. DOI:10.1038/srep16186
3. Paulsen FP, Berry MS. Mucins and TFF peptides of the tear film and lacrimal apparatus. Prog Histochem Cytochem. 2006;41(1):1-53. DOI:10.1016/j.proghi.2006.03.001
4. Zhang X, Volpe EA, Gandhi NB, et al. NK cells promote Th-17 mediated corneal barrier disruption in dry eye. PLoS One. 2012;7(5):e36822. DOI:10.1371/journal.pone.0036822
5. Conrady CD, Joos ZP, Patel BC. Review: The lacrimal gland and its role in dry eye. J Ophthalmol. 2016;2016:7542929. DOI:10.1155/2016/7542929
6. Call M, Fischesser K, Lunn MO, Kao WW. A unique lineage gives rise to the meibomian gland. Mol Vis. 2016;22:168-76. PMID:26957900
7. Keilty RA. The bacterial flora of the normal conjunctiva with comparative nasal culture study. Am J Ophthalmol. 1930;13(10):876-9.
8. Pucker AD, Haworth KM. The presence and significance of polar meibum and tear lipids. Ocul Surf. 2015;13(1):26-42. DOI:10.1016/j.jtos.2014.06.002
9. Klenkler B, Sheardown H, Jones L. Growth factors in the tear film: role in tissue maintenance, wound healing, and ocular pathology. Ocul Surf. 2007;5(3):228-39.
DOI:10.1016/s1542-0124(12)70613-4
10. Reading NC, Sperandio V. Quorum sensing: The many languages of bacteria. FEMS Microbiol Lett. 2006;254(1):1-11. DOI:10.1111/j.1574-6968.2005.00001.x
11. Willcox MD. Characterization of the normal microbiota of the ocular surface. Exp Eye Res. 2013;117:99-105. DOI:10.1016/j.exer.2013.06.003
12. Ueta M, Kinoshita S. Innate immunity of the ocular surface. Brain Res Bull. 2010;81(2-3):219-28. DOI:10.1016/j.brainresbull.2009.10.001
13. Su CS, Bowden S, Fong LP, Taylor HR. Detection of hepatitis B virus DNA in tears by polymerase chain reaction. Arch Ophthalmol.
1994;112(5):621-5. DOI:10.1001/archopht.1994.01090170065024
14. Kaufman HE, Azcuy AM, Varnell ED, et al. HSV-1 DNA in tears and saliva of normal adults. Invest Ophthalmol Vis Sci. 2005;46(1):241-7. DOI:10.1167/iovs.04-0614
15. Wu T, Mitchell B, Carothers T, et al. Molecular analysis of the pediatric ocular surface for fungi. Curr Eye Res. 2003;26(1):33-6. DOI:10.1076/ceyr.26.1.33.14253
16. Wang Y, Chen H, Xia T, Huang Y. Characterization of fungal microbiota on normal ocular surface of humans. Clin Microbiol Infect. 2020;26:123.e9-13. DOI:10.1016/j.cmi.2019.05.011
17. Graham JE, Moore JE, Jiru X, et al. Ocular pathogen or commensal: A PCR-based study of surface bacterial flora in normal and dry eyes. Invest Ophthalmol Vis Sci. 2007;48(12):5616-23. DOI:10.1167/iovs.07-0588
18. Shestopalov VI, Antonopoulos DA, Miller D, et al. Metagenomic analysis of bacterial community at the human conjunctiva. Invest Ophthalmol Vis Sci. 2010;51(13):2409.
19. Dong Q, Brulc JM, Iovieno A, et al. Diversity of bacteria at healthy human conjunctiva. Invest Ophthalmol Vis Sci. 2011;52(8):5408-13. DOI:10.1167/iovs.10-6939
20. Zhou Y, Holland MJ, Makalo P, et al. The conjunctival microbiome in health and trachomatous disease: A case control study. Genome Med. 2014;6(11):99.
DOI:10.1186/s13073-014-0099-x
21. Huang Y, Yang B, Li W. Defining the normal core microbiome of conjunctival microbial communities. Clin Microbiol Infect. 2016;22(7):643.e7-12. DOI:10.1016/j.cmi.2016.04.008
22. Li Z, Gong Y, Chen S, et al. Comparative portrayal of ocular surface microbe with and without dry eye. J Microbiol. 2019;57(11):1025-32. DOI:10.1007/s12275-019-9127-2
23. Ozkan J, Nielsen S, Diez-Vives C, et al. Temporal stability and composition of the ocular surface microbiome. Sci Rep. 2017;7(1):9880. DOI:10.1038/s41598-017-10494-9
24. Isenberg SJ, Apt L, Yoshimori R, Alvarez SR. Source of the conjunctival bacterial flora at birth and implications for ophthalmia neonatorum prophylaxis. Am J Ophthalmol. 1988;106(4):458-62. PMID:3177565
25. Lee PW, Jun AK, Cho BC. A study of microbial flora of conjunctival sac in newborns. Korean J Ophthalmol. 1989;3(1):38-41. PMID:2795940
26. Wen X, Miao L, Deng Y, et al. The influence of age and sex on ocular surface microbiota in healthy adults. Invest Ophthalmol Vis Sci. 2017;58(14):6030-7. DOI:10.1167/iovs.17-22957
27. Shin H, Price K, Albert L, et al. Changes in the eye microbiota associated with contact lens wearing. mBio. 2016;7(2):e00198. DOI:10.1128/mBio.00198-16
28. Dave SB, Toma HS, Kim SJ. Changes in ocular flora in eyes exposed to ophthalmic antibiotics. Ophthalmology. 2013;120(5):937-41. DOI:10.1016/j.ophtha.2012.11.005
29. Zysset-Burri DC, Morandi S, Herzog EL, et al. The role of the gut microbiome in eye diseases. Prog Retin Eye Res. 2023;92:101117. DOI:10.1016/j.preteyeres.2022.101117
30. Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA.
2004;101(44):15718-23. DOI:10.1073/pnas.0407076101
31. Beli E, Yan Y, Moldovan L, et al. Restructuring of the gut microbiome by intermittent fasting prevents retinopathy and prolongs survival in db/db mice. Diabetes. 2018;67(9):1867-79. DOI:10.2337/db18-0158
32. Adams MK, Simpson JA, Aung KZ, et al. Abdominal obesity and age-related macular degeneration. Am J Epidemiol. 2011;173(11):1246-55. DOI:10.1093/aje/kwr005
33. Rowan S, Jiang S, Korem T, et al. Involvement of a gut-retina axis in protection against dietary glycemia-induced age-related macular degeneration. Proc Natl Acad Sci USA. 2017;114(22):E4472-81. DOI:10.1073/pnas.1702302114
34. Lin P. The role of the intestinal microbiome in ocular inflammatory disease. Curr Opin Ophthalmol. 2018;29(3):261-6. DOI:10.1097/ICU.0000000000000465
35. Zinkernagel MS, Zysset-Burri DC, Keller I, et al. Association of the intestinal microbiome with the development of neovascular age-related macular degeneration. Sci Rep. 2017;7:40826. DOI:10.1038/srep40826
36. Abdulaal MR, Abiad BH, Hamam RN. Uveitis in the aging eye: Incidence, patterns, and differential diagnosis. J Ophthalmol. 2015;2015:509456. DOI:10.1155/2015/509456
37. Kalyana Chakravarthy S, Jayasudha R, Sai Prashanthi G, et al. Dysbiosis in the gut bacterial microbiome of patients with uveitis, an inflammatory disease of the eye. Indian J Microbiol. 2018;58(4):457-69. DOI:10.1007/s12088-018-0746-9
38. Chaiwiang N, Poyomtip T. Microbial dysbiosis and microbiota-gut-retina axis: The lesson from brain neurodegenerative diseases to primary open-angle glaucoma pathogenesis of autoimmunity. Acta Microbiol Immunol Hung. 2019;66(4):541-58. DOI:10.1556/030.66.2019.038
39. Gong H, Zhang S, Li Q, et al. Gut microbiota compositional profile and serum metabolic phenotype in patients with primary open-angle glaucoma. Exp Eye Res. 2020;191:107921. DOI:10.1016/j.exer.2020.107921
40. Ezzati Amini E, Moradi Y. Association between helicobacter pylori infection and primary open-angle glaucoma: A systematic review and meta-analysis. BMC Ophthalmol. 2023;23(1):374. DOI:10.1186/s12886-023-03111-z
41. Izzotti A, Saccà SC, Bagnis A, Recupero SM. Glaucoma and Helicobacter pylori infection: Correlations and controversies. Br J Ophthalmol. 2009;93(11):1420-7. DOI:10.1136/bjo.2008.150409
42. Moon J, Choi SH, Yoon CH, Kim MK. Gut dysbiosis is prevailing in Sjögren’s syndrome and is related to dry eye severity. PLoS One. 2020;15(2):e0229029. DOI:10.1371/journal.pone.0229029
43. Willis KA, Postnikoff CK, Freeman A, et al. The closed eye harbours a unique microbiome in dry eye disease. Sci Rep. 2020;10(1):12035. DOI:10.1038/s41598-020-68952-w
44. Layús BI, Gomez MA, Cazorla SI, Rodriguez AV. Drops of Lactiplantibacillus plantarum CRL 759 culture supernatant attenuates eyes inflammation induced by lipopolysaccharide. Benef Microbes. 2021;12(2):163-74. DOI:10.3920/BM2020.0101
45. Dusek O, Fajstova A, Klimova A, et al. Severity of experimental autoimmune uveitis is reduced by pretreatment with live probiotic Escherichia coli Nissle 1917. Cells. 2020;10(1):23. DOI:10.3390/cells10010023
46. Filippelli M, dell’Omo R, Amoruso A, et al. Effectiveness of oral probiotics supplementation in the treatment of adult small chalazion. Int J Ophthalmol.
2022;15(1):40-4. DOI:10.18240/ijo.2022.01.06
47. Yun SW , Son YH , Lee DY , et al. Lactobacillus plantarum and Bifidobacterium bifidum alleviate dry eye in mice with exorbital lacrimal gland excision by modulating gut inflammation and microbiota Food Funct. 2021;12(6):2489-97. DOI:10.1039/d0fo02984j. Erratum in: Food Funct. 2024;15(2):1051. DOI:10.1039/d3fo90112b
48. Vivero-Lopez M, Pereira-da-Mota AF, Carracedo G, et al. Phosphorylcholine-based contact lenses for sustained release of resveratrol: Design, antioxidant and antimicrobial performances, and in vivo behavior. ACS Appl Mater Interfaces. 2022;14(50):55431-46. DOI:10.1021/acsami.2c18217
49. Huang G, Su L, Zhang N, et al. The prebiotic and anti-fatigue effects of hyaluronan. Front Nutr. 2022;9:977556. DOI:10.3389/fnut.2022.977556
50. Askari G, Moravejolahkami AR. Synbiotic supplementation may relieve anterior uveitis, an ocular manifestation in Behcet’s syndrome. Am J Case Rep. 2019;20:548-50. DOI:10.12659/AJCR.912023
51. Erdem B, Kaya Y, Kıran TR, et al. An association between the intestinal permeability biomarker zonulin and the development of diabetic retinopathy in type II diabetes mellitus. Turk J Ophthalmol. 2023;53(2):91-6. DOI:10.4274/tjo.galenos.2022.70375
52. Gunardi TH, Susantono DP, Victor AA, Sitompul R. Atopobiosis and dysbiosis in ocular diseases: Is fecal microbiota transplant and probiotics a promising solution? J Ophthalmic Vis Res. 2021;16(4):631-43. DOI:10.18502/jovr.v16i4.9754
53. De Paiva CS, Jones DB, Stern ME, et al. Altered mucosal microbiome diversity and disease severity in Sjögren syndrome. Sci Rep. 2016;6:23561. DOI:10.1038/srep23561
54. Wang C, Zaheer M, Bian F, et al. Sjögren-like lacrimal keratoconjunctivitis in germ-free mice. Int J Mol Sci. 2018;19(2):565. DOI:10.3390/ijms19020565
55. Watane A, Cavuoto KM, Rojas M, et al. Fecal microbial transplant in individuals with immune-mediated dry eye. Am J Ophthalmol. 2022;233:90-100. DOI:10.1016/j.ajo.2021.06.022
56. Jayasudha R, Kalyana Chakravarthy S, Sai Prashanthi G, et al. Implicating dysbiosis of the gut fungal microbiome in uveitis, an inflammatory disease of the eye. Invest Ophthalmol Vis Sci. 2019;60(5):1384-93. DOI:10.1167/iovs.18-26426
57. Nakamura YK, Metea C, Karstens L, et al. Gut microbial alterations associated with protection from autoimmune uveitis. Invest Ophthalmol Vis Sci.
2016;57(8):3747-58. DOI:10.1167/iovs.16-19733
________________________________________________
1 Zhang X, M VJ, Qu Y, et al. Dry eye management: Targeting the ocular surface microenvironment. Int J Mol Sci. 2017;18(7):1398. DOI:10.3390/ijms18071398
2. Kureshi AK, Dziasko M, Funderburgh JL, Daniels JT. Human corneal stromal stem cells support limbal epithelial cells cultured on RAFT tissue equivalents. Sci Rep. 2015;5:16186. DOI:10.1038/srep16186
3. Paulsen FP, Berry MS. Mucins and TFF peptides of the tear film and lacrimal apparatus. Prog Histochem Cytochem. 2006;41(1):1-53. DOI:10.1016/j.proghi.2006.03.001
4. Zhang X, Volpe EA, Gandhi NB, et al. NK cells promote Th-17 mediated corneal barrier disruption in dry eye. PLoS One. 2012;7(5):e36822. DOI:10.1371/journal.pone.0036822
5. Conrady CD, Joos ZP, Patel BC. Review: The lacrimal gland and its role in dry eye. J Ophthalmol. 2016;2016:7542929. DOI:10.1155/2016/7542929
6. Call M, Fischesser K, Lunn MO, Kao WW. A unique lineage gives rise to the meibomian gland. Mol Vis. 2016;22:168-76. PMID:26957900
7. Keilty RA. The bacterial flora of the normal conjunctiva with comparative nasal culture study. Am J Ophthalmol. 1930;13(10):876-9.
8. Pucker AD, Haworth KM. The presence and significance of polar meibum and tear lipids. Ocul Surf. 2015;13(1):26-42. DOI:10.1016/j.jtos.2014.06.002
9. Klenkler B, Sheardown H, Jones L. Growth factors in the tear film: role in tissue maintenance, wound healing, and ocular pathology. Ocul Surf. 2007;5(3):228-39.
DOI:10.1016/s1542-0124(12)70613-4
10. Reading NC, Sperandio V. Quorum sensing: The many languages of bacteria. FEMS Microbiol Lett. 2006;254(1):1-11. DOI:10.1111/j.1574-6968.2005.00001.x
11. Willcox MD. Characterization of the normal microbiota of the ocular surface. Exp Eye Res. 2013;117:99-105. DOI:10.1016/j.exer.2013.06.003
12. Ueta M, Kinoshita S. Innate immunity of the ocular surface. Brain Res Bull. 2010;81(2-3):219-28. DOI:10.1016/j.brainresbull.2009.10.001
13. Su CS, Bowden S, Fong LP, Taylor HR. Detection of hepatitis B virus DNA in tears by polymerase chain reaction. Arch Ophthalmol.
1994;112(5):621-5. DOI:10.1001/archopht.1994.01090170065024
14. Kaufman HE, Azcuy AM, Varnell ED, et al. HSV-1 DNA in tears and saliva of normal adults. Invest Ophthalmol Vis Sci. 2005;46(1):241-7. DOI:10.1167/iovs.04-0614
15. Wu T, Mitchell B, Carothers T, et al. Molecular analysis of the pediatric ocular surface for fungi. Curr Eye Res. 2003;26(1):33-6. DOI:10.1076/ceyr.26.1.33.14253
16. Wang Y, Chen H, Xia T, Huang Y. Characterization of fungal microbiota on normal ocular surface of humans. Clin Microbiol Infect. 2020;26:123.e9-13. DOI:10.1016/j.cmi.2019.05.011
17. Graham JE, Moore JE, Jiru X, et al. Ocular pathogen or commensal: A PCR-based study of surface bacterial flora in normal and dry eyes. Invest Ophthalmol Vis Sci. 2007;48(12):5616-23. DOI:10.1167/iovs.07-0588
18. Shestopalov VI, Antonopoulos DA, Miller D, et al. Metagenomic analysis of bacterial community at the human conjunctiva. Invest Ophthalmol Vis Sci. 2010;51(13):2409.
19. Dong Q, Brulc JM, Iovieno A, et al. Diversity of bacteria at healthy human conjunctiva. Invest Ophthalmol Vis Sci. 2011;52(8):5408-13. DOI:10.1167/iovs.10-6939
20. Zhou Y, Holland MJ, Makalo P, et al. The conjunctival microbiome in health and trachomatous disease: A case control study. Genome Med. 2014;6(11):99.
DOI:10.1186/s13073-014-0099-x
21. Huang Y, Yang B, Li W. Defining the normal core microbiome of conjunctival microbial communities. Clin Microbiol Infect. 2016;22(7):643.e7-12. DOI:10.1016/j.cmi.2016.04.008
22. Li Z, Gong Y, Chen S, et al. Comparative portrayal of ocular surface microbe with and without dry eye. J Microbiol. 2019;57(11):1025-32. DOI:10.1007/s12275-019-9127-2
23. Ozkan J, Nielsen S, Diez-Vives C, et al. Temporal stability and composition of the ocular surface microbiome. Sci Rep. 2017;7(1):9880. DOI:10.1038/s41598-017-10494-9
24. Isenberg SJ, Apt L, Yoshimori R, Alvarez SR. Source of the conjunctival bacterial flora at birth and implications for ophthalmia neonatorum prophylaxis. Am J Ophthalmol. 1988;106(4):458-62. PMID:3177565
25. Lee PW, Jun AK, Cho BC. A study of microbial flora of conjunctival sac in newborns. Korean J Ophthalmol. 1989;3(1):38-41. PMID:2795940
26. Wen X, Miao L, Deng Y, et al. The influence of age and sex on ocular surface microbiota in healthy adults. Invest Ophthalmol Vis Sci. 2017;58(14):6030-7. DOI:10.1167/iovs.17-22957
27. Shin H, Price K, Albert L, et al. Changes in the eye microbiota associated with contact lens wearing. mBio. 2016;7(2):e00198. DOI:10.1128/mBio.00198-16
28. Dave SB, Toma HS, Kim SJ. Changes in ocular flora in eyes exposed to ophthalmic antibiotics. Ophthalmology. 2013;120(5):937-41. DOI:10.1016/j.ophtha.2012.11.005
29. Zysset-Burri DC, Morandi S, Herzog EL, et al. The role of the gut microbiome in eye diseases. Prog Retin Eye Res. 2023;92:101117. DOI:10.1016/j.preteyeres.2022.101117
30. Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA.
2004;101(44):15718-23. DOI:10.1073/pnas.0407076101
31. Beli E, Yan Y, Moldovan L, et al. Restructuring of the gut microbiome by intermittent fasting prevents retinopathy and prolongs survival in db/db mice. Diabetes. 2018;67(9):1867-79. DOI:10.2337/db18-0158
32. Adams MK, Simpson JA, Aung KZ, et al. Abdominal obesity and age-related macular degeneration. Am J Epidemiol. 2011;173(11):1246-55. DOI:10.1093/aje/kwr005
33. Rowan S, Jiang S, Korem T, et al. Involvement of a gut-retina axis in protection against dietary glycemia-induced age-related macular degeneration. Proc Natl Acad Sci USA. 2017;114(22):E4472-81. DOI:10.1073/pnas.1702302114
34. Lin P. The role of the intestinal microbiome in ocular inflammatory disease. Curr Opin Ophthalmol. 2018;29(3):261-6. DOI:10.1097/ICU.0000000000000465
35. Zinkernagel MS, Zysset-Burri DC, Keller I, et al. Association of the intestinal microbiome with the development of neovascular age-related macular degeneration. Sci Rep. 2017;7:40826. DOI:10.1038/srep40826
36. Abdulaal MR, Abiad BH, Hamam RN. Uveitis in the aging eye: Incidence, patterns, and differential diagnosis. J Ophthalmol. 2015;2015:509456. DOI:10.1155/2015/509456
37. Kalyana Chakravarthy S, Jayasudha R, Sai Prashanthi G, et al. Dysbiosis in the gut bacterial microbiome of patients with uveitis, an inflammatory disease of the eye. Indian J Microbiol. 2018;58(4):457-69. DOI:10.1007/s12088-018-0746-9
38. Chaiwiang N, Poyomtip T. Microbial dysbiosis and microbiota-gut-retina axis: The lesson from brain neurodegenerative diseases to primary open-angle glaucoma pathogenesis of autoimmunity. Acta Microbiol Immunol Hung. 2019;66(4):541-58. DOI:10.1556/030.66.2019.038
39. Gong H, Zhang S, Li Q, et al. Gut microbiota compositional profile and serum metabolic phenotype in patients with primary open-angle glaucoma. Exp Eye Res. 2020;191:107921. DOI:10.1016/j.exer.2020.107921
40. Ezzati Amini E, Moradi Y. Association between helicobacter pylori infection and primary open-angle glaucoma: A systematic review and meta-analysis. BMC Ophthalmol. 2023;23(1):374. DOI:10.1186/s12886-023-03111-z
41. Izzotti A, Saccà SC, Bagnis A, Recupero SM. Glaucoma and Helicobacter pylori infection: Correlations and controversies. Br J Ophthalmol. 2009;93(11):1420-7. DOI:10.1136/bjo.2008.150409
42. Moon J, Choi SH, Yoon CH, Kim MK. Gut dysbiosis is prevailing in Sjögren’s syndrome and is related to dry eye severity. PLoS One. 2020;15(2):e0229029. DOI:10.1371/journal.pone.0229029
43. Willis KA, Postnikoff CK, Freeman A, et al. The closed eye harbours a unique microbiome in dry eye disease. Sci Rep. 2020;10(1):12035. DOI:10.1038/s41598-020-68952-w
44. Layús BI, Gomez MA, Cazorla SI, Rodriguez AV. Drops of Lactiplantibacillus plantarum CRL 759 culture supernatant attenuates eyes inflammation induced by lipopolysaccharide. Benef Microbes. 2021;12(2):163-74. DOI:10.3920/BM2020.0101
45. Dusek O, Fajstova A, Klimova A, et al. Severity of experimental autoimmune uveitis is reduced by pretreatment with live probiotic Escherichia coli Nissle 1917. Cells. 2020;10(1):23. DOI:10.3390/cells10010023
46. Filippelli M, dell’Omo R, Amoruso A, et al. Effectiveness of oral probiotics supplementation in the treatment of adult small chalazion. Int J Ophthalmol.
2022;15(1):40-4. DOI:10.18240/ijo.2022.01.06
47. Yun SW , Son YH , Lee DY , et al. Lactobacillus plantarum and Bifidobacterium bifidum alleviate dry eye in mice with exorbital lacrimal gland excision by modulating gut inflammation and microbiota Food Funct. 2021;12(6):2489-97. DOI:10.1039/d0fo02984j. Erratum in: Food Funct. 2024;15(2):1051. DOI:10.1039/d3fo90112b
48. Vivero-Lopez M, Pereira-da-Mota AF, Carracedo G, et al. Phosphorylcholine-based contact lenses for sustained release of resveratrol: Design, antioxidant and antimicrobial performances, and in vivo behavior. ACS Appl Mater Interfaces. 2022;14(50):55431-46. DOI:10.1021/acsami.2c18217
49. Huang G, Su L, Zhang N, et al. The prebiotic and anti-fatigue effects of hyaluronan. Front Nutr. 2022;9:977556. DOI:10.3389/fnut.2022.977556
50. Askari G, Moravejolahkami AR. Synbiotic supplementation may relieve anterior uveitis, an ocular manifestation in Behcet’s syndrome. Am J Case Rep. 2019;20:548-50. DOI:10.12659/AJCR.912023
51. Erdem B, Kaya Y, Kıran TR, et al. An association between the intestinal permeability biomarker zonulin and the development of diabetic retinopathy in type II diabetes mellitus. Turk J Ophthalmol. 2023;53(2):91-6. DOI:10.4274/tjo.galenos.2022.70375
52. Gunardi TH, Susantono DP, Victor AA, Sitompul R. Atopobiosis and dysbiosis in ocular diseases: Is fecal microbiota transplant and probiotics a promising solution? J Ophthalmic Vis Res. 2021;16(4):631-43. DOI:10.18502/jovr.v16i4.9754
53. De Paiva CS, Jones DB, Stern ME, et al. Altered mucosal microbiome diversity and disease severity in Sjögren syndrome. Sci Rep. 2016;6:23561. DOI:10.1038/srep23561
54. Wang C, Zaheer M, Bian F, et al. Sjögren-like lacrimal keratoconjunctivitis in germ-free mice. Int J Mol Sci. 2018;19(2):565. DOI:10.3390/ijms19020565
55. Watane A, Cavuoto KM, Rojas M, et al. Fecal microbial transplant in individuals with immune-mediated dry eye. Am J Ophthalmol. 2022;233:90-100. DOI:10.1016/j.ajo.2021.06.022
56. Jayasudha R, Kalyana Chakravarthy S, Sai Prashanthi G, et al. Implicating dysbiosis of the gut fungal microbiome in uveitis, an inflammatory disease of the eye. Invest Ophthalmol Vis Sci. 2019;60(5):1384-93. DOI:10.1167/iovs.18-26426
57. Nakamura YK, Metea C, Karstens L, et al. Gut microbial alterations associated with protection from autoimmune uveitis. Invest Ophthalmol Vis Sci.
2016;57(8):3747-58. DOI:10.1167/iovs.16-19733
Авторы
И.Н. Захарова*1, И.В. Бережная1, Д.К. Дмитриева1,2, В.В. Пупыкина1 1ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия; 2ГБУЗ «Детская городская клиническая больница им. З.А. Башляевой» Департамента здравоохранения г. Москвы, Москва, Россия
*zakharova-rmapo@yandex.ru
________________________________________________
Irina N. Zakharova*1, Irina V. Berezhnaya1, Diana K. Dmitrieva1,2, Viktoria V. Pupykina1
1Russian Medical Academy of Continuous Professional Education, Moscow, Russia; 2Bashlyaeva Children's City Clinical Hospital, Moscow, Russia
*zakharova-rmapo@yandex.ru