Применение нейронавигационных технологий при тяжелых формах сколиоза у детей
Применение нейронавигационных технологий при тяжелых формах сколиоза у детей
Пимбурский И.П., Бутенко А.С., Самохин К.А., Челпаченко О.Б., Жердев К.В., Яцык C.П., Емельянов А.А. Применение нейронавигационных технологий при тяжелых формах сколиоза у детей. Педиатрия. Consilium Medicum. 2024;2:130–137. DOI: 10.26442/26586630.2024.2.202865
Pimburskiy IP, Butenko AS, Samokhin KA, Сhelpachenko OB, Zherdev KV, Yatsyk SP, Emelyanov AA. Use of neuronavigation technologies for severe forms of scoliosis in children. Pediatrics. Consilium Medicum. 2024;2:130–137. DOI: 10.26442/26586630.2024.2.202865
Применение нейронавигационных технологий при тяжелых формах сколиоза у детей
Пимбурский И.П., Бутенко А.С., Самохин К.А., Челпаченко О.Б., Жердев К.В., Яцык C.П., Емельянов А.А. Применение нейронавигационных технологий при тяжелых формах сколиоза у детей. Педиатрия. Consilium Medicum. 2024;2:130–137. DOI: 10.26442/26586630.2024.2.202865
Pimburskiy IP, Butenko AS, Samokhin KA, Сhelpachenko OB, Zherdev KV, Yatsyk SP, Emelyanov AA. Use of neuronavigation technologies for severe forms of scoliosis in children. Pediatrics. Consilium Medicum. 2024;2:130–137. DOI: 10.26442/26586630.2024.2.202865
Обоснование. Методом выбора хирургической коррекции сколиозов (ХКС) является технология трехмерной полисегментарной фиксации по Cotrel–Dubousset. Ее применение сопряжено с характерными сложностями и рисками, часто связанными с мальпозицией опорных элементов, а также риском осложнений. Частота неврологических осложнений при ХКС может достигать 7%. Высокие риски необратимых осложнений ХКС диктуют необходимость внедрения современных методов обеспечения безопасности, в числе которых О-arm-навигация и интраоперационный нейромониторинг (ИОНМ). Цель. Повышение эффективности и безопасности ХКС у детей с применением O-arm-навигации и ИОНМ. Материалы и методы. Под наблюдением находились 136 пациентов, прооперированных по поводу сколиоза. Они разделены на 2 группы: в 1-ю группу вошли пациенты, оперированные с применением технологии free-hand (всего проанализировано 609 винтов у 30 обследованных); во 2-ю группу – пациенты, прооперированные с использованием O-arm-навигации и нейромониторинга (524 винта у 25 больных). Средний угол деформации по Cobb составил 66,9±28,1° в 1-й группе и 82,4±25,8° – во 2-й. Мальпозиции оценены с использованием классификации G. Rao и соавт. (2002 г.), также проведен анализ неврологических осложнений у 69 пациентов в 1-й группе и у 67 – во 2-й. Результаты. В 1-й группе общая частота мальпозиций составила 27,3% (166 из 609 винтов), во 2-й группе – 10,5% (55 из 524 винтов). В 1-й группе частота мальпозиций 1-й степени составила 3,9% (24 из 609) случаев, 2-й степени – 11,8% (72 из 609), 3-й степени – 11,5% (70 из 609). Во 2-й группе 1-я степень встречалась в 4,2% (22 из 524) случаев, 2-я степень – в 3,4% (18 из 524) и 3-я степень – в 2,9% (15 из 524). Частота медиальных мальпозиций в 1-й группе была 7,6% (46 из 609), во 2-й – 2,7% (14 из 524). Латеральные мальпозиции в 1-й группе составили 11,7% (71 из 609), во 2-й – 4,4% (24 из 524), передние мальпозиции в 1-й группе – 8,05% (49 из 609), во 2-й – 3,2% (17 из 524). В 1-й группе отмечены 3 (4,3%) случая неврологических осложнений, во 2-й – 1 (1,4%). Заключение. O-arm-навигация и ИОНМ позволили снизить частоту мальпозиций, также отмечена тенденция снижения числа неврологических осложнений в группе пациентов, где использовали ИОНМ и O-arm-навигацию.
Background. The method of choice for surgical correction of scoliosis is the technology of three-dimensional polysegmental fixation according to Cotrel–Dubousset. Its use is associated with inherent difficulties and risks, often associated with malposition of supporting elements, as well as the risk of complications. The incidence of neurological complications during surgical correction of scoliosis can reach 7%. High risks, including irreversible complications, of surgical correction of scoliosis dictate the need to introduce modern safety methods, including O-arm navigation and intraoperative neuromonitoring (IONM). Aim. Increasing the effectiveness and safety of surgical correction of scoliosis in children using O-arm navigation and IONM. Materials and methods. 136 patients operated on for scoliosis were observed. The patients were divided into 2 groups: group 1 included patients operated on using the “free-hand” technology (a total of 609 screws were analyzed in 30 patients); group 2 included patients operated on using O-arm navigation and IONM (524 screws in 25 patients). The average Cobb angle of deformation was 66.9±28.1° in group I and 82.4±25.8° in group 2. Malpositions were assessed using the classification of G. Rao et al. (2002), and an analysis of neurological complications was also carried out in 69 patients in group 1, and in 67 patients in group 2. Results. In group 1, the overall incidence of malpositions was 27.3% (166 out of 609 screws). In group 2, it was 10.5% (55 out of 524 screws). In group 1, the frequency of grade 1 malpositions was 3.9% (24 out of 609), grade 2 – 11.8% (72 out of 609), grade 3 – 11.5% (70 out of 609). In 2: grade 1 occurred in 4.2% of cases (22 out of 524), grade 2 – 3.4% (18 out of 524), and grade 3 – 2.9% (15 out of 524). The frequency of medial malpositions in the first group was 7.6% (46 out of 609), in the second group – 2.7% (14 out of 524). Lateral malpositions in the group 1 were 11.7% (71 out of 609), in the group 2 – 4.4% (24 out of 524). Anterior malpositions in group 1 – 8.05% (49 out of 609), in group 2 – 3.2% (17 out of 524). In group 1 there were 3 cases of neurological complications – 4.3%, in group 2 – in 1 case – 1.4%. Conclusion. O-arm navigation and IONM made it possible to reduce the frequency of malpositions, and there was also a tendency to reduce the number of neurological complications in the group of patients where IONM and O-arm navigation were used.
1. Cotrel Y, Dubousset J, Guillaumat M. New universal instrumentation in spinal surgery. Clin Orthop Relat Res. 1988;227:10-23. PMID:3338200
2. Kwan MK, Chiu CK, Gani SMA, Wei CCY. Accuracy and Safety of Pedicle Screw Placement in Adolescent Idiopathic Scoliosis Patients: A Review of 2020 Screws Using Computed Tomography Assessment. Spine (Phila Pa 1976). 2017;42(5):326-35. DOI:10.1097/BRS.0000000000001738
3. Lenke LG, Kuklo TR, Ondra S, Polly DW Jr. Rationale behind the current state-of-the-art treatment of scoliosis (in the pedicle screw era). Spine (Phila Pa 1976). 2008;33(10):1051-4. DOI:10.1097/BRS.0b013e31816f2865
4. Suk SI, Lee SM, Chung ER, et al. Selective thoracic fusion with segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis: More than 5-year follow-up. Spine (Phila Pa 1976). 2005;30(14):1602-9. DOI:10.1097/01.brs.0000169452.50705.61
5. Suk SI, Kim JH, Kim SS, Lim DJ. Pedicle screw instrumentation in adolescent idiopathic scoliosis (AIS). Eur Spine J. 2012;21(1):13-22. DOI:10.1007/s00586-011-1986-0
6. Liljenqvist UR, Halm HF, Link TM. Pedicle screw instrumentation of the thoracic spine in idiopathic scoliosis. Spine (Phila Pa 1976). 1997;22(19):2239-45.
DOI:10.1097/00007632-199710010-00008
7. Diab M, Smith AR, Kuklo TR; Spinal Deformity Study Group. Neural complications in the surgical treatment of adolescent idiopathic scoliosis. Spine (Phila Pa 1976).
2007;32(24):2759-63. DOI:10.1097/BRS.0b013e31815a5970
8. Удалова И.Г., Михайловский М.В. Неврологические осложнения в хирургии сколиоза. Хирургия позвоночника. 2013;(3):038-43 [Udalova IG, Mikhailovsky MV. Neurological complications in scoliosis surgery. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2013;(3):038-43 (in Russian)]. DOI:10.14531/ss2013.3.38-43
9. Shi YM, Hou SX, Li L, et al. Prevention and management of the neurological complications during the treatment of severe scoliosis. Zhonghua Wai Ke Za Zhi. 2007;45(8):517-9. PMID:17686320 (in Chinese).
10. Suk SI, Kim WJ, Lee SM, et al. Thoracic pedicle screw fixation in spinal deformities: are they really safe? Spine (Phila Pa 1976). 2001;26(18):2049-57.
DOI:10.1097/00007632-200109150-00022
11. Hicks JM, Singla A, Shen FH, Arlet V. Complications of pedicle screw fixation in scoliosis surgery: A systematic review. Spine (Phila Pa 1976). 2010;35(11):E465-70. DOI:10.1097/BRS.0b013e3181d1021a
12. Аганесов А.Г., Алексанян М.М., Абугов С.А., Марданян Г.В. Тактика лечения потенциальных и истинных повреждений грудного отдела аорты транспедикулярными винтами при отсутствии острого кровотечения: анализ малой клинической серии и данных литературы. Хирургия позвоночника. 2022;19(4):46-51 [Aganesov AG, Aleksanyan MM, Abugov SA, Mardanyan GV. Tactics for the treatment of potential and true thoracic aorta injuries by pedicle screws in the absence of acute bleeding: Analysis of a small clinical series and literature data. Hir Pozvonoc. 2022;19(4):46-51 (in Russian)]. DOI:10.14531/ss2022.4.46-51
13. Blocher M, Mayer M, Resch H, Ortmaier R. Leriche-like syndrome as a delayed complication following posterior instrumentation of a traumatic L1 fracture: A case report and literature review. Spine (Phila Pa 1976). 2015;40(22):E1195-7. DOI:10.1097/BRS.0000000000001057
14. Choi JB, Han JO, Jeong JW. False aneurysm of the thoracic aorta associated with an aorto-chest wall fistula after spinal instrumentation. J Trauma.
2001;50(1):140-3. DOI:10.1097/00005373-200101000-00029
15. Rabellino M, Garcia-Monaco R, Cesareo V, et al. Endovascular treatment of iatrogenic aortic injury after spinal surgery. Minim Invasive Ther Allied Technol. 2013;22(1):56-60. DOI:10.3109/13645706.2012.692332
16. Sandhu HK, Charlton-Ouw KM, Azizzadeh A, et al. Spinal screw penetration of the aorta. J Vasc Surg. 2013;57(6):1668-70. DOI:10.1016/j.jvs.2012.10.087
17. Kakkos SK, Shepard AD. Delayed presentation of aortic injury by pedicle screws: report of two cases and review of the literature. J Vasc Surg. 2008;47(5):1074-82. DOI:10.1016/j.jvs.2007.11.005
18. Halm H, Niemeyer T, Link T, Liljenqvist U. Segmental pedicle screw instrumentation in idiopathic thoracolumbar and lumbar scoliosis. Eur Spine J.
2000;9(3):191-7. DOI:10.1007/s005860000139
19. Parker SL, McGirt MJ, Farber SH, et al. Accuracy of free-hand pedicle screws in the thoracic and lumbar spine: Analysis of 6816 consecutive screws. Neurosurgery. 2011;68(1):170-8; discussion 178. DOI:10.1227/NEU.0b013e3181fdfaf4
20. Kosmopoulos V, Schizas C. Pedicle screw placement accuracy: A meta-analysis. Spine (Phila Pa 1976). 2007;32(3):E111-20. DOI:10.1097/01.brs.0000254048.79024.8b
21. Sarlak AY, Tosun B, Atmaca H, et al. Evaluation of thoracic pedicle screw placement in adolescent idiopathic scoliosis. Eur Spine J. 2009;18(12):1892-7.
DOI:10.1007/s00586-009-1065-y
22. Kim YJ, Lenke LG, Cheh G, Riew KD. Evaluation of pedicle screw placement in the deformed spine using intraoperative plain radiographs: A comparison with computerized tomography. Spine (Phila Pa 1976). 2005;30(18):2084-8. DOI:10.1097/01.brs.0000178818.92105.ec
23. Floccari LV, Larson AN, Crawford CH 3rd, et al.; Minimize Implants Maximize Outcomes Study Group. Which malpositioned pedicle screws should be revised? J Pediatr Orthop. 2018;38(2):110-5. DOI:10.1097/BPO.0000000000000753
24. Oertel MF, Hobart J, Stein M, et al. Clinical and methodological precision of spinal navigation assisted by 3D intraoperative O-arm radiographic imaging. J Neurosurg Spine. 2011;14(4):532-6. DOI:10.3171/2010.10.SPINE091032
25. Baky FJ, Milbrandt T, Echternacht S, et al. Intraoperative computed tomography-guided navigation for pediatric spine patients reduced return to operating room for screw malposition compared with freehand/fluoroscopic techniques. Spine Deform. 2019;7(4):577-81. DOI:10.1016/j.jspd.2018.11.012
26. Jin M, Liu Z, Liu X, et al. Does intraoperative navigation improve the accuracy of pedicle screw placement in the apical region of dystrophic scoliosis secondary to neurofibromatosis type I: comparison between O-arm navigation and free-hand technique. Eur Spine J. 2016;25(6):1729-37. DOI:10.1007/s00586-015-4012-0
27. Van de Kelft E, Costa F, Van der Planken D, Schils F. A prospective multicenter registry on the accuracy of pedicle screw placement in the thoracic, lumbar, and sacral levels with the use of the O-arm imaging system and StealthStation Navigation. Spine (Phila Pa 1976). 2012;37(25):E1580-7. DOI:10.1097/BRS.0b013e318271b1fa
28. Feng W, Wang W, Chen S, et al. O-arm navigation versus C-arm guidance for pedicle screw placement in spine surgery: A systematic review and meta-analysis. Int Orthop. 2020;44(5):919-26. DOI:10.1007/s00264-019-04470-3
29. Kudo H, Wada K, Kumagai G, et al. Accuracy of pedicle screw placement by fluoroscopy, a three-dimensional printed model, local electrical conductivity measurement device, and intraoperative computed tomography navigation in scoliosis patients. Eur J Orthop Surg Traumatol. 2021;31(3):563-9. DOI:10.1007/s00590-020-02803-2
30. Gertzbein SD, Robbins SE. Accuracy of pedicular screw placement in vivo. Spine (Phila Pa 1976). 1990;15(1):11-4. DOI:10.1097/00007632-199001000-00004
31. Rao G, Brodke DS, Rondina M, Dailey AT. Comparison of computerized tomography and direct visualization in thoracic pedicle screw placement. J Neurosurg.
2002;97(Suppl. 2):223-6. DOI:10.3171/spi.2002.97.2.0223
32. Sarwahi V, Payares M, Wendolowski S, et al. Pedicle screw safety: How much anterior breach is safe? A Cadaveric and CT-Based Study. Spine (Phila Pa 1976). 2017;42(22):E1305-10. DOI:10.1097/BRS.0000000000002153
33. Ogura Y, Watanabe K, Hosogane N, et al. Acute respiratory failure due to hemotho-rax after posterior correction surgery for adolescent idiopathic scoliosis: A case report. BMC Musculoskelet Disord. 2013;14:132. DOI:10.1186/1471-2474-14-132
34. Jiang H, Qiu X, Wang W, et al. The position of the aorta changes with altered body position in single right thoracic adolescent idiopathic scoliosis: A magnetic resonance imaging study. Spine (Phila Pa 1976). 2012;37(17):E1054-61.
35. Liu J, Shen J, Zhang J, et al. The position of the aorta relative to the spine for pedicle screw placement in the correction of idiopathic scoliosis. J Spinal Disord Tech.
2012;25(4):E103-7. DOI:10.1097/BSD.0b013e31824a7bc3
36. Губин А.В., Рябых С.О., Бурцев А.В. Ретроспективный анализ мальпозиции винтов после инструментальной коррекции деформаций грудного и поясничного отделов позвоночника. Хирургия позвоночника. 2015;12(1):8-13 [Gubin AV, Ryabykh SO, Burtsev AV. Retrospective analysis of screw malposition following instrumented correction of thoracic and lumbar spine deformities. Hir Pozvonoc. 2015;12(1):8-13 (in Russian)]. DOI:10.14531/ss2015.1.8-13
________________________________________________
1. Cotrel Y, Dubousset J, Guillaumat M. New universal instrumentation in spinal surgery. Clin Orthop Relat Res. 1988;227:10-23. PMID:3338200
2. Kwan MK, Chiu CK, Gani SMA, Wei CCY. Accuracy and Safety of Pedicle Screw Placement in Adolescent Idiopathic Scoliosis Patients: A Review of 2020 Screws Using Computed Tomography Assessment. Spine (Phila Pa 1976). 2017;42(5):326-35. DOI:10.1097/BRS.0000000000001738
3. Lenke LG, Kuklo TR, Ondra S, Polly DW Jr. Rationale behind the current state-of-the-art treatment of scoliosis (in the pedicle screw era). Spine (Phila Pa 1976). 2008;33(10):1051-4. DOI:10.1097/BRS.0b013e31816f2865
4. Suk SI, Lee SM, Chung ER, et al. Selective thoracic fusion with segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis: More than 5-year follow-up. Spine (Phila Pa 1976). 2005;30(14):1602-9. DOI:10.1097/01.brs.0000169452.50705.61
5. Suk SI, Kim JH, Kim SS, Lim DJ. Pedicle screw instrumentation in adolescent idiopathic scoliosis (AIS). Eur Spine J. 2012;21(1):13-22. DOI:10.1007/s00586-011-1986-0
6. Liljenqvist UR, Halm HF, Link TM. Pedicle screw instrumentation of the thoracic spine in idiopathic scoliosis. Spine (Phila Pa 1976). 1997;22(19):2239-45.
DOI:10.1097/00007632-199710010-00008
7. Diab M, Smith AR, Kuklo TR; Spinal Deformity Study Group. Neural complications in the surgical treatment of adolescent idiopathic scoliosis. Spine (Phila Pa 1976).
2007;32(24):2759-63. DOI:10.1097/BRS.0b013e31815a5970
8. Udalova IG, Mikhailovsky MV. Neurological complications in scoliosis surgery. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2013;(3):038-43 (in Russian). DOI:10.14531/ss2013.3.38-43
9. Shi YM, Hou SX, Li L, et al. Prevention and management of the neurological complications during the treatment of severe scoliosis. Zhonghua Wai Ke Za Zhi. 2007;45(8):517-9. PMID:17686320 (in Chinese).
10. Suk SI, Kim WJ, Lee SM, et al. Thoracic pedicle screw fixation in spinal deformities: are they really safe? Spine (Phila Pa 1976). 2001;26(18):2049-57.
DOI:10.1097/00007632-200109150-00022
11. Hicks JM, Singla A, Shen FH, Arlet V. Complications of pedicle screw fixation in scoliosis surgery: A systematic review. Spine (Phila Pa 1976). 2010;35(11):E465-70. DOI:10.1097/BRS.0b013e3181d1021a
12. Aganesov AG, Aleksanyan MM, Abugov SA, Mardanyan GV. Tactics for the treatment of potential and true thoracic aorta injuries by pedicle screws in the absence of acute bleeding: Analysis of a small clinical series and literature data. Hir Pozvonoc. 2022;19(4):46-51 (in Russian). DOI:10.14531/ss2022.4.46-51
13. Blocher M, Mayer M, Resch H, Ortmaier R. Leriche-like syndrome as a delayed complication following posterior instrumentation of a traumatic L1 fracture: A case report and literature review. Spine (Phila Pa 1976). 2015;40(22):E1195-7. DOI:10.1097/BRS.0000000000001057
14. Choi JB, Han JO, Jeong JW. False aneurysm of the thoracic aorta associated with an aorto-chest wall fistula after spinal instrumentation. J Trauma.
2001;50(1):140-3. DOI:10.1097/00005373-200101000-00029
15. Rabellino M, Garcia-Monaco R, Cesareo V, et al. Endovascular treatment of iatrogenic aortic injury after spinal surgery. Minim Invasive Ther Allied Technol. 2013;22(1):56-60. DOI:10.3109/13645706.2012.692332
16. Sandhu HK, Charlton-Ouw KM, Azizzadeh A, et al. Spinal screw penetration of the aorta. J Vasc Surg. 2013;57(6):1668-70. DOI:10.1016/j.jvs.2012.10.087
17. Kakkos SK, Shepard AD. Delayed presentation of aortic injury by pedicle screws: report of two cases and review of the literature. J Vasc Surg. 2008;47(5):1074-82. DOI:10.1016/j.jvs.2007.11.005
18. Halm H, Niemeyer T, Link T, Liljenqvist U. Segmental pedicle screw instrumentation in idiopathic thoracolumbar and lumbar scoliosis. Eur Spine J.
2000;9(3):191-7. DOI:10.1007/s005860000139
19. Parker SL, McGirt MJ, Farber SH, et al. Accuracy of free-hand pedicle screws in the thoracic and lumbar spine: Analysis of 6816 consecutive screws. Neurosurgery. 2011;68(1):170-8; discussion 178. DOI:10.1227/NEU.0b013e3181fdfaf4
20. Kosmopoulos V, Schizas C. Pedicle screw placement accuracy: A meta-analysis. Spine (Phila Pa 1976). 2007;32(3):E111-20. DOI:10.1097/01.brs.0000254048.79024.8b
21. Sarlak AY, Tosun B, Atmaca H, et al. Evaluation of thoracic pedicle screw placement in adolescent idiopathic scoliosis. Eur Spine J. 2009;18(12):1892-7.
DOI:10.1007/s00586-009-1065-y
22. Kim YJ, Lenke LG, Cheh G, Riew KD. Evaluation of pedicle screw placement in the deformed spine using intraoperative plain radiographs: A comparison with computerized tomography. Spine (Phila Pa 1976). 2005;30(18):2084-8. DOI:10.1097/01.brs.0000178818.92105.ec
23. Floccari LV, Larson AN, Crawford CH 3rd, et al.; Minimize Implants Maximize Outcomes Study Group. Which malpositioned pedicle screws should be revised? J Pediatr Orthop. 2018;38(2):110-5. DOI:10.1097/BPO.0000000000000753
24. Oertel MF, Hobart J, Stein M, et al. Clinical and methodological precision of spinal navigation assisted by 3D intraoperative O-arm radiographic imaging. J Neurosurg Spine. 2011;14(4):532-6. DOI:10.3171/2010.10.SPINE091032
25. Baky FJ, Milbrandt T, Echternacht S, et al. Intraoperative computed tomography-guided navigation for pediatric spine patients reduced return to operating room for screw malposition compared with freehand/fluoroscopic techniques. Spine Deform. 2019;7(4):577-81. DOI:10.1016/j.jspd.2018.11.012
26. Jin M, Liu Z, Liu X, et al. Does intraoperative navigation improve the accuracy of pedicle screw placement in the apical region of dystrophic scoliosis secondary to neurofibromatosis type I: comparison between O-arm navigation and free-hand technique. Eur Spine J. 2016;25(6):1729-37. DOI:10.1007/s00586-015-4012-0
27. Van de Kelft E, Costa F, Van der Planken D, Schils F. A prospective multicenter registry on the accuracy of pedicle screw placement in the thoracic, lumbar, and sacral levels with the use of the O-arm imaging system and StealthStation Navigation. Spine (Phila Pa 1976). 2012;37(25):E1580-7. DOI:10.1097/BRS.0b013e318271b1fa
28. Feng W, Wang W, Chen S, et al. O-arm navigation versus C-arm guidance for pedicle screw placement in spine surgery: A systematic review and meta-analysis. Int Orthop. 2020;44(5):919-26. DOI:10.1007/s00264-019-04470-3
29. Kudo H, Wada K, Kumagai G, et al. Accuracy of pedicle screw placement by fluoroscopy, a three-dimensional printed model, local electrical conductivity measurement device, and intraoperative computed tomography navigation in scoliosis patients. Eur J Orthop Surg Traumatol. 2021;31(3):563-9. DOI:10.1007/s00590-020-02803-2
30. Gertzbein SD, Robbins SE. Accuracy of pedicular screw placement in vivo. Spine (Phila Pa 1976). 1990;15(1):11-4. DOI:10.1097/00007632-199001000-00004
31. Rao G, Brodke DS, Rondina M, Dailey AT. Comparison of computerized tomography and direct visualization in thoracic pedicle screw placement. J Neurosurg.
2002;97(Suppl. 2):223-6. DOI:10.3171/spi.2002.97.2.0223
32. Sarwahi V, Payares M, Wendolowski S, et al. Pedicle screw safety: How much anterior breach is safe? A Cadaveric and CT-Based Study. Spine (Phila Pa 1976). 2017;42(22):E1305-10. DOI:10.1097/BRS.0000000000002153
33. Ogura Y, Watanabe K, Hosogane N, et al. Acute respiratory failure due to hemotho-rax after posterior correction surgery for adolescent idiopathic scoliosis: A case report. BMC Musculoskelet Disord. 2013;14:132. DOI:10.1186/1471-2474-14-132
34. Jiang H, Qiu X, Wang W, et al. The position of the aorta changes with altered body position in single right thoracic adolescent idiopathic scoliosis: A magnetic resonance imaging study. Spine (Phila Pa 1976). 2012;37(17):E1054-61.
35. Liu J, Shen J, Zhang J, et al. The position of the aorta relative to the spine for pedicle screw placement in the correction of idiopathic scoliosis. J Spinal Disord Tech.
2012;25(4):E103-7. DOI:10.1097/BSD.0b013e31824a7bc3
36. Gubin AV, Ryabykh SO, Burtsev AV. Retrospective analysis of screw malposition following instrumented correction of thoracic and lumbar spine deformities. Hir Pozvonoc. 2015;12(1):8-13 (in Russian). DOI:10.14531/ss2015.1.8-13
1ФГАУ «Национальный медицинский исследовательский центр здоровья детей» Минздрава России, Москва, Россия; 2ФГБОУ ВО «Оренбургский государственный медицинский университет» Минздрава России, Оренбург, Россия; 3ГАУЗ «Оренбургский областной клинический центр хирургии и травматологии», Оренбург, Россия; 4ГБУЗ г. Москвы «Научно-исследовательский институт неотложной детской хирургии и травматологии» Департамента здравоохранения г. Москвы, Москва, Россия; 5ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия; 6ФГБОУ ВО «Рязанский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, Рязань, Россия
*bdfyltvbljd@yandex.ru
________________________________________________
Ivan P. Pimburskiy*1, Andrey S. Butenko1, Konstantin A. Samokhin2,3, Oleg B. Сhelpachenko1,4, Konstantin V. Zherdev1,5, Sergey P. Yatsyk1, Andrey A. Emelyanov6
1National Medical Research Center for Children's Health, Moscow, Russia; 2Orenburg State Medical University, Orenburg, Russia; 3Orenburg Regional Clinical Center of Surgery and Traumatology, Orenburg, Russia; 4Research Institute of Children's Traumatology and Surgery, Moscow, Russia; 5Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; 6Pavlov Ryazan State Medical University, Ryazan, Russia
*bdfyltvbljd@yandex.ru