Дефицит железа и его влияние на поствакцинальный иммунитет
Дефицит железа и его влияние на поствакцинальный иммунитет
Лебедев В.В., Демихов В.Г., Лунякова М.А., Демихова Е.В., Носова Н.Ю. Дефицит железа и его влияние на поствакцинальный иммунитет. Педиатрия. Consilium Medicum. 2024;3:254–259.
DOI: 10.26442/26586630.2024.3.202896
Lebedev VV, Demikhov VG, Lunyakova MA, Demikhova EV, Nosova NYu. Iron deficiency and its impact on post-vaccination immunity: A review. Pediatrics. Consilium Medicum. 2024;3:254–259.
DOI: 10.26442/26586630.2024.3.202896
Дефицит железа и его влияние на поствакцинальный иммунитет
Лебедев В.В., Демихов В.Г., Лунякова М.А., Демихова Е.В., Носова Н.Ю. Дефицит железа и его влияние на поствакцинальный иммунитет. Педиатрия. Consilium Medicum. 2024;3:254–259.
DOI: 10.26442/26586630.2024.3.202896
Lebedev VV, Demikhov VG, Lunyakova MA, Demikhova EV, Nosova NYu. Iron deficiency and its impact on post-vaccination immunity: A review. Pediatrics. Consilium Medicum. 2024;3:254–259.
DOI: 10.26442/26586630.2024.3.202896
Современные программы вакцинации имеют ключевое значение для преодоления бремени инфекционных болезней и спасения огромного числа человеческих жизней. Эффективная работа адаптивной иммунной системы обусловлена взаимодействием множества факторов. Клинические исследования, проведенные в последние годы, показали значимую роль железа в формировании иммунного ответа на инфекцию и вакцинацию. Лимфоциты, являясь ведущими клетками иммунной системы, не могут полноценно выполнять свои функции без доступа к циркулирующему железу. Количество железа, связанного с трансферрином крови, зависит от его поступления с пищей и снижается во время активного воспаления за счет увеличения выработки основного гормона, регулирующего обмен железа, – гепцидина. Поскольку железодефицитные состояния и хронические воспалительные процессы являются широко распространенными проблемами, вопрос потенциального влияния дефицита железа на иммунный ответ требует активного изучения. В обзоре представлены данные, подтверждающие важность железа для корректной работы иммунной системы, а также информация о влиянии дефицита железа на формирование поствакцинального иммунитета.
Modern vaccination programs are vital to overcoming the burden of infectious diseases and saving countless lives. The effective functioning of the adaptive immune system involves the interaction of many factors. Recent clinical studies have shown a significant role of iron in developing an immune response to infection and vaccination. Lymphocytes, the immune system's leading cells, cannot fully perform their functions without access to the circulating iron. The amount of iron bound to blood transferrin depends on its intake from food, and it is reduced during active inflammation due to the increase in the production of hepcidin, the main hormone regulating iron metabolism. Since iron deficiency conditions and chronic inflammatory processes are common, the potential impact of iron deficiency on the immune response warrants extensive study. The review presents data confirming the importance of iron for the correct functioning of the immune system and information on the effect of iron deficiency on the development of post-vaccination immunity.
Keywords: vaccination, iron deficiency, iron deficiency anemia, latent iron deficiency, hepcidin, post-vaccination immunity, vaccination efficacy
1. Global nutrition targets 2025: anaemia policy brief. Geneva: World Health Organization, 2014. Available at: https://www.who.int/publications/i/item/WHO-NMH-NHD-14.4. Accessed: 26.05.2024.
2. Резолюция совета экспертов по железодефицитной анемии у женщин. Акушерство и гинекология: новости, мнения, обучение. 2020;8(4):28-36 [Expert council resolution on iron-deficiency anemia in women. Obstetrics and Gynecology: News, Opinions, Training. 2020;8(4):28-36 (in Russian)]. DOI:10.24411/2303-9698-2020-14004
3. WHO Anaemia in Children. 2021. Available at: https://apps.who.int/gho/data/view.main.ANAEMIACHILDRENREGv?lang=en. Accessed: 26.05.2024.
4. WHO Anaemia Women of Reproductive Age. 2021. Available at: https://apps.who.int/gho/data/view.main.ANAEMIAWOMENREPRODUCTIVEREGv?lang=en. Accessed: 26.05.2024.
5. WHO Anaemia in Pregnant Women. 2021. Available at: https://apps.who.int/gho/data/view.main.ANAEMIAWOMENPWREGv?lang=en\. Accessed: 26.05.2024.
6. Petry N, Olofin I, Hurrell RF, et al. The Proportion of Anemia Associated with Iron Deficiency in Low, Medium, and High Human Development Index Countries: A Systematic Analysis of National Surveys. Nutrients. 2016;8:693. DOI:10.3390/nu8110693
7. WHO guidance helps detect iron deficiency and protect brain development. Available at: https://www.who.int/news/item/20-04-2020-who-guidance-helps-detect-iron-deficiency-and-protect-brain.... Accessed: 26.05.2024.
8. Yang J, Li Q, Feng Y, Zeng Y. Iron Deficiency and Iron Deficiency Anemia: Potential Risk Factors in Bone Loss. Int J Mol Sci. 2023;24(8):6891. DOI:10.3390/ijms24086891
9. Pasricha SR, Tye-Din J, Muckenthaler MU, Swinkels DW. Iron deficiency. Lancet. 2021;397(10270):233-48.
10. Preston AE, Drakesmith H, Frost JN. Adaptive immunity and vaccination – iron in the spotlight. Immunother Adv. 2021;1(1):ltab007.
11. Nairz M, Weiss G. Iron in infection and immunity. Mol Aspects Med. 2020;75:100864. DOI:10.1016/j.mam.2020.100864
12. Musallam KM, Taher AT. Iron deficiency beyond erythropoiesis: should we be concerned? Curr Med Res Opin. 2018;34(1):81-93. DOI:10.1080/03007995.2017.1394833
13. Торшин И.Ю., Громова О.А., Максимов В.А., Чучалин А.Г. О повышении эффективности вакцинации против вирусных и бактериальных патогенов посредством дотаций микронутриентов. Пульмонология. 2023;33(1):65-75 [Torshin IYu, Gromova OA, Maksimov VA, Chuchalin AG. Improving the effectiveness of vaccination against viral and bacterial pathogens through micronutrient supplementation. Pulmonologiya. 2023;33(1):65-75 (in Russian)]. DOI:10.18093/0869-0189-2022-2356
14. European Hematology Association (EHA). Expert opinions for COVID-19 vaccination in patients with non-malignant hematologic diseases. 2021. Available at: https://ehaweb.org/covid-19/eha-statement-on-covid-19-vaccines/recommendations-for-covid-19-vaccinat... Accessed: 26.05.2024.
15. Нетребенко О.К., Щеплягина Л.А. Иммунонутриенты в питании детей. Трудный пациент. 2006;4(6):21-6 [Netrebenko OK, Shcheplyagina LA. Immunonutrienty v pitanii detei. Trudnyi patsient. 2006;4(6):21-6 (in Russian)].
16. Лебедев В.В., Демихов В.Г., Дмитриев А.В., и др. Сравнительная эффективность и безопасность применения препаратов двух- и трехвалентного железа для лечения железодефицитной анемии. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2016;15(4):5-12 [Lebedev VV, Demikhov VG, Dmitriev AV, et al. A comparative efficacy and safety of using ferrous and ferric iron preparations for management of iron-deficiency anaemia. Pediatric Hematology/Oncology and Immunopathology. 2016;15(4):5-12 (in Russian)].
17. Fillebeen C, Wilkinson N, Charlebois E, et al. Hepcidin-mediated hypoferremic response to acute inflammation requires a threshold of Bmp6/Hjv/Smad signaling. Blood. 2018;132(17):1829-41. DOI:10.1182/blood-2018-03-841197
18. Nemeth E, Rivera S, Gabayan V, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest.
2004;113(9):1271-6. DOI:10.1172/jci20945
19. Stefanova D, Raychev A, Arezes J, et al. Endogenous hepcidin and its agonist mediate resistance to selected infections by clearing non-transferrin-bound iron. Blood. 2017;130(3):245-57. DOI:10.1182/blood-2017-03-772715
20. Frost JN, Tan TK, Abbas M, et al. Hepcidin-mediated hypoferremia disrupts immune responses to vaccination and infection. Med.
2020;2(2):164-79.e12. DOI:10.1016/j.medj.2020.10.004
21. Muchowska KB, Varma SJ, Moran J. Synthesis and breakdown of universal metabolic precursors promoted by iron. Nature. 2019;569(7754):104-7. DOI:10.1038/s41586-019-1151-1
22. Jabara HH, Boyden SE, Chou J, et al. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet. 2015;48(1):74-8. DOI:10.1038/ng.3465
23. Wang Z, Yin W, Zhu L, et al. Iron Drives T Helper Cell Pathogenicity by Promoting RNA-Binding Protein PCBP1-Mediated Proinflammatory Cytokine Production. Immunity. 2018;49(1):80-92.e7. DOI:10.1016/j.immuni.2018.05.008
24. Bergamaschi G, Borrelli de Andreis F, Aronico N, et al. Anemia in patients with Covid-19: pathogenesis and clinical significance. Clin Exp Med. 2021;21(2):239-46. DOI:10.1007/s10238-020-00679-4
25. Drakesmith H, Prentice AM. Hepcidin and the iron-infection axis. Science. 2012;338(6108):768-72. DOI:10.1126/science.1224577
26. Williams AM, Ladva CN, Leon JS, et al. Changes in micronutrient and inflammation serum biomarker concentrations after a norovirus human challenge. Am J Clin Nutr. 2019;110(6):1456-64. DOI:10.1093/ajcn/nqz201
27. Gwamaka M, Kurtis JD, Sorensen BE, et al. Iron deficiency protects against severe Plasmodium falciparum malaria and death in young children. Clin Infect Dis. 2012;54(8):1137-44. DOI:10.1093/cid/cis010
28. Harrington-Kandt R, Stylianou E, Eddowes LA, et al. Hepcidin deficiency and iron deficiency do not alter tuberculosis susceptibility in a murine M.tb infection model. PLoS One. 2018;13(1):e0191038. DOI:10.1371/journal.pone.0191038
29. Lim D, Kim KS, Jeong JH, et al. The hepcidin-ferroportin axis controls the iron content of Salmonella-containing vacuoles in macrophages. Nat Commun.
2018;9(1):1-12. DOI:10.1038/s41467-018-04446-8
30. Shah A, Frost JN, Aaron L, et al. Systemic hypoferremia and severity of hypoxemic respiratory failure in COVID-19. Crit Care. 2020;24(1):320. DOI:10.1186/s13054-020-03051-w
31. Sonnweber T, Boehm A, Sahanic S, et al. Persisting alterations of iron homeostasis in COVID-19 are associated with non-resolving lung pathologies and poor patients’ performance: a prospective observational cohort study. Respir Res. 2020;21(1):276. DOI:10.1186/s12931-020-01546-2
32. Nai A, Lorè NI, Pagani A, et al. Hepcidin levels predict Covid-19 severity and mortality in a cohort of hospitalized Italian patients. Am J Hematol. 2021;96(1):E32-5. DOI:10.1002/ajh.26027
33. Hippchen T, Altamura S, Muckenthaler MU, Merle U. Hypoferremia is associated with increased hospitalization and oxygen demand in COVID-19 patients. HemaSphere. 2020;4(6):e492. DOI:10.1097/HS9.0000000000000492
34. Chen LYC, Hoiland RL, Stukas S, et al. Assessing the importance of interleukin-6 in COVID-19. Lancet Respir Med. 2021;9(2):e13. DOI:10.1016/S2213-2600(20)30600-7
35. Rydyznski Moderbacher C, Ramirez SI, Dan JM, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell. 2020;183(4):996-1012.e19. DOI:10.1016/j.cell.2020.09.038
36. Gordon AC, Mouncey PR, Al-Beidh F, et al. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19. N Engl J Med.
2021;384(16):1491-502. DOI:10.1056/NEJMoa2100433
37. Bagchi K, Mohanram M, Reddy V. Humoral immune response in children with iron-deficiency anaemia. Br Med J. 1980;280(6226):1249. DOI:10.1136/bmj.280.6226.1249
38. Macdougall LG, Jacobs MR, Ch MBB. The Immune Response in Iron-Deficient Children Isohaemagglutinin Titres and Antibody Response to Immunization. South African Med J. 1978;53(11):405-7.
39. Brussow H, Sidoti J, Dirren H, Freire WB. Effect of malnutrition in Ecuadorian children on titers of serum antibodies to various microbial antigens. Clin Diagn Lab Immunol. 1995;2(1):62-8. DOI:10.1128/cdli.2.1.62-68.1995
40. Stoffel NU, Uyoga MA, Mutuku FM, et al. Iron deficiency anemia at time of vaccination predicts decreased vaccine response and iron supplementation at time of vaccination increases humoral vaccine response: A birth cohort study and a randomized trial follow-up study in Kenyan infants. Front Immunol. 2020;11:1313. DOI:10.3389/fimmu.2020.01313
41. Fülöp T, Wagner JR, Khalil A, et al. Relationship between the response to influenza vaccination and the nutritional status in institutionalized elderly subjects. J Gerontol A Biol Sci Med Sci. 1999;54(2):M59-64. DOI:10.1093/gerona/54.2.M59
42. Prendergast AJ. Malnutrition and vaccination in developing countries. Philos Trans R Soc B Biol Sci. 2015;370(1671). DOI:10.1098/rstb.2014.0141
43. Passanisi S, Dipasquale V, Romano C. Vaccinations and immune response in celiac disease. Vaccines. 2020;8(2):1-10. DOI:10.3390/vaccines8020278
44. Young KM, Gray CM, Bekker LG. Is obesity a risk factor for vaccine non-responsiveness? PLoS One. 2013;8(12):82779. DOI:10.1371/journal.pone.0082779
45. Watcharananan SP, Thakkinstian A, Srichunrasmee C, et al. Comparison of the immunogenicity of a monovalent influenza A/H1N1 2009 vaccine between healthy individuals, patients with chronic renal failure, and immunocompromised populations. Transplant Proc. 2014;46(2):328-31. DOI:10.1016/j.transproceed.2013.11.063
46. Cunningham AL, McIntyre P, Subbarao K, et al. Vaccines for older adults. BMJ. 2021;372:n188. DOI:10.1136/bmj.n188
47. Kaech SM, Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol. 2012;12(11):749-61. DOI:10.1038/nri3307
48. Tene L, Karasik A, Chodick G, et al. Iron deficiency and the effectiveness of the BNT162b2 vaccine for SARS-CoV-2 infection: A retrospective, longitudinal analysis of real-world data. Plos One. 2023;18(5):e0285606.
49. Faizo AA, Bawazir AA, Almashjary M, et al. Lack of evidence on association between iron deficiency and COVID-19 vaccine-induced neutralizing humoral immunity. Vaccines. 2023;11(2):327.
50. Drakesmith H, Pasricha SR, Cabantchik I, et al. Vaccine efficacy and iron deficiency: an intertwined pair? Lancet Haematol. 2021;8(9):e666-9. DOI:10.1016/S2352-3026(21)00201-5
________________________________________________
1. Global nutrition targets 2025: anaemia policy brief. Geneva: World Health Organization, 2014. Available at: https://www.who.int/publications/i/item/WHO-NMH-NHD-14.4. Accessed: 26.05.2024.
2. Expert council resolution on iron-deficiency anemia in women. Obstetrics and Gynecology: News, Opinions, Training. 2020;8(4):28-36 (in Russian).
DOI:10.24411/2303-9698-2020-14004
3. WHO Anaemia in Children. 2021. Available at: https://apps.who.int/gho/data/view.main.ANAEMIACHILDRENREGv?lang=en. Accessed: 26.05.2024.
4. WHO Anaemia Women of Reproductive Age. 2021. Available at: https://apps.who.int/gho/data/view.main.ANAEMIAWOMENREPRODUCTIVEREGv?lang=en. Accessed: 26.05.2024.
5. WHO Anaemia in Pregnant Women. 2021. Available at: https://apps.who.int/gho/data/view.main.ANAEMIAWOMENPWREGv?lang=en\. Accessed: 26.05.2024.
6. Petry N, Olofin I, Hurrell RF, et al. The Proportion of Anemia Associated with Iron Deficiency in Low, Medium, and High Human Development Index Countries: A Systematic Analysis of National Surveys. Nutrients. 2016;8:693. DOI:10.3390/nu8110693
7. WHO guidance helps detect iron deficiency and protect brain development. Available at: https://www.who.int/news/item/20-04-2020-who-guidance-helps-detect-iron-deficiency-and-protect-brain.... Accessed: 26.05.2024.
8. Yang J, Li Q, Feng Y, Zeng Y. Iron Deficiency and Iron Deficiency Anemia: Potential Risk Factors in Bone Loss. Int J Mol Sci. 2023;24(8):6891. DOI:10.3390/ijms24086891
9. Pasricha SR, Tye-Din J, Muckenthaler MU, Swinkels DW. Iron deficiency. Lancet. 2021;397(10270):233-48.
10. Preston AE, Drakesmith H, Frost JN. Adaptive immunity and vaccination – iron in the spotlight. Immunother Adv. 2021;1(1):ltab007.
11. Nairz M, Weiss G. Iron in infection and immunity. Mol Aspects Med. 2020;75:100864. DOI:10.1016/j.mam.2020.100864
12. Musallam KM, Taher AT. Iron deficiency beyond erythropoiesis: should we be concerned? Curr Med Res Opin. 2018;34(1):81-93. DOI:10.1080/03007995.2017.1394833
13. Torshin IYu, Gromova OA, Maksimov VA, Chuchalin AG. Improving the effectiveness of vaccination against viral and bacterial pathogens through micronutrient supplementation. Pulmonologiya. 2023;33(1):65-75 (in Russian). DOI:10.18093/0869-0189-2022-2356
14. European Hematology Association (EHA). Expert opinions for COVID-19 vaccination in patients with non-malignant hematologic diseases. 2021. Available at: https://ehaweb.org/covid-19/eha-statement-on-covid-19-vaccines/recommendations-for-covid-19-vaccinat... Accessed: 26.05.2024.
15. Netrebenko OK, Shcheplyagina LA. Immunonutrienty v pitanii detei. Trudnyi patsient. 2006;4(6):21-6 (in Russian).
16. Lebedev VV, Demikhov VG, Dmitriev AV, et al. A comparative efficacy and safety of using ferrous and ferric iron preparations for management of iron-deficiency anaemia. Pediatric Hematology/Oncology and Immunopathology. 2016;15(4):5-12 (in Russian).
17. Fillebeen C, Wilkinson N, Charlebois E, et al. Hepcidin-mediated hypoferremic response to acute inflammation requires a threshold of Bmp6/Hjv/Smad signaling. Blood. 2018;132(17):1829-41. DOI:10.1182/blood-2018-03-841197
18. Nemeth E, Rivera S, Gabayan V, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest.
2004;113(9):1271-6. DOI:10.1172/jci20945
19. Stefanova D, Raychev A, Arezes J, et al. Endogenous hepcidin and its agonist mediate resistance to selected infections by clearing non-transferrin-bound iron. Blood. 2017;130(3):245-57. DOI:10.1182/blood-2017-03-772715
20. Frost JN, Tan TK, Abbas M, et al. Hepcidin-mediated hypoferremia disrupts immune responses to vaccination and infection. Med.
2020;2(2):164-79.e12. DOI:10.1016/j.medj.2020.10.004
21. Muchowska KB, Varma SJ, Moran J. Synthesis and breakdown of universal metabolic precursors promoted by iron. Nature. 2019;569(7754):104-7. DOI:10.1038/s41586-019-1151-1
22. Jabara HH, Boyden SE, Chou J, et al. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet. 2015;48(1):74-8. DOI:10.1038/ng.3465
23. Wang Z, Yin W, Zhu L, et al. Iron Drives T Helper Cell Pathogenicity by Promoting RNA-Binding Protein PCBP1-Mediated Proinflammatory Cytokine Production. Immunity. 2018;49(1):80-92.e7. DOI:10.1016/j.immuni.2018.05.008
24. Bergamaschi G, Borrelli de Andreis F, Aronico N, et al. Anemia in patients with Covid-19: pathogenesis and clinical significance. Clin Exp Med. 2021;21(2):239-46. DOI:10.1007/s10238-020-00679-4
25. Drakesmith H, Prentice AM. Hepcidin and the iron-infection axis. Science. 2012;338(6108):768-72. DOI:10.1126/science.1224577
26. Williams AM, Ladva CN, Leon JS, et al. Changes in micronutrient and inflammation serum biomarker concentrations after a norovirus human challenge. Am J Clin Nutr. 2019;110(6):1456-64. DOI:10.1093/ajcn/nqz201
27. Gwamaka M, Kurtis JD, Sorensen BE, et al. Iron deficiency protects against severe Plasmodium falciparum malaria and death in young children. Clin Infect Dis. 2012;54(8):1137-44. DOI:10.1093/cid/cis010
28. Harrington-Kandt R, Stylianou E, Eddowes LA, et al. Hepcidin deficiency and iron deficiency do not alter tuberculosis susceptibility in a murine M.tb infection model. PLoS One. 2018;13(1):e0191038. DOI:10.1371/journal.pone.0191038
29. Lim D, Kim KS, Jeong JH, et al. The hepcidin-ferroportin axis controls the iron content of Salmonella-containing vacuoles in macrophages. Nat Commun.
2018;9(1):1-12. DOI:10.1038/s41467-018-04446-8
30. Shah A, Frost JN, Aaron L, et al. Systemic hypoferremia and severity of hypoxemic respiratory failure in COVID-19. Crit Care. 2020;24(1):320. DOI:10.1186/s13054-020-03051-w
31. Sonnweber T, Boehm A, Sahanic S, et al. Persisting alterations of iron homeostasis in COVID-19 are associated with non-resolving lung pathologies and poor patients’ performance: a prospective observational cohort study. Respir Res. 2020;21(1):276. DOI:10.1186/s12931-020-01546-2
32. Nai A, Lorè NI, Pagani A, et al. Hepcidin levels predict Covid-19 severity and mortality in a cohort of hospitalized Italian patients. Am J Hematol. 2021;96(1):E32-5. DOI:10.1002/ajh.26027
33. Hippchen T, Altamura S, Muckenthaler MU, Merle U. Hypoferremia is associated with increased hospitalization and oxygen demand in COVID-19 patients. HemaSphere. 2020;4(6):e492. DOI:10.1097/HS9.0000000000000492
34. Chen LYC, Hoiland RL, Stukas S, et al. Assessing the importance of interleukin-6 in COVID-19. Lancet Respir Med. 2021;9(2):e13. DOI:10.1016/S2213-2600(20)30600-7
35. Rydyznski Moderbacher C, Ramirez SI, Dan JM, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell. 2020;183(4):996-1012.e19. DOI:10.1016/j.cell.2020.09.038
36. Gordon AC, Mouncey PR, Al-Beidh F, et al. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19. N Engl J Med.
2021;384(16):1491-502. DOI:10.1056/NEJMoa2100433
37. Bagchi K, Mohanram M, Reddy V. Humoral immune response in children with iron-deficiency anaemia. Br Med J. 1980;280(6226):1249. DOI:10.1136/bmj.280.6226.1249
38. Macdougall LG, Jacobs MR, Ch MBB. The Immune Response in Iron-Deficient Children Isohaemagglutinin Titres and Antibody Response to Immunization. South African Med J. 1978;53(11):405-7.
39. Brussow H, Sidoti J, Dirren H, Freire WB. Effect of malnutrition in Ecuadorian children on titers of serum antibodies to various microbial antigens. Clin Diagn Lab Immunol. 1995;2(1):62-8. DOI:10.1128/cdli.2.1.62-68.1995
40. Stoffel NU, Uyoga MA, Mutuku FM, et al. Iron deficiency anemia at time of vaccination predicts decreased vaccine response and iron supplementation at time of vaccination increases humoral vaccine response: A birth cohort study and a randomized trial follow-up study in Kenyan infants. Front Immunol. 2020;11:1313. DOI:10.3389/fimmu.2020.01313
41. Fülöp T, Wagner JR, Khalil A, et al. Relationship between the response to influenza vaccination and the nutritional status in institutionalized elderly subjects. J Gerontol A Biol Sci Med Sci. 1999;54(2):M59-64. DOI:10.1093/gerona/54.2.M59
42. Prendergast AJ. Malnutrition and vaccination in developing countries. Philos Trans R Soc B Biol Sci. 2015;370(1671). DOI:10.1098/rstb.2014.0141
43. Passanisi S, Dipasquale V, Romano C. Vaccinations and immune response in celiac disease. Vaccines. 2020;8(2):1-10. DOI:10.3390/vaccines8020278
44. Young KM, Gray CM, Bekker LG. Is obesity a risk factor for vaccine non-responsiveness? PLoS One. 2013;8(12):82779. DOI:10.1371/journal.pone.0082779
45. Watcharananan SP, Thakkinstian A, Srichunrasmee C, et al. Comparison of the immunogenicity of a monovalent influenza A/H1N1 2009 vaccine between healthy individuals, patients with chronic renal failure, and immunocompromised populations. Transplant Proc. 2014;46(2):328-31. DOI:10.1016/j.transproceed.2013.11.063
46. Cunningham AL, McIntyre P, Subbarao K, et al. Vaccines for older adults. BMJ. 2021;372:n188. DOI:10.1136/bmj.n188
47. Kaech SM, Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol. 2012;12(11):749-61. DOI:10.1038/nri3307
48. Tene L, Karasik A, Chodick G, et al. Iron deficiency and the effectiveness of the BNT162b2 vaccine for SARS-CoV-2 infection: A retrospective, longitudinal analysis of real-world data. Plos One. 2023;18(5):e0285606.
49. Faizo AA, Bawazir AA, Almashjary M, et al. Lack of evidence on association between iron deficiency and COVID-19 vaccine-induced neutralizing humoral immunity. Vaccines. 2023;11(2):327.
50. Drakesmith H, Pasricha SR, Cabantchik I, et al. Vaccine efficacy and iron deficiency: an intertwined pair? Lancet Haematol. 2021;8(9):e666-9. DOI:10.1016/S2352-3026(21)00201-5