Kuznetsova IS, Berezhnaya IV, Koshechkin SI, Romanov VA, Cherednikova TA, Zakharova IN. Features of the oropharyngeal microbiota of healthy children and those with acute respiratory infections. A prospective single-center randomized study. Pediatrics. Consilium Medicum. 2024;3:289–296.
DOI: 10.26442/26586630.2024.3.202964
Особенности микробиоты ротоглотки здоровых детей и страдающих острой респираторной инфекцией
Кузнецова И.С., Бережная И.В., Кошечкин С.И., Романов В.А., Чередникова Т.А., Захарова И.Н. Особенности микробиоты ротоглотки здоровых детей и страдающих острой респираторной инфекцией. Педиатрия. Consilium Medicum. 2024;3:289–296. DOI: 10.26442/26586630.2024.3.202964
Kuznetsova IS, Berezhnaya IV, Koshechkin SI, Romanov VA, Cherednikova TA, Zakharova IN. Features of the oropharyngeal microbiota of healthy children and those with acute respiratory infections. A prospective single-center randomized study. Pediatrics. Consilium Medicum. 2024;3:289–296.
DOI: 10.26442/26586630.2024.3.202964
Обоснование. Микробиота ротоглотки участвует в формировании колонизационной резистентности, оказывая влияние на интенсивность вирусной адгезии и метаболический обмен. Любые отклонения в стабильности экологических микробных ниш ротоглотки изменяют местный иммунный ответ и могут явиться триггером в развитии тяжелой хронической соматической патологии. Цель. Сравнить состав микробиоты детей, переносящих эпизод респираторной инфекции, и здоровых добровольцев, обратившихся в разные периоды реконвалесценции. Полученные данные возможно использовать для прогнозирования динамики заболевания, анализа риска осложнений и оценки частоты заболеваний в будущем. Материалы и методы. С 20.01.2022 по 23.12.2022 проводилось открытое проспективное одноцентровое рандомизированное сравнительное исследование, в котором приняли участие 120 детей в возрасте 5–10 лет, обратившихся с симптомами острой респираторной инфекции. Контрольная группа состояла из 15 детей, не имеющих симптомов заболевания, которые обратились в различные периоды реконвалесценции. В рамках исследования проводилось сравнение изменений в составе оральной микробиоты больных и здоровых детей. Оценка осуществлялась с использованием секвенирования полного гена 16S рибосомальной РНК на платформе Oxford Nanopore. Таксонометрический анализ на уровне видов и родов выполнялся с помощью платформы Кномикс-Биота. Для статистической обработки использовался язык программирования R. Кроме того, проведена оценка показателей α- и β-разнообразия микробиоты. Для оценки α-разнообразия (разнообразия внутри одного сообщества) рассчитывали индексы Chao1 и Шеннона. Первый учитывает количество не только видов, найденных в образце, но и редких видов, которые зарегистрированы всего 1 или 2 раза. Это предотвращает недооценку разнообразия. Индекс Шеннона учитывает как количество видов, так и их равномерность в сообществе. Изменение индекса указывает на доминирование одного или нескольких видов. Для оценки β-разнообразия, описывающего различия между двумя образцами микробиоты, на уровне видов и родов использовались следующие показатели: мера различия Брея–Кертиса (характеризующая отношения общих и различных микроорганизмов между образцами) и расстояние Эйтчисона (отражающее различия в пропорциях микроорганизмов). Дополнительно проводилась оценка баланса между двумя группами микроорганизмов с использованием метода NearesBalance, который характеризует различия между микробиотой основной и контрольной групп. Результаты. На фоне течения респираторной инфекции состояние микробиоты ротоглотки отличается повышением α-разнообразия, что ассоциировано с увеличением доли видов Streptococcus salivarius, Streptococcus pneumoniae, Streptococcus pseudopneumoniae, Streptococcus pyogenes, Streptococcus thermophilus и А12 по отношению к доле видов Streptococcus mitis, Streptococcus oralis, Streptococcus gwangjuense, Streptococcus sanguinis, Streptococcus gordonii и FDAARGOS_192. В группе контроля произошло разделение на 2 кластера микробиоты ротоглотки. В 1-й группе контроля наблюдается доминирование стрептококков, в то время как у 2-й группы контроля более равномерная представленность. Анализируя динамику микробных сообществ в основной группе и группах контроля, можно рассматривать этапы восстановления оральной микробиоты после перенесенного эпизода острой респираторной инфекции. Заключение. Необходимо продолжить исследования в области орофарингеального микробиома на большей выборке здоровых детей, стандартизировать сообщества микробиоты ротоглотки, изучить взаимодействие между собой и организмом в целом. Анализ воздействия микробиоты на частоту и течение респираторных инфекций и вероятность осложнений открывает новые перспективы в лечении, реабилитации и профилактике заболеваний. Эти направления исследований могут содействовать улучшению здоровья и повышению качества жизни у детей, а также внедрению новых подходов в клиническую практику.
Background. The oropharyngeal microbiota is involved in the development of colonization resistance, affecting viral adhesion and metabolism. Any deviations in the stability of the environmental microbial niches of the oropharynx alter the local immune response and can trigger severe chronic somatic disorders. Aim. To compare the composition of the microbiota of children during an episode of respiratory infection and healthy volunteers examined in different periods of convalescence. The obtained data can be used to predict the course of the disease, analyze the risk of complications, and assess the frequency of the diseases in the future. Materials and methods. From 20.01.2022 to 23.12.2022, an open-label prospective single-center randomized comparative study was conducted, which included 120 children aged 5-10 who presented with symptoms of acute respiratory infection. The control group consisted of 15 asymptomatic children examined at different periods of convalescence. The study compared changes in the oral microbiota composition of patients and healthy children. The evaluation was performed using complete 16S rRNA gene sequencing on the Oxford Nanopore platform. Taxonometric analysis at the species and genera level was performed using the Knomics- Biota platform. The R programming language was used for statistical processing. In addition, the parameters of α- and β-diversity of the microbiota were assessed. The Chao1 and Shannon indices were calculated to assess α-diversity (diversity within one community). The Chao1 index is based on the number of species found in the sample and also rare species that are found only 1 or 2 times, thus preventing underestimation of diversity. The Shannon index includes both the number of species and their uniformity in the community. A change in the index indicates the dominance of one or more species. The following indicators were used to assess the β-diversity describing the differences between two microbiota samples at the species and genera level: Bray–Curtis dissimilarity (characterizing the ratios of common and different microorganisms between the samples) and the Aitchison distance (reflecting the differences in the proportions of microorganisms). In addition, the balance between the two groups of microorganisms was evaluated using the NearesBalance method, which characterizes the differences between the microbiota of the main and control groups. Results. The results of our study show that during respiratory infection, the state of the oropharyngeal microbiota is characterized by an increase in α-diversity, which is associated with an increase in the proportion of species of Streptococcus salivarius, Streptococcus pneumoniae, Streptococcus pseudopneumoniae, Streptococcus pyogenes, Streptococcus thermophilus and A12 versus the proportion of Streptococcus mitis, Streptococcus oralis, Streptococcus gwangjuense, Streptococcus sanguinis, Streptococcus gordonii and FDAARGOS_192. In the control group, the oropharyngeal microbiota was divided into two clusters. The dominance of streptococci was observed in the first group (control), while the second group had a more uniform representation. Analysis of the changes in microbial communities in the main and control groups can show the stages of oral microbiota recovery after an acute respiratory infection episode. Conclusion. More research is needed in the field of the oropharyngeal microbiome on a larger sample of healthy children, to standardize the communities of the oropharyngeal microbiota, to study the interaction within communities and with the body as a whole. Analysis of the impact of the microbiota on the frequency and course of respiratory infections and the rate of complications opens up new prospects in treating, rehabilitating, and preventing diseases. These research areas can contribute to improving children's health and quality of life and introducing new approaches into clinical practice.
1. Григорьевская З.В., Терещенко И.В., Казимов А.Э., и др. Микробиота полости рта и ее значение в генезе рака орофарингеальной зоны. Зло-качественные опухоли. 2020;10(3s1):54-9 [Grigorievskaia ZV, Tereshchenko IV, Kazimov AE, et al. Mikrobiota polosti rta i ee znacheniie v geneze raka orofaringealnoi zony. Malignant Tumours.
2020;10(3s1):54-9 (in Russian)]. DOI:10.18027/2224-5057-2020-10-3s1-54-59
2. Бурбела Е.И., Волянская Л.А., Романюк Л.Б., Стеценко В.В. Сравнительный анализ колонизирующей микрофлоры ротоглотки у детей, больных ОРИ и бронхиальной астмой. Журнал Гродненского государственного медицинского университета. 2016;4:69-72 [Burbela EI, Volyanskaya LA, Romanyuk LB, Stetsenko VV. Sravnitelnyi analiz koloniziruiushchei mikroflory rotoglotki u detei, bolnykh ORI i bronkhialnoi astmoy. Zhurnal Grodnenskogo Gosudarstvennogo Meditsinskogo Universiteta. 2016;4:69-72 (in Russian)].
3. Плотникова Е.Ю., Захарова Ю.В. Иммуномодулирующие эффекты пробиотиков. Медицинский Совет. 2020;(15):135-44 [Plotnikova EYu, Zakharova YuV. Immunomodulatory effects of probiotics. Medical Council. 2020;(15):135-44 (in Russian)]. DOI:10.21518/2079-701X-2020-15-135-144
4. Гуров А.В., Юшкина М.А., Мужичкова А.В. Микробиоценоз-регулирующая терапия воспалительной патологии ротоглотки. Вестник оторино- ларингологии. 2021;86(6):51-6 [Gurov AV, Yushkina MA, Muzhichkova AV. Microbiocenosis-regulating therapy of inflammatory pathology of the oropharynx. Russian Bulletin of Otorhinolaryngology. 2021;86(6):51-6 (in Russian)]. DOI:10.17116/otorino20218606151
5. Бурмистрова А.Л., Филиппова Ю.Ю., Нохрин Д.Ю., Тимофеева А.В. Микробный социум экологической ниши: ротовая полость здоровых детей. Инфекция и иммунитет. 2018;8(1):54-60 [Burmistrova AL, Filippova YuYu, Nokhrin DYu, Timofeeva AV. Society of environmental niche: oral cavity of the healthy children. Infection and Immunity. 2018;8(1):54-60 (in Russian)]. DOI:10.15789/2220-7619-2018-1-54-60
6. Габитова А.Э., Галынкин В.А. Биологические основы резистентности. Монография. СПб.: Проспект Науки, 2019 [Gabitova AE, Galynkin VA. Biologicheskiie osnovy rezistentnosti. Monografiia. Saint Petersburg: Prospekt Nauki, 2019 (in Russian)].
7. Li X, Liu Y, Yang X, et al. The Oral Microbiota: Community Composition, Influencing Factors, Pathogenesis, and Interventions. Front Microbiol. 2022;13:895537. DOI:10.3389/fmicb.2022.895537
8. Jacob KM, Reguera G. Competitive advantage of oral streptococci for colonization of the middle ear mucosa. Biofilm. 2022;4:100067. DOI:10.1016/j.bioflm.2022.100067
9. Zaslavskaya MI, Makhrova TV, Aleksandrova NA, et al. Prospects for Using Bacteriocins of Normal Microbiota in Antibacterial Therapy (Review). STM. 2019;11(3):136. DOI:10.17691/stm2019.11.3.17
10. Gomez A, Nelson KE. The Oral Microbiome of Children: Development, Disease, and Implications Beyond Oral Health. Microb Ecol. 2017;73(2):492-503.
DOI:10.1007/s00248-016-0854-1
11. Lee KH, Foxman B, Kuan G, et al. The respiratory microbiota: associations with influenza symptomatology and viral shedding. Ann Epidemiol. 2019:37:51-6.e6. DOI:10.1016/j.annepidem.2019.07.013
12. Dinwiddie DL, Denson JL, Kennedy JL. Role of the Airway Microbiome in Respiratory Infections and Asthma in Children. Pediatr Allergy Immunol Pulmonol. 2018;31(4):236-40. DOI:10.1089/ped.2018.0958
13. Куликова Н.Г., Плоскирева А.А., Акимкин В.Г. Микробиоценоз кишечника с позиции теории саморегуляции. Медицинский оппонент. 2022;3(19):14-20 [Kulikova NG, Ploskireva AA, Akimkin VG. Mikrobiotsenoz kishechnika s pozitsii teorii samoreguliatsii. Meditsinskii Opponent. 2022;3(19):14-20 (in Russian)].
14. Willis JR, González-Torres P, Pittis AA, et al. Citizen science identifies two major “stomatotypes” in the adolescent oral microbiome and reveals associations with drinking water habits and composition. Microbiome. 2018;6:218. DOI:10/1186/s40168-018-0592-3
15. Rothman JA, Riis JL, Hamilton KR, et al. Oral microbial communities in children, caregivers, and associations with salivary biomeasures and environmental tobacco smoke exposure. mSystems. 2023;8(4):e0003623. DOI:10.1128/msystems.00036-23
16. Walker AW, Hoyles L. Human microbiome myths and misconceptions Microbiol. 2023;8(8):1392-6. DOI:10.1038/s41564-023-01426-7
17. Wang B, Cleary PP. Intracellular Invasion byStreptococcus pyogenes: Invasins, Host Receptors, and Relevance to Human Disease. Microbiol Spectr. 2019;7(4). DOI:10.1128/microbiolspec.GPP3-0049-2018
18. Пикуза О.И., Закирова А.М., Воленюк Е.В., и др. Функциональный потенциал колонизационной защиты буккальных эпителиоцитов как индикатор клинического течения заболеваний респираторного тракта. Практическая медицина. 2023;21(1):76-80 [Pikuza OI, Zakirova AM, Volenyuk EV, et al. Funktsionalnyi potentsial kolonizatsionnoi zashchity bukkalnykh epiteliotsitov kak indikator klinicheskogo techeniya zabolevanii respiratornogo trakta. Prakticheskaia Meditsina. 2023;21(1):76-80 (in Russian)].
DOI:10.32000.2072-1757-2023-1-76-80
19. Kitten T, Munro CL, Zollar NQ, et al. Oral streptococcal bacteremia in hospitalized patoents :taxonomic identification and clinical characterization. J Clin Microbiol. 2012;50:1039-42.
20. Libertucci J, Young VB. The role of the microbiota in infectious diseases. Nat Microbiol. 2019;4(1):35-45. DOI:10.1038/s41564-018-0278-4
21. Дубинин С.И., Зайцев А.В., Ваценко А.В., и др. Межмикробные взаимодействия орального биотопа. Медицинские новости Грузии. 2020;2(299):131-6 [Dubinin SI, Zaitsev AV, Vatsenko AV, et al. Intermicrobial interactions of the oral biotope.Georgian Medical News. 2020;2(299):131-6 (in Russian)].
22. Детушева Е.В., Слукаин П.В., Фурсова Н.К. Молекулярно-генетические методы изучения биопленок микроорганизмов. Бактериология .2020;5(2):49-55 [Detusheva EV, Slukain PV, Fursova NK. Molekuliarno-geneticheskiie metody izucheniia bioplenok mikroorganizmov. Bakteriologiia .2020;5(2):49-55 (in Russian)]. DOI:10.20953/2500-2020-2-49-55
23. Wang H, Dai W, Feng X, et al. Microbiota Composition in Upper Respiratory Tracts of Healthy Children in Shenzhen, China, Differed with Respiratory Sites and Ages Biomed Res Int. 2018:2018:6515670. DOI:10.1155/2018/6515670
24. Феклисова Л.В., Хадисова М.К., Каражас М.К., и др. Пневмоцистная инфекция у часто болеющих детей: что важно учесть. StatusPraesens. Педиатрия и неонатология. 2020;2(68):30-7 [Feklisova LV, Khadisova MK, Karazhas MK, et al. Pnevmotsistnaia infektsiia u chasto boleyushchikh detei: chto vazhno uchest’. StatusPraesens. Pediatriia i Neonatologiia. 2020;2(68):30-7 (in Russian)].
25. Sharma N, Bhatia S, Sodhi AS, Batra N. Oral microbiome and health. AIMS Microbiol. 2018;4(1):42-66.
26. Курдюкова Т.И., Красноруцкая О.Н. Микробиом верхних дыхательных путей у детей раннего и дошкольного возраста. Педиатрия им. Г.Н. Сперанского.
2023;102(1):98-105 [Kurdiukova TI, Krasnorutskaia ON. Microbiome of the upper respiratory tract in infants and preschool children. Pediatria n.a. GN Speransky. 2023;102(1):98-105 (in Russian)]. DOI:10.24110/0031-403X-2023-102-1-98-105
________________________________________________
1. Grigorievskaia ZV, Tereshchenko IV, Kazimov AE, et al. Mikrobiota polosti rta i ee znacheniie v geneze raka orofaringealnoi zony. Malignant Tumours. 2020;10(3s1):54-9 (in Russian). DOI:10.18027/2224-5057-2020-10-3s1-54-59
2. Burbela EI, Volyanskaya LA, Romanyuk LB, Stetsenko VV. Sravnitelnyi analiz koloniziruiushchei mikroflory rotoglotki u detei, bolnykh ORI i bronkhialnoi astmoy. Zhurnal Grodnenskogo Gosudarstvennogo Meditsinskogo Universiteta. 2016;4:69-72 (in Russian).
3. Plotnikova EYu, Zakharova YuV. Immunomodulatory effects of probiotics. Medical Council. 2020;(15):135-44 (in Russian). DOI:10.21518/2079-701X-2020-15-135-144
4. Gurov AV, Yushkina MA, Muzhichkova AV. Microbiocenosis-regulating therapy of inflammatory pathology of the oropharynx. Russian Bulletin of Otorhinolaryngology. 2021;86(6):51-6 (in Russian). DOI:10.17116/otorino20218606151
5. Burmistrova AL, Filippova YuYu, Nokhrin DYu, Timofeeva AV. Society of environmental niche: oral cavity of the healthy children. Infection and Immunity. 2018;8(1):54-60 (in Russian). DOI:10.15789/2220-7619-2018-1-54-60
6. Gabitova AE, Galynkin VA. Biologicheskiie osnovy rezistentnosti. Monografiia. Saint Petersburg: Prospekt Nauki, 2019 (in Russian).
7. Li X, Liu Y, Yang X, et al. The Oral Microbiota: Community Composition, Influencing Factors, Pathogenesis, and Interventions. Front Microbiol. 2022;13:895537. DOI:10.3389/fmicb.2022.895537
8. Jacob KM, Reguera G. Competitive advantage of oral streptococci for colonization of the middle ear mucosa. Biofilm. 2022;4:100067. DOI:10.1016/j.bioflm.2022.100067
9. Zaslavskaya MI, Makhrova TV, Aleksandrova NA, et al. Prospects for Using Bacteriocins of Normal Microbiota in Antibacterial Therapy (Review). STM. 2019;11(3):136. DOI:10.17691/stm2019.11.3.17
10. Gomez A, Nelson KE. The Oral Microbiome of Children: Development, Disease, and Implications Beyond Oral Health. Microb Ecol. 2017;73(2):492-503.
DOI:10.1007/s00248-016-0854-1
11. Lee KH, Foxman B, Kuan G, et al. The respiratory microbiota: associations with influenza symptomatology and viral shedding. Ann Epidemiol. 2019:37:51-6.e6. DOI:10.1016/j.annepidem.2019.07.013
12. Dinwiddie DL, Denson JL, Kennedy JL. Role of the Airway Microbiome in Respiratory Infections and Asthma in Children. Pediatr Allergy Immunol Pulmonol. 2018;31(4):236-40. DOI:10.1089/ped.2018.0958
13. Kulikova NG, Ploskireva AA, Akimkin VG. Mikrobiotsenoz kishechnika s pozitsii teorii samoreguliatsii. Meditsinskii Opponent. 2022;3(19):14-20 (in Russian).
14. Willis JR, González-Torres P, Pittis AA, et al. Citizen science identifies two major “stomatotypes” in the adolescent oral microbiome and reveals associations with drinking water habits and composition. Microbiome. 2018;6:218. DOI:10/1186/s40168-018-0592-3
15. Rothman JA, Riis JL, Hamilton KR, et al. Oral microbial communities in children, caregivers, and associations with salivary biomeasures and environmental tobacco smoke exposure. mSystems. 2023;8(4):e0003623. DOI:10.1128/msystems.00036-23
16. Walker AW, Hoyles L. Human microbiome myths and misconceptions Microbiol. 2023;8(8):1392-6. DOI:10.1038/s41564-023-01426-7
17. Wang B, Cleary PP. Intracellular Invasion byStreptococcus pyogenes: Invasins, Host Receptors, and Relevance to Human Disease. Microbiol Spectr. 2019;7(4). DOI:10.1128/microbiolspec.GPP3-0049-2018
18. Pikuza OI, Zakirova AM, Volenyuk EV, et al. Funktsionalnyi potentsial kolonizatsionnoi zashchity bukkalnykh epiteliotsitov kak indikator klinicheskogo techeniya zabolevanii respiratornogo trakta. Prakticheskaia Meditsina. 2023;21(1):76-80 (in Russian). DOI:10.32000.2072-1757-2023-1-76-80
19. Kitten T, Munro CL, Zollar NQ, et al. Oral streptococcal bacteremia in hospitalized patoents :taxonomic identification and clinical characterization. J Clin Microbiol. 2012;50:1039-42.
20. Libertucci J, Young VB. The role of the microbiota in infectious diseases. Nat Microbiol. 2019;4(1):35-45. DOI:10.1038/s41564-018-0278-4
21. Dubinin SI, Zaitsev AV, Vatsenko AV, et al. Intermicrobial interactions of the oral biotope.Georgian Medical News. 2020;2(299):131-6 (in Russian).
22. Detusheva EV, Slukain PV, Fursova NK. Molekuliarno-geneticheskiie metody izucheniia bioplenok mikroorganizmov. Bakteriologiia .2020;5(2):49-55 (in Russian).
DOI:10.20953/2500-2020-2-49-55
23. Wang H, Dai W, Feng X, et al. Microbiota Composition in Upper Respiratory Tracts of Healthy Children in Shenzhen, China, Differed with Respiratory Sites and Ages Biomed Res Int. 2018:2018:6515670. DOI:10.1155/2018/6515670
24. Feklisova LV, Khadisova MK, Karazhas MK, et al. Pnevmotsistnaia infektsiia u chasto boleyushchikh detei: chto vazhno uchest’. StatusPraesens. Pediatriia i Neonatologiia. 2020;2(68):30-7 (in Russian).
25. Sharma N, Bhatia S, Sodhi AS, Batra N. Oral microbiome and health. AIMS Microbiol. 2018;4(1):42-66.
26. Kurdiukova TI, Krasnorutskaia ON. Microbiome of the upper respiratory tract in infants and preschool children. Pediatria n.a. GN Speransky. 2023;102(1):98-105 (in Russian). DOI:10.24110/0031-403X-2023-102-1-98-105
1ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия; 2ООО «Нобиас Технолоджис», Москва, Россия; 3ГБУЗ «Детская городская поликлиника №140» Департамента здравоохранения г. Москвы, Москва, Россия
*doctor_irina_kuznetsova@mail.ru
________________________________________________
Irina S. Kuznetsova*1, Irina V. Berezhnaya1, Stanislav I. Koshechkin2, Vladimir A. Romanov2, Tatyana A. Cherednikova3, Irina N. Zakharova1
1Russian Medical Academy of Continuous Professional Education, Moscow, Russia; 2Nobias Technologies LLC, Moscow, Russia; 3Children's City Polyclinic №140, Moscow, Russia
*doctor_irina_kuznetsova@mail.ru