В статье рассматриваются вопросы современной классификации легочной гипертензии, основные механизмы патогенеза заболевания, изложена характеристика иммуновоспалительных изменений и подробно описана роль хемокинов при легочной гипертензии. Накапливаются доказательства (включая приведенные данные собственных исследований) значительной роли фракталкина – единственного хемокина, существующего в растворимой и фиксированной формах, в патогенезе идиопатической легочной гипертензии. Это позволяет рассматривать этот хемокин и его рецептор CX3CR1 в качестве важных маркеров активации воспалительного процесса. Необходимы дальнейшие исследования для оценки возможности использования фракталкина как цели для терапевтических воздействий у пациентов с идиопатической легочной гипертензией.
In the article the modern classification of pulmonary hypertension (PH) is discussed. Pathogenesis of PH with characteristic of inflammatory pathways and role of chemokines is also described. Data from literature and results of our investigation reveal an important role of fractalkine (the only CX3C chemokine) in PH pathogenesis. It makes fractalkine and its receptor not only a marker of inflammatory process, but a possible therapeutic target, and further investigations are needed to prove this concept.
1. von Romberg, Ernst. ?ber Sklerose der Lungenarterie (in German). Dtsch Arch Klin Med 48: 197–206.
2. Чазова И.Е., Мартынюк Т.В. Идиопатическая легочная гипертензия. В кн.: Респираторная медицина. В 2 т. Под ред. А.Г.Чучалина. М.: ГЭОТАР-Медиа 2007.
3. Hatano S, Strasser R. Primary pulmonary hypertension. Geneva: World Heath Organization, 1975.
4. Rich S, Rubin LJ, Abenhail L et al. Executive summary from the World Symposium on Primary Pulmonary Hypertension (Evian, France, September 6–10, 1998). Geneva: The World Health Organization, 1998.
5. Simonneau G, Gali? N, Rubin LJ, et al. Clinical classification of pulmonary hypertension. J Am Coll Cardiol 2004; 43 (12 Suppl. S): S5–12.
6. Simonneau G, Robbins I, Beghetti M et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2009; 54 (Suppl. 1): S43–54.
7. Galie N, Hoeper M, Humbert M. Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 2009; 34: 1219–63.
8. Humbert M, Morrell NW, Archer SL et al. Cellular and molecular patho-biology of pulmonary arterial hypertension. J Am Coll Cardiol 2004; 43: S13–24.
9. Hassoun PM, Mouthon L, Barbera JA et al. Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol 2009; 54 (Suppl. 1): S10–9.
10. Morrell N, Adnot S, Archer S et al. Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol 2009; 54 (Suppl. 1): S20–S31.
11. Li M, Stenmark KR, Shandas R, Tan W. Effects of pathological flow on pulmonary artery endothelial production of vasoactive mediators and growth factors. J Vasc Res 2009; 46 (6): 561–71.
12. Sanchez O, Sitbon O, Ja?s X et al. Immunosuppressive therapy in connective tissue diseases-associated pulmonary arterial hypertension. Chest 2006; 130 (1): 182–9.
13. Jais X, Launay D, Yaici A et al. Immunosuppressive therapy in lupus- and mixed connective tissue disease-associated pulmonary arterial hypertension: a retrospective analysis of twenty-three cases. Arthritis Rheum 2008; 58 (2): 521–31.
14. Dorfmuller P, Perros F, Balabanian K et al Inflammation in pulmonary arterial hypertension. Eur Respir J 2003; 22: 358–63.
15. Rich S, Dantzker DR, Ayres SM et al Primary pulmonary hypertension: a national prospective study. Ann Intern Med 1987; 107: 216–23.
16. Amany R. Seraga, Sahar M et al. Regulated upon activation, normal T-cell expressed and secreted chemokine and interleukin-6 in rheumatic pulmonary hypertension, targets for therapeutic decisions Eur J Cardiothorac Surg 2010; 37: 853–58.
17. Cool CD, Kennedy D, Voelkel NF, Tuder RF. Pathogenesis and evolution of plexiform lesions in pulmonary hypertension associated with scleroderma and human immunode?ciency virus infection. Human Pathol 1997; 28: 434–42.
18. Okawa-Takatsuji M, Aotsuka S, Fujinami M et al. Up-regulation of intercellular adhesion molecule-1 (ICAM-1), endothelial leucocyte adhesion molecule-1 (ELAM-1) and class II MHC molecules on pulmonary artery endothelial cells by antibodies against U1-ribonucleoprotein. Clin Exp Immunol 1999; 116: 174–80.
19. Nicolls MR, Taraseviciene-Stewart L, Rai PR et al. Autoimmunity and pulmonary hypertension: a perspective. Eur Respir J 2005; 26 (6): 1110–8.
20. Tuder RM, Groves B, Badesch DB, Voelkel NF. Exuberant endothelial cell growth and element of in?ammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol 1994; 144: 275–85.
21. Dorfm?ller P, Zarka V, Durand-Gasselin I et al. Chemokine RANTES in severe pulmonary arterial hypertension. Am J Respir Crit Care Med 2002; 165 (4): 534–9.
22. Sanchez O, Marcos E, Perros F et al. Role of endothelium-derived CC chemokine ligand 2 in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 2007; 176 (10): 1041–7.
23. Bazan JF, Bacon KB, Hardiman G et al. A new class of membrane-bound chemokine with a CX3C motif. Nature 1997; 385 (6617): 640–4.
24. Garton KJ, Gough PJ, Blobel CP et al. Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem 2001; 276 (41): 37993–8001.
25. Hundhausen C. Misztela D, Berkhout TA et al. The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood 2003; 102: 1186–95.
26. Hurst LA, Bunning RA, Couraud PO. Expression of ADAM-17, TIMP-3 and fractalkine in the human adult brain endothelial cell line, hCMEC/D3, following pro-inflammatory cytokine treatment. J Neuroimmunol 2009; 210 (1–2): 108–12.
27. Fong AM, Robinson LA, Streeber DA et al. Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. J Exp Med 1998, 188: 1413.
28. Green S, Han KH, Chen Y et al. The CC chemokine MCP-1 stimulates surface expression of CX3CR1 and enhances the adhesion of monocytes to fractalkine /CX3CL1 via p38 MAPK. J Immunol 2006; 176 (12): 7412–20.
29. Murphy G, Caplice N, Molloy M et al. Fractalkine in rheumatoid arthritis: a review to date. Rheumatology (Oxford), 2008.
30. Hyakudomi M, Matsubara T, Hyakudomi R et al. Increased expression of fractalkine is correlated with a better prognosis and an increased number of both CD8+ T cells and natural killer cells in gastric adenocarcinoma. Ann Surg Oncol 2008; 15 (6): 1775–82.
31. Niessner A, Marculescu R, Kvakan H et al. Fractalkine receptor polymorphisms V2491 and T280M as genetic risk factors for restenosis. Thromb Haemost 2005; 94 (6): 1251–6.
32. Robinson LA, Nataraj C, Thomas DW et al. A role for fractalkine and its receptor (CX3CR1) in cardiac allograft rejection. J Immunol 2000; 165(11): 6067–72.
33. Yoshida T, Hanawa H, Toba K et al. Expression of immunological molecules by cardiomyocytes and inflammatory and interstitial cells in rat autoimmune myocarditis. Cardiovasc Res 2005; 68 (2): 278–88.
34. Combadiere C, Potteaux S, Gao JL et al. Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation 2003; 107: 1009–16.
35. Chen XJ, Cheng DY, Yang L, Xia XQ. The change of fractalkine in serum and pulmonary arterioles of hypoxic rat. Sichuan Da Xue Xue Bao Yi Xue Ban 2007; 38 (5): 756–60.
36. Marasini B, Cossutta R., Selmi C et al. Polymorphism of the fractalkine receptor CX3CR1 and systemic sclerosis-associated pulmonary arterial hypertension. Clin Dev Immunol. 2005; 12 (4): 275–9.
37. Balabanian K, Foussat A, Dorfmuller P et al. CX3C chemokine fractalkine in pulmonary arterial hypertension. Am J Resp Crit Care Med 2002; 165: 1419–25.
38. Perros F, Dorfmuller P, Souza R et al. Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension. Eur Respir J 2007; 29: 937–43.
39. Humbert M, Monti G, Brenot F et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension Am J Respir Crit Care Med 1995; 151 (5): 1628–31.
40. Garcia GE, Xia Y., Chen S et al. NF-kappaB-dependent fractalkine induction in rat aortic endothelial cells stimulated by IL-1beta, TNF-alpha, and LPS. J Leukoc Biol 2000; 67 (4): 577–84.
41. Ludwig A, Berkhout T, Moores K et al. Fractalkine is expressed by smooth muscle cells in response to IFN-gamma and TNF-alpha and is modulated by metalloproteinase activity. J Immunol 2002; 168 (2): 604–12.
42. Sch?fer A, Schulz C, Fraccarollo D et al. The CX3C chemokine fractalkine induces vascular dysfunction by generation of superoxide anions. Arterioscler Thromb Vasc Biol 2007; 27 (1): 55–62.
43. Yoneda O, Imai T, Goda S et al. Fractalkine-mediated endothelial cell injury by NK cells. J Immunol 2000; 164 (8): 4055–62.
44. Mizutani N, Sakurai T, Shibata T et al. Dose-dependent differential regulation of cytokine secretion from macrophages by fractalkine. Immunol 2007; 179: 7478–87.
45. Nakonechnikov S. Evaluation of the fractalkine level in patients with different genesis of pulmonary hypertension. J Clin Hypertens 2008; 10 (5; Suppl. A): 120.
46. Moon SO, Kim W, Sung MJ et al. Resveratrol suppresses tumor necrosis factor-alpha-induced fractalkine expression in endothelial cells. Mol Pharmacol 2006; 70 (1): 112–9.