Эффективный и безопасный петлевой диуретик торасемид в отличие от других петлевых диуретиков имеет дополнительные эффекты, связанные с одновременной блокадой ренин-ангиотензин-альдостероновой системы. Торасемид используется у больных артериальной гипертензией как в виде монотерапии, так и в комбинации с другими антигипертензивными средствами. В низких дозах торасемид оказывает длительное антигипертензивное действие, незначительно влияя на содержание калия в крови и показатели пуринового, углеводного и липидного метаболизма. Благодаря этому он может использоваться для длительного лечения артериальной гипертензии. Торасемид особенно эффективен у женщин в период постменопаузы, так как у этих женщин чаще формируется низкорениновая объемозависимая артериальная гипертензия. Таким образом, торасемид может быть использован для длительной антигипертензивной терапии у женщин в постменопаузе.
Effective and safe diuretic torasemide has additional effects of renin-angiotensin-aldosterone system blockage. Torasemide can be used as monotherapy or combined with other antihypertensives. In low doses torasemide produces pronounced antihypertensive effect without augmentation of excretion of potassium and water with urine. Long-term administration of torasemide was not associated with significant effects on lipid, purine, carbohydrate, or electrolyte metabolism parameters. Torasemide particularly effective in postmenopausal women, as these women are more likely formed low-renin hypertension. Therefore, torasemide can be used more widely in modern clinical practice.
1. Vasan RS, Beiser A, Seshadri S et al. Residual lifetime risk for developing hypertension in middle-aged women and men: the Framingham Heart Study. JAMA 2002; 287: 1003–10.
2. Navar LG, Harrison-Bernard LM, Nishiyama A, Kobori H. Regulation of intrarenal angiotensin II in hypertension. Hypertension 2002; 39 (2 Pt 2): 316–22.
3. Thethi T, Kamiyama M, Kobori H. The link between the renin-angiotensin-aldosterone system and renal injury in obesity and the metabolic syndrome. Curr Hypertens Rep 2012; 14 (2): 160–9.
4. Weinberger MH. Pathogenesis of salt sensitivity of blood pressure. Curr Hypertens Rep 2006; 8: 166–70.
5. Schulman IH, Aranda P, Raij L et al. Surgical menopause increases salt sensitivity of blood pressure. Hypertension 2006; 47: 1168–74.
6. Schulman IH, Raij L. Salt sensitivity and hypertension after menopause: role of nitric oxide and angiotensin II. Am J Nephrol 2006; 26: 170–80.
7. Grzegorczyk K, Krajewska M, Weyde W et al. Gender and kidney diseases: the clinical importance and mechanisms of modifying effects. Postepy Hig Med Dosw (Online) 2011; 65: 849–57.
8. Boschitsch E, Mayerhofer S, Magometschnigg D. Hypertension in women: the role of progesterone and aldosterone. Climacteric 2010; 13: 307–13.
9. Rossi GP, Pessina AC, Heagerthy AM. Primary aldosteronism an updateon screening diagnosis and treatment. J Hypertens 2008; 26: 613–21.
10. Joffe HV, Alder KA. Effect of aldosterone and mineralocorticoid receptor blockade on vascular inflammation. Heart Fail Rev 2005; 10: 31–7.
11. Schlaich MP, Schobel HP, Hilgers K, Schmieder RE. Impact of aldosterone on left ventricular structure and function in young normotensive and mildly hypertensive subjects. Am J Cardiol 2000; 85: 1199–206. Freel EM, Connell JM. Mechanisms of hypertension: the expanding role of aldosterone. J Am Soc Nephrol 2004; 15: 1993–2001.
12. Rahmouni K, Correia MLG, Haynes WG, Mark AL. Obesity-associated hypertension. New insights into mechanisms. Hypertension 2005; 45: 9–14.
13. Brilla CG, Weber KT. Mineralocorticoid excess, dietary sodium, and myocardial fibrosis. J Lab Clin Med 1992; 120 (6): 893–901.
14. Calhoun DA. Aldosterone and cardiovascular disease: smoke and fire. Circulation 2006; 114: 2572–4.
15. Christine Jellis. J Am Coll Cardiol 2010; 56 (2).
16. Stas S, Whaley-Connell A, Habibi J et al. Mineralocorticoid receptor blockade attenuates chronic overexpression of the renin-angiotensin-aldosterone system stimulation of reduced nicotinamide adenine dinucleotide phosphate oxidase and cardiac remodeling. Endocrinology 2007; 148 (8): 3773–80.
17. Lastra G, Whaley-Connell A, Manrique C et al. Low-dose spironolactone reduces reactive oxygen species generation and improves insulin-stimulated glucose transport in skeletal muscle in the TG(mRen2)27 rat. Am J Physiol Endocrinol Metab 2008; 295 (1): E110–6.
18. Bochud M, Nussberger J, Bovet P et al. Plasma aldosterone is independently associated with the metabolic syndrome. Hypertension 2006; 48 (2): 239–45.
19. Fujita T. Mineralocorticoid receptors, salt-sensitive hypertension and metabolic syndrome. Hypertension 2010; 55 (4): 813–8.
20. Zannad F, Alla F, Dousset B et al. Limitation of excessive exracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insight from the randomized aldactone evaluation study (RALES). Circulation 2000; 102: 2700–6.
21. Taddei S, Virdis A, Ghiadoni L et al. Effects of antihypertensive drugs on endothelial dysfunction: clinical implications. Drugs 2002; 62: 265–84.
22. Landmesser U, Drexler H. Effect of angiotensin II type 1 receptor antagonism on endothelial function: role of bradykinin and nitric oxide. J Hypertens (Suppl.) 2006; 24: S39–S43. Rizzoni D, Porteri E, De Ciuceis C et al. Effect of treatment with candesartan or enalapril on subcutaneous small artery structure in hypertensive patients with noninsulin-dependent diabetes mellitus. Hypertension 2005; 45: 659–65.
23. Rossi R, Nuzzo A, Iaccarino D et al. Effects of antihypertensive treatment on endothelial function in postmenopausal hypertensive women. A significant role for aldosterone inhibition. J Renin-Angiotensin-Aldosterone System 2011; 12: 446.
24. Cachofeiro V, Miana M, de Las Heras N et al. Aldosterone and the vascular system. J Steroid Biochem Mol Biol 2008; 109: 331–5.
25. Pitt B, Reichek N, Willenbrock R et al. Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left ventricular hypertrophy study. Circulation 2003; 108: 1831–8.
26. Zillich AJ, Garg J, Basu S et al. Thiazide diuretics, potassium, and the development of diabetes: a quantitative review. Hypertension 2006; 48 (2): 219–24.
27. Fortuño A, Muñiz P, Ravassa S et al. Torasemide inhibits angiotensin II-induced vasoconstriction and intracellular calcium increase in the aorta of spontaneously hypertensive rats. Hypertension 1999; 34 (1):138–43.
28. Bоlke T, Achhammer I. Torasemide: review of its pharmacology and therapeutic use. Drugs Today 1994; 8: 1–28.
29. López B. J Am Coll Cardiol 2004; 43 (11): 2028–35.
30. DiNicolantonio JJ. Should torsemide be the loop diuretic of choice in systolic heart failure? Future Cardiol 2012; 8 (5): 707–28.
31. Kasama S, Toyama T, Hatori T et al. Effects of torasemide on cardiac sympathetic nerve activity and left ventricular remodelling in patients with congestive heart failure. Heart 2006; 92 (10): 1434–40.
32. Cosin J, Diez J. On behalf of the TORIC investigators. Eur J Heart Fail 2002; 4: 507–13.
33. Hermida RC, Ayala DE, Mojón A et al. Comparison of the effects on ambulatory blood pressure of awakening versus bedtime administration of torasemide in essential hypertension. Chronobiol Int 2008; 25 (6): 950–70.
34. Karagueuzian HS. Targeting cardiac fibrosis: a new frontier in antiarrhythmic therapy? Am J Cardiovasc Dis 2011; 1 (2): 101–9.
35. Werner U, Werner D, Heinbüchner S et al. Gender is an important determinant of the disposition of the loop diuretic torasemide. J Clin Pharmacol 2010; 50 (2): 160–8.
Авторы
О.Н.Ткачева1, Н.К.Рунихина2, Н.В.Шарашкина2
1 ФГБУ Государственный научно-исследовательский центр профилактической медицины Минздрава РФ, Москва
2 ФГБУ Научный центр акушерства, гинекологии и
перинатологии им. акад. В.И.Кулакова Минздрава РФ, Москва