Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Роль повышенной активности симпатического отдела вегетативной нервной системы в развитии осложнений сердечно-сосудистых заболеваний у больных артериальной гипертонией: фармакологические аспекты
Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Ключевые слова: симпатическая нервная система, артериальная гипертония, препараты центрального действия, моксонидин.
________________________________________________
Recently, we have determined new interest in studying the role of sympathetic part of autonomic division of nervous system (SANS) in the pathogenesis of arterial hypertension (AH), as well as in studying the role of agents, suppressing the activity of SANS, using for AH treatment, including the usage of antihypertensive agents and non-pharmacological methods. This article discusses the changes of autonomic regulation of the cardiovascular system in patients with AH. The role of these changes in the development of the functional and structured changes of the heart and systemic vessels can be observing during long-standing AH and will lead to the development of adverse clinical outcomes. We have been showing received data, associated with the impact of non-medicated and pharmacological approaches to the autonomic regulation of the cardiovascular system.
Key words: sympathetic nervous system, arterial hypertension, centrally-acting drugs, moxonidine.
2. Mancia G, Grassi G. The Autonomic Nervous System and Hypertension. Circ Res 2014; 114: 1804–14.
3. Folkow B. Physiological aspects of primary hypertension. Physiol Rev 1982; 62: 347–504.
4. Oparil S. The sympathetic nervous system in clinical and experimental hypertension. Kidney Int 1986; 30: 437–52.
5. Mark AL. The sympathetic nervous system in hypertension: a po- tential long-term regulator of arterial pressure. J Hypertens (Suppl.) 1996; 14: S159–S165.
6. Mancia G, Grassi G, Giannattasio C, Seravalle G. Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension 1999; 34: 724–8.
7. Palatini P, Julius S. The role of cardiac autonomic function in hypertension and cardiovascular disease. Curr Hypertens Rep 2009; 11: 199–205.
8. Grassi G. Assessment of sympathetic cardiovascular drive in human hypertension: achievements and perspectives. Hypertension 2009; 54: 690–7.
9. Esler M. Sympathetic nervous system moves toward center stage in cardiovascular medicine: from Thomas Willis to resistant hypertension. Hypertension 2014; 63: e25–e32.
10. Bakris G, Nathan S. Renal denervation and left ventricular mass regression: a benefit beyond blood pressure reduction? J Am Coll Cardiol 2014; 63: 1924–5.
11. McCrory WW, Klein AA, Rosenthal RA. Blood pressure, heart rate, and plasma catecholamines in normal and hypertensive children and their siblings at rest and after standing. Hypertension 1982; 4: 507–13.
12. Horikoshi Y, Tajima I, Igarashi H et al. The adreno-sympathetic system, the genetic predisposition to hypertension, and stress. Am J Med Sci 1985; 289: 186–91.
13. Ferrara LA, Moscato TS, Pisanti N et al. Is the sympathetic nervous system altered in children with familial history of arterial hypertension? Cardiology 1988; 75: 200–5.
14. Perini C, Müller FB, Rauchfleisch U et al. Psychosomatic factors in borderline hypertensive subjects and offspring of hypertensive parents. Hypertension 1990; 16: 627–34.
15. Bianchetti MG, Weidmann P, Beretta-Piccoli C. Disturbed noradrenergic blood pressure control in normotensive members of hypertensive families. Br Heart J 1984; 51: 306–11.
16. Singh JP, Larson MG, Manolio TA et al. Blood pressure response during treadmill testing as a risk factor for new-onset hypertension. The Framingham heart study. Circulation 1999; 99: 1831–6.
17. Matthews CE, Pate RR, Jackson KL et al. Exaggerated blood pressure response to dynamic exercise and risk of future hypertension. J Clin Epidemiol 1998; 51: 29–35.
18. Ferrier C, Cox H, Esler M. Elevated total body noradrenaline spillover in normotensive members of hypertensive families. Clin Sci (Lond) 1993; 84: 225–30.
19. Yamada Y, Miyajima E, Tochikubo O et al. Impaired baroreflex changes in muscle sympathetic nerve activity in adolescents who have a family history of essential hypertension. J Hypertens (Suppl.) 1988; 6: S525–S528.
20. Smith PA, Graham LN, Mackintosh AF et al. Sympathetic neural mechanisms in white-coat hypertension. J Am Coll Cardiol 2002; 40: 126–32.
21. Smith PA, Graham LN, Mackintosh AF et al. Relationship between central sympathetic activity and stages of human hypertension. Am J Hypertens 2004; 17: 217–22.
22. Grassi G, Seravalle G, Trevano FQ et al. Neurogenic abnormalities in masked hypertension. Hypertension 2007; 50: 537–42.
23. Mancia G, Bombelli M, Sega R, Grassi G. White coat and masked hypertension. In: Black HR, Elliott WJ, eds. Hypertension. A Companion to Braunwald’s Heart Disease. Saunders Elsevier: Philadelphia, PA, 2012; p. 64–8.
24. Maver J, Struci M, Accetto R. Autonomic nervous system in normotensive subjects with a family history of hypertension. Clin Auton Res 2004; 14: 369–75.
25. Julius S, Krause L, Schork NJ et al. Hyperkinetic borderline hypertension in Tecumseh, Michigan. J Hypertens 1991; 9: 77–84.
26. Böhm R, van Baak M, van Hooff M et al. Salivary flow in borderline hypertension. Klin Wochenschr 1985; 63 (Suppl. 3): 154–6.
27. Julius S, Pascual AV, London R. Role of parasympathetic inhibition in the hyperkinetic type of borderline hypertension. Circulation 1971; 44: 413–8.
28. Esler M, Lambert G, Jennings G. Regional norepinephrine turnover in human hypertension. Clin Exp Hypertens A 1989; 11 (Suppl. 1): 75–89.
29. Anderson EA, Sinkey CA, Lawton WJ, Mark AL. Elevated sympathetic nerve activity in borderline hypertensive humans: evidence from directintraneural recordings. Hypertension 1988; 14: 1277–83.
30. Hering D, Kara T, Kucharska W et al. High-normal blood pressure is associated with increased resting sympathetic activity but normal responses to stress tests. Blood Press 2013; 22: 183–7.
31. Blankestijn PJ, Man in’t Veld AJ, Tulen J et al. Support for adrenaline-hypertension hypothesis: 18 hour pressor effect after 6 hours adrenaline infusion. Lancet 1988; 2: 1386–9.
32. Brodde OE, Daul A, O’Hara N, Bock KD. Increased density and responsiveness of alpha 2 and beta-adrenoceptors in circulating blood cells of essential hypertensive patients. J Hypertens Suppl 1984; 2: S111–S114.
33. Brodde OE. Beta-adrenoceptors in cardiac disease. Pharmacol Ther 1993; 60: 405–30.
34. Valentini M, Julius S, Palatini P et al. Attenuation of the haemodynamic, metabolic and energy responses to iosproterenol in patients with hypertension. J Hypertens 2004; 22: 1999–2006.
35. Grassi G, Seravalle G, Stella ML, Mancia G. Pathophysiological aspects of hypertensive heart disease in women. J Hypertens 2002; 20 (Suppl. 2): S6–S10.
36. Narkiewicz K, Phillips BG, Kato M et al. Gender-selective interaction between aging, blood pressure, and sympathetic nerve activity. Hypertension 2005; 45: 522–25.
37. Grassi G, Seravalle G, Bertinieri G et al. Sympathetic and reflex alterations in systo-diastolic and systolic hypertension of the elderly. J Hypertens 2000; 18: 587–93.
38. Grassi G, Cattaneo BM, Seravalle G et al. Baroreflex control of sympathetic nerve activity in essential and secondary hypertension. Hypertension 1998; 31: 68–72.
39. Schobel HP, Fischer T, Heuszer K et al. Preeclampsia – a state of sympathetic overactivity. N Engl J Med 1996; 335: 1480–5.
40. Grassi G, Seravalle G, Dell’Oro R et al. Adrenergic and reflex abnormalities in obesity-related hypertension. Hypertension 2000; 36: 538–42.
41. Grassi G, Dell’Oro R, Quarti-Trevano F et al. Neuroadrenergic and reflex abnormalities in patients with metabolic syndrome. Diabetologia 2005; 48: 1359–65.
42. Huggett RJ, Scott EM, Gilbey SG et al. Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension. Circulation 2003; 108: 3097–3101.
43. Brands MW, Hall JE. Insulin resistance, hyperinsulinemia, and obesity-associated hypertension. J Am Soc Nephrol 1992; 3: 1064–77.
44. Scherrer U, Sartori C. Insulin as a vascular and sympathoexcitatory hormone: implications for blood pressure regulation, insulin sensitivity, and cardiovascular morbidity. Circulation 1997; 96: 4104–13.
45. Mancia G, Bombelli M, Corrao G et al. Metabolic syndrome in the PressioniArterioseMonitorate E LoroAssociazioni (PAMELA) study: daily life blood pressure, cardiac damage, and prognosis. Hypertension 2007; 49: 40–7.
46. Klein IH, Ligtenberg G, Neumann J et al. Sympathetic nerve activity is inappropriately increased in chronic renal disease. J Am Soc Nephrol 2003; 14: 3239–44.
47. Grassi G, Quarti-Trevano F, Seravalle G et al. Early sympathetic activation in the initial clinical stages of chronic renal failure. Hypertension 2011; 57: 846–51.
48. Burns J, Sivananthan MU, Ball SG et al. Relationship between central sympathetic drive and magnetic resonance imaging-determined left ventricular mass in essential hypertension. Circulation 2007; 115: 1999–2005.
49. Grassi G, Seravalle G, Quarti-Trevano F et al. Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension 2009; 53: 205–9.
50. Grassi G, Seravalle G, Quarti-Trevano F et al. Effects of hypertension and obesity on the sympathetic activation of heart failure patients. Hypertension 2003; 42: 873–7.
51. Grassi G, Seravalle G, Dell’Oro R et al. Sympathetic and baroreflex function in hypertensive or heart failure patients with ventricular arrhythmias. J Hypertens 2004; 22: 1747–53.
52. Seravalle G, Volpe M, Ganz F et al. Neuroadrenergic profile in patients with resistant hypertension. J Hypertens 2011; 29: e141 (abstract).
53. Grassi G, Colombo M, Seravalle G et al. Dissociation between muscle and skin sympathetic nerve activity in essential hypertension, obesity, and congestive heart failure. Hypertension 1998; 31: 64–7.
54. Grassi G, Seravalle G, Brambilla G et al. Regional differences in sympathetic activation in lean and obese normotensive individuals with obstructive sleep apnoea. J Hypertens 2014; 32: 383–8.
55. Grassi G, Seravalle G, Arenare F et al. Behaviour of regional adrenergic outflow in mild-to-moderate renal failure. J Hypertens 2009; 27: 562–6.
56. Bevan RD, Tsuru H. Functional and structural changes in the rabbit ear artery after sympathetic denervation. Circ Res 1981; 49: 478–85.
57. Mangoni AA, Mircoli L, Giannattasio C et al. Effect of sympathectomy on mechanical properties of common carotid and femoral arteries. Hypertension 1997; 30: 1085–8.
58. Failla M, Grappiolo A, Emanuelli G et al. Sympathetic tone restrains arterial distensibility of healthy and atherosclerotic subjects. J Hypertens 1999; 17: 1117–23.
59. Mancia G. Short-term and long-term blood pressure variability. In: Berbari AE, Mancia G, eds. Special Issues in Hypertension. Milan: Springer, 2012: p. 91–102.
60. Cohn JN, Levine TB, Olivari MT et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984; 311: 819–23.
61. Brunner-La Rocca HP, Esler MD, Jennings GL, Kaye DM. Effect of cardiac sympathetic nervous activity on mode of death in congestive heart failure. Eur Heart J 2001; 22: 1136–43.
62. Sander D, Winbeck K, Klingelhöfer J et al. Prognostic relevance of pathological sympathetic activation after acute thromboembolic stroke. Neurology 2001; 57: 833–8.
63. Zoccali C, Mallamaci F, Parlongo S et al. Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end-stage renal disease. Circulation 2002; 105: 1354–9.
64. Barretto AC, Santos AC, Munhoz R et al. Increased muscle sympathetic nerve activity predicts mortality in heart failure patients. Int J Cardiol 2009; 135: 302–7.
65. Andreas S, Haarmann H, Klarner S et al. Increased sympathetic nerve activity in COPD is associated with morbidity and mortality. Lung 2014; 192: 235–41.
66. Penne EL, Neumann J, Klein IH et al. Sympathetic hyperactivity and clinical outcome in chronic kidney disease during standard treatment. J Nephrol 2009; 22: 208–15.
67. Grassi G, Seravalle G, Stella ML et al. Sympathoexcitatory responses to the acute blood pressure fall induced by central or peripheral antihypertensive drugs. Am J Hypertens 2000; 13: 29–34.
68. Grassi G. Counteracting the sympathetic nervous system in essential hypertension. Curr Opin Nephrol Hypertens 2004; 13: 513–9.
69. Van Zwieten P. Beneficial interactions between pharmacological, pathophysiological and hypertension research. J Hypertens 2001; 19: 465–73.
70. Grassi G, Seravalle G, Calhoun DA, Mancia G. Physical training and baroreceptor control of sympathetic nerve activity in humans. Hypertension 1994; 23: 294–301.
71. Grassi G, Seravalle G, Colombo M et al. Body weight reduction, sympathetic nerve traffic, and arterial baroreflex in obese normotensive humans. Circulation 1998; 97: 2037–42.
72. Grassi G, Cattaneo BM, Seravalle G et al. Baroreflex impairment by low sodium diet in mild or moderate essential hypertension. Hypertension 1997; 29: 802–7.
73. Grassi G, Dell’Oro R, Seravalle G et al. Short- and long-term neuroadrenergic effects of moderate dietary sodium restriction in essential hypertension. Circulation 2002; 106: 1957–61.
74. Pal GK, Adithan C, Dutta TK et al. Preference for salt contributes to sympathovagal imbalance in the genesis of prehypertension. Eur J Clin Nutr 2013; 67: 586–91.
75. Xu J, Hering D, Sata Y et al. Renal denervation: current implications and future perspectives. Clin Sci (Lond) 2014; 126: 41–53.
76. Menne J, Jordan J, Linnenweber-Held S, Haller H. Resistant hypertension: baroreflex stimulation as a new tool. Nephrol Dial Transplant 2013; 28: 288–95.
77. Heusser K, Tank J, Engeli S et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension 2010; 55: 619–26.
78. Schmieder RE, Redon J, Grassi G et al. ESH position paper: renal denervation – an interventional therapy of resistant hypertension. J Hypertens 2012; 30: 837–41.
79. Schlaich MP, Schmieder RE, Bakris G et al. International Expert Consensus statement: percutaneous transluminal denervation for the treatment of resistant hypertension. J Am Coll Cardiol 2013; 62: 2031–45.
80. Bhatt DL, Kandzari DE, O’Neill WW et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med 2014; 370: 1393–401.
81. Messerli FH. Doxazosin and congestive heart failure. J Am Coll Cardiol 2001; 38: 1295–6.
82. Wiysonge CS, Opie LH. b-Blockers as initial therapy for hypertension. JAMA 2013; 310: 1851–2.
83. Brinkmann J, Heusser K, Schmidt BM et al. Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult-to-control hypertensive patients: prospective case series. Hypertension 2012; 60: 1485–90.
84. ALLHAT Collaborative Research Group. Major cardiovascular events in hypertensive patients randomized to doxazosin vs. chlorthalidone: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA 2000; 283: 1967–75.
85. Chen PS, Tan AY. Autonomic nerve activity and atrial fibrillation. Heart Rhythm 2007; 4: S61–S64.
86. Sharifov OF, Fedorov VV, Beloshapko GG et al. Roles of adrenergic and cholinergic stimulation in spontaneous atrial fibrillation in dogs. J Am Coll Cardiol 2004; 43: 483–90.
87. Tan AY, Zhou S, Gholmieh G et al. Spontaneous autonomic nerve activity and paroxysmal atrial tachyarrhythmias (abstract). Heart Rhythm 2006; 3 (1S): S184.
88. Shen MJ, Choi EK, Tan AY et al. Neural mechanisms of atrial arrhythmias. Nat Rev Cardiol 2011; 9: 30–9.
89. Linz D, Mahfoud F, Schotten U et al. Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea. Hypertension 2012; 60: 172–8.
90. Pokushalov E, Romanov A, Corbucci G et al. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol 2012; 60: 1163–70.
91. Deftereos S, Giannopoulos G, Kossyvakis C et al. Effectiveness of moxonidine to reduce atrial fibrillation burden in hypertensive patients. Am J Cardiol 2013; 112: 684–7.
92. Giannopoulos G, Kossyvakis C, Efremidis M et al. Central Sympathetic Inhibition to Reduce Post-Ablation Atrial Fibrillation Recurrences in Hypertensive Patients: A Randomized Controlled Study. Circulation 2014. Aug 21. [Epub ahead of print].
________________________________________________
1. DiBona GF. Sympathetic nervous system and hypertension. Hypertension 2013; 61: 556–60.
2. Mancia G, Grassi G. The Autonomic Nervous System and Hypertension. Circ Res 2014; 114: 1804–14.
3. Folkow B. Physiological aspects of primary hypertension. Physiol Rev 1982; 62: 347–504.
4. Oparil S. The sympathetic nervous system in clinical and experimental hypertension. Kidney Int 1986; 30: 437–52.
5. Mark AL. The sympathetic nervous system in hypertension: a po- tential long-term regulator of arterial pressure. J Hypertens (Suppl.) 1996; 14: S159–S165.
6. Mancia G, Grassi G, Giannattasio C, Seravalle G. Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension 1999; 34: 724–8.
7. Palatini P, Julius S. The role of cardiac autonomic function in hypertension and cardiovascular disease. Curr Hypertens Rep 2009; 11: 199–205.
8. Grassi G. Assessment of sympathetic cardiovascular drive in human hypertension: achievements and perspectives. Hypertension 2009; 54: 690–7.
9. Esler M. Sympathetic nervous system moves toward center stage in cardiovascular medicine: from Thomas Willis to resistant hypertension. Hypertension 2014; 63: e25–e32.
10. Bakris G, Nathan S. Renal denervation and left ventricular mass regression: a benefit beyond blood pressure reduction? J Am Coll Cardiol 2014; 63: 1924–5.
11. McCrory WW, Klein AA, Rosenthal RA. Blood pressure, heart rate, and plasma catecholamines in normal and hypertensive children and their siblings at rest and after standing. Hypertension 1982; 4: 507–13.
12. Horikoshi Y, Tajima I, Igarashi H et al. The adreno-sympathetic system, the genetic predisposition to hypertension, and stress. Am J Med Sci 1985; 289: 186–91.
13. Ferrara LA, Moscato TS, Pisanti N et al. Is the sympathetic nervous system altered in children with familial history of arterial hypertension? Cardiology 1988; 75: 200–5.
14. Perini C, Müller FB, Rauchfleisch U et al. Psychosomatic factors in borderline hypertensive subjects and offspring of hypertensive parents. Hypertension 1990; 16: 627–34.
15. Bianchetti MG, Weidmann P, Beretta-Piccoli C. Disturbed noradrenergic blood pressure control in normotensive members of hypertensive families. Br Heart J 1984; 51: 306–11.
16. Singh JP, Larson MG, Manolio TA et al. Blood pressure response during treadmill testing as a risk factor for new-onset hypertension. The Framingham heart study. Circulation 1999; 99: 1831–6.
17. Matthews CE, Pate RR, Jackson KL et al. Exaggerated blood pressure response to dynamic exercise and risk of future hypertension. J Clin Epidemiol 1998; 51: 29–35.
18. Ferrier C, Cox H, Esler M. Elevated total body noradrenaline spillover in normotensive members of hypertensive families. Clin Sci (Lond) 1993; 84: 225–30.
19. Yamada Y, Miyajima E, Tochikubo O et al. Impaired baroreflex changes in muscle sympathetic nerve activity in adolescents who have a family history of essential hypertension. J Hypertens (Suppl.) 1988; 6: S525–S528.
20. Smith PA, Graham LN, Mackintosh AF et al. Sympathetic neural mechanisms in white-coat hypertension. J Am Coll Cardiol 2002; 40: 126–32.
21. Smith PA, Graham LN, Mackintosh AF et al. Relationship between central sympathetic activity and stages of human hypertension. Am J Hypertens 2004; 17: 217–22.
22. Grassi G, Seravalle G, Trevano FQ et al. Neurogenic abnormalities in masked hypertension. Hypertension 2007; 50: 537–42.
23. Mancia G, Bombelli M, Sega R, Grassi G. White coat and masked hypertension. In: Black HR, Elliott WJ, eds. Hypertension. A Companion to Braunwald’s Heart Disease. Saunders Elsevier: Philadelphia, PA, 2012; p. 64–8.
24. Maver J, Struci M, Accetto R. Autonomic nervous system in normotensive subjects with a family history of hypertension. Clin Auton Res 2004; 14: 369–75.
25. Julius S, Krause L, Schork NJ et al. Hyperkinetic borderline hypertension in Tecumseh, Michigan. J Hypertens 1991; 9: 77–84.
26. Böhm R, van Baak M, van Hooff M et al. Salivary flow in borderline hypertension. Klin Wochenschr 1985; 63 (Suppl. 3): 154–6.
27. Julius S, Pascual AV, London R. Role of parasympathetic inhibition in the hyperkinetic type of borderline hypertension. Circulation 1971; 44: 413–8.
28. Esler M, Lambert G, Jennings G. Regional norepinephrine turnover in human hypertension. Clin Exp Hypertens A 1989; 11 (Suppl. 1): 75–89.
29. Anderson EA, Sinkey CA, Lawton WJ, Mark AL. Elevated sympathetic nerve activity in borderline hypertensive humans: evidence from directintraneural recordings. Hypertension 1988; 14: 1277–83.
30. Hering D, Kara T, Kucharska W et al. High-normal blood pressure is associated with increased resting sympathetic activity but normal responses to stress tests. Blood Press 2013; 22: 183–7.
31. Blankestijn PJ, Man in’t Veld AJ, Tulen J et al. Support for adrenaline-hypertension hypothesis: 18 hour pressor effect after 6 hours adrenaline infusion. Lancet 1988; 2: 1386–9.
32. Brodde OE, Daul A, O’Hara N, Bock KD. Increased density and responsiveness of alpha 2 and beta-adrenoceptors in circulating blood cells of essential hypertensive patients. J Hypertens Suppl 1984; 2: S111–S114.
33. Brodde OE. Beta-adrenoceptors in cardiac disease. Pharmacol Ther 1993; 60: 405–30.
34. Valentini M, Julius S, Palatini P et al. Attenuation of the haemodynamic, metabolic and energy responses to iosproterenol in patients with hypertension. J Hypertens 2004; 22: 1999–2006.
35. Grassi G, Seravalle G, Stella ML, Mancia G. Pathophysiological aspects of hypertensive heart disease in women. J Hypertens 2002; 20 (Suppl. 2): S6–S10.
36. Narkiewicz K, Phillips BG, Kato M et al. Gender-selective interaction between aging, blood pressure, and sympathetic nerve activity. Hypertension 2005; 45: 522–25.
37. Grassi G, Seravalle G, Bertinieri G et al. Sympathetic and reflex alterations in systo-diastolic and systolic hypertension of the elderly. J Hypertens 2000; 18: 587–93.
38. Grassi G, Cattaneo BM, Seravalle G et al. Baroreflex control of sympathetic nerve activity in essential and secondary hypertension. Hypertension 1998; 31: 68–72.
39. Schobel HP, Fischer T, Heuszer K et al. Preeclampsia – a state of sympathetic overactivity. N Engl J Med 1996; 335: 1480–5.
40. Grassi G, Seravalle G, Dell’Oro R et al. Adrenergic and reflex abnormalities in obesity-related hypertension. Hypertension 2000; 36: 538–42.
41. Grassi G, Dell’Oro R, Quarti-Trevano F et al. Neuroadrenergic and reflex abnormalities in patients with metabolic syndrome. Diabetologia 2005; 48: 1359–65.
42. Huggett RJ, Scott EM, Gilbey SG et al. Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension. Circulation 2003; 108: 3097–3101.
43. Brands MW, Hall JE. Insulin resistance, hyperinsulinemia, and obesity-associated hypertension. J Am Soc Nephrol 1992; 3: 1064–77.
44. Scherrer U, Sartori C. Insulin as a vascular and sympathoexcitatory hormone: implications for blood pressure regulation, insulin sensitivity, and cardiovascular morbidity. Circulation 1997; 96: 4104–13.
45. Mancia G, Bombelli M, Corrao G et al. Metabolic syndrome in the PressioniArterioseMonitorate E LoroAssociazioni (PAMELA) study: daily life blood pressure, cardiac damage, and prognosis. Hypertension 2007; 49: 40–7.
46. Klein IH, Ligtenberg G, Neumann J et al. Sympathetic nerve activity is inappropriately increased in chronic renal disease. J Am Soc Nephrol 2003; 14: 3239–44.
47. Grassi G, Quarti-Trevano F, Seravalle G et al. Early sympathetic activation in the initial clinical stages of chronic renal failure. Hypertension 2011; 57: 846–51.
48. Burns J, Sivananthan MU, Ball SG et al. Relationship between central sympathetic drive and magnetic resonance imaging-determined left ventricular mass in essential hypertension. Circulation 2007; 115: 1999–2005.
49. Grassi G, Seravalle G, Quarti-Trevano F et al. Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension 2009; 53: 205–9.
50. Grassi G, Seravalle G, Quarti-Trevano F et al. Effects of hypertension and obesity on the sympathetic activation of heart failure patients. Hypertension 2003; 42: 873–7.
51. Grassi G, Seravalle G, Dell’Oro R et al. Sympathetic and baroreflex function in hypertensive or heart failure patients with ventricular arrhythmias. J Hypertens 2004; 22: 1747–53.
52. Seravalle G, Volpe M, Ganz F et al. Neuroadrenergic profile in patients with resistant hypertension. J Hypertens 2011; 29: e141 (abstract).
53. Grassi G, Colombo M, Seravalle G et al. Dissociation between muscle and skin sympathetic nerve activity in essential hypertension, obesity, and congestive heart failure. Hypertension 1998; 31: 64–7.
54. Grassi G, Seravalle G, Brambilla G et al. Regional differences in sympathetic activation in lean and obese normotensive individuals with obstructive sleep apnoea. J Hypertens 2014; 32: 383–8.
55. Grassi G, Seravalle G, Arenare F et al. Behaviour of regional adrenergic outflow in mild-to-moderate renal failure. J Hypertens 2009; 27: 562–6.
56. Bevan RD, Tsuru H. Functional and structural changes in the rabbit ear artery after sympathetic denervation. Circ Res 1981; 49: 478–85.
57. Mangoni AA, Mircoli L, Giannattasio C et al. Effect of sympathectomy on mechanical properties of common carotid and femoral arteries. Hypertension 1997; 30: 1085–8.
58. Failla M, Grappiolo A, Emanuelli G et al. Sympathetic tone restrains arterial distensibility of healthy and atherosclerotic subjects. J Hypertens 1999; 17: 1117–23.
59. Mancia G. Short-term and long-term blood pressure variability. In: Berbari AE, Mancia G, eds. Special Issues in Hypertension. Milan: Springer, 2012: p. 91–102.
60. Cohn JN, Levine TB, Olivari MT et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984; 311: 819–23.
61. Brunner-La Rocca HP, Esler MD, Jennings GL, Kaye DM. Effect of cardiac sympathetic nervous activity on mode of death in congestive heart failure. Eur Heart J 2001; 22: 1136–43.
62. Sander D, Winbeck K, Klingelhöfer J et al. Prognostic relevance of pathological sympathetic activation after acute thromboembolic stroke. Neurology 2001; 57: 833–8.
63. Zoccali C, Mallamaci F, Parlongo S et al. Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end-stage renal disease. Circulation 2002; 105: 1354–9.
64. Barretto AC, Santos AC, Munhoz R et al. Increased muscle sympathetic nerve activity predicts mortality in heart failure patients. Int J Cardiol 2009; 135: 302–7.
65. Andreas S, Haarmann H, Klarner S et al. Increased sympathetic nerve activity in COPD is associated with morbidity and mortality. Lung 2014; 192: 235–41.
66. Penne EL, Neumann J, Klein IH et al. Sympathetic hyperactivity and clinical outcome in chronic kidney disease during standard treatment. J Nephrol 2009; 22: 208–15.
67. Grassi G, Seravalle G, Stella ML et al. Sympathoexcitatory responses to the acute blood pressure fall induced by central or peripheral antihypertensive drugs. Am J Hypertens 2000; 13: 29–34.
68. Grassi G. Counteracting the sympathetic nervous system in essential hypertension. Curr Opin Nephrol Hypertens 2004; 13: 513–9.
69. Van Zwieten P. Beneficial interactions between pharmacological, pathophysiological and hypertension research. J Hypertens 2001; 19: 465–73.
70. Grassi G, Seravalle G, Calhoun DA, Mancia G. Physical training and baroreceptor control of sympathetic nerve activity in humans. Hypertension 1994; 23: 294–301.
71. Grassi G, Seravalle G, Colombo M et al. Body weight reduction, sympathetic nerve traffic, and arterial baroreflex in obese normotensive humans. Circulation 1998; 97: 2037–42.
72. Grassi G, Cattaneo BM, Seravalle G et al. Baroreflex impairment by low sodium diet in mild or moderate essential hypertension. Hypertension 1997; 29: 802–7.
73. Grassi G, Dell’Oro R, Seravalle G et al. Short- and long-term neuroadrenergic effects of moderate dietary sodium restriction in essential hypertension. Circulation 2002; 106: 1957–61.
74. Pal GK, Adithan C, Dutta TK et al. Preference for salt contributes to sympathovagal imbalance in the genesis of prehypertension. Eur J Clin Nutr 2013; 67: 586–91.
75. Xu J, Hering D, Sata Y et al. Renal denervation: current implications and future perspectives. Clin Sci (Lond) 2014; 126: 41–53.
76. Menne J, Jordan J, Linnenweber-Held S, Haller H. Resistant hypertension: baroreflex stimulation as a new tool. Nephrol Dial Transplant 2013; 28: 288–95.
77. Heusser K, Tank J, Engeli S et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension 2010; 55: 619–26.
78. Schmieder RE, Redon J, Grassi G et al. ESH position paper: renal denervation – an interventional therapy of resistant hypertension. J Hypertens 2012; 30: 837–41.
79. Schlaich MP, Schmieder RE, Bakris G et al. International Expert Consensus statement: percutaneous transluminal denervation for the treatment of resistant hypertension. J Am Coll Cardiol 2013; 62: 2031–45.
80. Bhatt DL, Kandzari DE, O’Neill WW et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med 2014; 370: 1393–401.
81. Messerli FH. Doxazosin and congestive heart failure. J Am Coll Cardiol 2001; 38: 1295–6.
82. Wiysonge CS, Opie LH. b-Blockers as initial therapy for hypertension. JAMA 2013; 310: 1851–2.
83. Brinkmann J, Heusser K, Schmidt BM et al. Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult-to-control hypertensive patients: prospective case series. Hypertension 2012; 60: 1485–90.
84. ALLHAT Collaborative Research Group. Major cardiovascular events in hypertensive patients randomized to doxazosin vs. chlorthalidone: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA 2000; 283: 1967–75.
85. Chen PS, Tan AY. Autonomic nerve activity and atrial fibrillation. Heart Rhythm 2007; 4: S61–S64.
86. Sharifov OF, Fedorov VV, Beloshapko GG et al. Roles of adrenergic and cholinergic stimulation in spontaneous atrial fibrillation in dogs. J Am Coll Cardiol 2004; 43: 483–90.
87. Tan AY, Zhou S, Gholmieh G et al. Spontaneous autonomic nerve activity and paroxysmal atrial tachyarrhythmias (abstract). Heart Rhythm 2006; 3 (1S): S184.
88. Shen MJ, Choi EK, Tan AY et al. Neural mechanisms of atrial arrhythmias. Nat Rev Cardiol 2011; 9: 30–9.
89. Linz D, Mahfoud F, Schotten U et al. Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea. Hypertension 2012; 60: 172–8.
90. Pokushalov E, Romanov A, Corbucci G et al. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol 2012; 60: 1163–70.
91. Deftereos S, Giannopoulos G, Kossyvakis C et al. Effectiveness of moxonidine to reduce atrial fibrillation burden in hypertensive patients. Am J Cardiol 2013; 112: 684–7.
92. Giannopoulos G, Kossyvakis C, Efremidis M et al. Central Sympathetic Inhibition to Reduce Post-Ablation Atrial Fibrillation Recurrences in Hypertensive Patients: A Randomized Controlled Study. Circulation 2014. Aug 21. [Epub ahead of print].
ГБОУ ДПО Российская медицинская академия последипломного образования Минздрава России, Москва
________________________________________________
S.R.Gilyarevsky