Несмотря на доступность современных лекарственных средств для лечения большинства сердечно-сосудистых заболеваний, наличие таких тяжелых недугов, как рефрактерная артериальная гипертония и легочная гипертензия, привело к разработке патогенетически обоснованных инвазивных методов лечения этих состояний. Выявление потенциальных ответчиков на этапе отбора больных позволит детальнее взглянуть на патогенез и развитие данных нозологий, определить предикторы эффективности альтернативных методов лечения, а также разработать протокол ведения этих пациентов. Исходя из этого, в статье рассматриваются разнообразные методы оценки активности симпатического отдела вегетативной нервной системы как основного звена патогенеза в развитии системных гипертензий.
Despite the availability of modern medicines for treating the majority of cardiovascular diseases, the existence of such severe diseases as refractory arterial hypertension and pulmonary hypertension, has brought us to the development of the pathogenetic invasive method of such conditions treatment. Identification of potential responses at the stage of patients selection will help us to see in details the pathogenesis and development of this nosology, to determine the predictors of the efficacy of alternative methods of treatment sand to develop the protocol for these situations. From there, the article discusses various methods of activity evaluation of the sympathetic part of the vegetative nervous systemas the mainsector of pathogenesis of systemic hypertension development.
1. Papademetriou V, Doumas M, Tsioufis K. Renal Sympathetic Denervation for the Treatment of Difficult-to-Control or Resistant Hypertension. Int J Hypertens 2011; 2011: 196518; doi: 10.4061/2011/196518
2. Chen SL, Zhang YJ, Xie DJ et al. Percutaneous pulmonary artery denervation completely abolishes experimental pulmonary arterial hypertension in vivo. Eurointervention 2013; 9 (2): 269–76.
3. Chen SL, Zhang FF, Xu J et al. Pulmonary Artery Denervation to Treat Pulmonary Arterial Hypertension: The Single-Center, Prospective, First-in-Man PADN-1 Study (First-in-Man Pulmonary Artery Denervation for Treatment of Pulmonary Artery Hypertension) J Am Coll Cardiol 2013; 62 (12): 1092–100.
4. Bhatt DL, Kandzari DE, O'Neill WW et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med 2014; 370: 1393–401.
5. Patel HC, Rosen SD, Alistair L et al. Targeting the autonomic nervous system: Measuring autonomic function and novel devices for heart failure management. Int J Cardiol 2013; 170: 107–17.
6. Floras J. Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol 2009; 54: 375–85.
7. Buchheit M, Laursen PB, Ahmaidi S. Parasympathetic reactivation after repeated sprint exercise. Am J Physiol Heart Circ Physiol 2007; 293: H133–H141.
8. Guidelines. Heart rate variability.Standards of measurement, physiological in terpretation, and clinical use. Eur Heart J 1996; 17: 354–81.
9. Appel ML, Saul JP, Berger RD, Cohen RJ. Closed loop identification of cardio-vascular circulatory mechanisms. Computers in Cardiology 1989. Los Alamitos: IEEE Press, 1990; 3–7.
10. Corr PB, Yamada KA, Witkowski FX. Mechanisms controlling cardiac autonomic function and their relation to arrhythmogenesis. In: Fozzard HA, Haber E, Jennings RB et al. Heart and Cardiovascular System, New York: Raven Press, 1986; p. 1343–403.
11. Schwartz PJ, Priori SG. Sympathetic nervous system and cardiac arrhythmias. In: Zipes DP, Jalife J eds. Cardiac Electrophysiology. From Cell to Bedside. Philadelphia: WB Saunders, 1990; p. 330–43.
12. Levy MN, Schwartz PJ. Vagal control of the heart: Experimental basis and clinical implications. Armonk: Future, 1994.
13. Рябыкина Г.В., Соболев А.В. Вариабельность ритма сердца. М.: СтарКо, 1998.
14. Habib GB. Reappraisal of heart rate as a risk factor in the general population. Eur Heart J 1999; (Suppl. H): H2–H10.
15. Parati G, Saul GP, Di Rienzo M, Mancia G. Spectral analyses of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension 1995; 25: 1276–86.
16. Tsuji H, Venditti FJ, Manders ES et al. Reduced heart rate variability and mortality risk in an elderly cohort: The Framingham Study. Circulation 1994; 90: 878–83.
17. Аронов Д.М., Лупанов В.П. Функциональные пробы в кардиологии. М.: Медицина, 2003; с. 296.
18. Borresen J, Lambert MI. Autonomic control of heart rate during and after exercise: Measurements and implications for monitoring training status. Sports Med 2008; 38: 633–46.
19. Esler M, Jackman G, Bobik A et al. Norepinephrine kinetics in essential hypertension.Defective neuronal uptake of norepinephrine in some patients. Hypertension 1981; 3: 149–56.
20. Esler M, Hasking G, Willett I et al. Editorial review: noradrenaline release and sympathetic nervous system activity. J Hypertens 1985; 3: 117–29.
21. Esler M, Eikelis N, Schlaich M et al. Human sympathetic nerve biology: parallel influences of stress and epigenetics in essential hypertension and panic disorder. Ann NY Acad Sci 2008; 1148: 338–48.
22. Meredith IT, Eisenhofer G, Lambert GW et al. Plasma noradrenaline responses to head-up tilt are misleading in autonomic failure. Hypertension 1992; 19: 628–33.
23. Esler M, Jackman G, Bobik A et al. Determination of norepinephrine apparent release rate and clearance in humans. Life Sci 1979; 25: 1461–70.
24. Mancia, Grassi. Circ Res 2014; 114: 1804–14.
25. Esler M, Lambert E, Schlaich M. Point: Chronic activation of the sympathetic nervous system is the dominant contributor to systemic hypertension. J Appl Physiol 2010; 109: 1996–8.
26. Krum H, Schlaich MP, Whitbourn R et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 2009; 373: 1275–81.
27. Smith P et al. Am J Hypertens 2004; 17: 217–22.
28. Leimbach W, Wallin B, Victor R et al. Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation 1986; 73: 913–9.
29. Barretto A, Santos A, Munhoz R et al. Increased muscle sympathetic nerve activity predicts mortality in heart failure patients. Int J Cardiol 2009; 135: 302–7.
30. Schlaich M, Sobotka P, Krum H et al. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med 2009; 361: 932–3.
31. Bengel F. Imaging targets of the sympathetic nervous system of the heart: transla- tional considerations. J Nucl Med 2011; 52: 1167–70.
32. Mahfoud F et al. Effect of Renal Sympathetic Denervation on Glucose Metabolism in Patients With Resistant Hypertension. Circulation 2011; 123: 1940–6.
________________________________________________
1. Papademetriou V, Doumas M, Tsioufis K. Renal Sympathetic Denervation for the Treatment of Difficult-to-Control or Resistant Hypertension. Int J Hypertens 2011; 2011: 196518; doi: 10.4061/2011/196518
2. Chen SL, Zhang YJ, Xie DJ et al. Percutaneous pulmonary artery denervation completely abolishes experimental pulmonary arterial hypertension in vivo. Eurointervention 2013; 9 (2): 269–76.
3. Chen SL, Zhang FF, Xu J et al. Pulmonary Artery Denervation to Treat Pulmonary Arterial Hypertension: The Single-Center, Prospective, First-in-Man PADN-1 Study (First-in-Man Pulmonary Artery Denervation for Treatment of Pulmonary Artery Hypertension) J Am Coll Cardiol 2013; 62 (12): 1092–100.
4. Bhatt DL, Kandzari DE, O'Neill WW et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med 2014; 370: 1393–401.
5. Patel HC, Rosen SD, Alistair L et al. Targeting the autonomic nervous system: Measuring autonomic function and novel devices for heart failure management. Int J Cardiol 2013; 170: 107–17.
6. Floras J. Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol 2009; 54: 375–85.
7. Buchheit M, Laursen PB, Ahmaidi S. Parasympathetic reactivation after repeated sprint exercise. Am J Physiol Heart Circ Physiol 2007; 293: H133–H141.
8. Guidelines. Heart rate variability.Standards of measurement, physiological in terpretation, and clinical use. Eur Heart J 1996; 17: 354–81.
9. Appel ML, Saul JP, Berger RD, Cohen RJ. Closed loop identification of cardio-vascular circulatory mechanisms. Computers in Cardiology 1989. Los Alamitos: IEEE Press, 1990; 3–7.
10. Corr PB, Yamada KA, Witkowski FX. Mechanisms controlling cardiac autonomic function and their relation to arrhythmogenesis. In: Fozzard HA, Haber E, Jennings RB et al. Heart and Cardiovascular System, New York: Raven Press, 1986; p. 1343–403.
11. Schwartz PJ, Priori SG. Sympathetic nervous system and cardiac arrhythmias. In: Zipes DP, Jalife J eds. Cardiac Electrophysiology. From Cell to Bedside. Philadelphia: WB Saunders, 1990; p. 330–43.
12. Levy MN, Schwartz PJ. Vagal control of the heart: Experimental basis and clinical implications. Armonk: Future, 1994.
13. Рябыкина Г.В., Соболев А.В. Вариабельность ритма сердца. М.: СтарКо, 1998.
14. Habib GB. Reappraisal of heart rate as a risk factor in the general population. Eur Heart J 1999; (Suppl. H): H2–H10.
15. Parati G, Saul GP, Di Rienzo M, Mancia G. Spectral analyses of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension 1995; 25: 1276–86.
16. Tsuji H, Venditti FJ, Manders ES et al. Reduced heart rate variability and mortality risk in an elderly cohort: The Framingham Study. Circulation 1994; 90: 878–83.
17. Аронов Д.М., Лупанов В.П. Функциональные пробы в кардиологии. М.: Медицина, 2003; с. 296.
18. Borresen J, Lambert MI. Autonomic control of heart rate during and after exercise: Measurements and implications for monitoring training status. Sports Med 2008; 38: 633–46.
19. Esler M, Jackman G, Bobik A et al. Norepinephrine kinetics in essential hypertension.Defective neuronal uptake of norepinephrine in some patients. Hypertension 1981; 3: 149–56.
20. Esler M, Hasking G, Willett I et al. Editorial review: noradrenaline release and sympathetic nervous system activity. J Hypertens 1985; 3: 117–29.
21. Esler M, Eikelis N, Schlaich M et al. Human sympathetic nerve biology: parallel influences of stress and epigenetics in essential hypertension and panic disorder. Ann NY Acad Sci 2008; 1148: 338–48.
22. Meredith IT, Eisenhofer G, Lambert GW et al. Plasma noradrenaline responses to head-up tilt are misleading in autonomic failure. Hypertension 1992; 19: 628–33.
23. Esler M, Jackman G, Bobik A et al. Determination of norepinephrine apparent release rate and clearance in humans. Life Sci 1979; 25: 1461–70.
24. Mancia, Grassi. Circ Res 2014; 114: 1804–14.
25. Esler M, Lambert E, Schlaich M. Point: Chronic activation of the sympathetic nervous system is the dominant contributor to systemic hypertension. J Appl Physiol 2010; 109: 1996–8.
26. Krum H, Schlaich MP, Whitbourn R et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 2009; 373: 1275–81.
27. Smith P et al. Am J Hypertens 2004; 17: 217–22.
28. Leimbach W, Wallin B, Victor R et al. Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation 1986; 73: 913–9.
29. Barretto A, Santos A, Munhoz R et al. Increased muscle sympathetic nerve activity predicts mortality in heart failure patients. Int J Cardiol 2009; 135: 302–7.
30. Schlaich M, Sobotka P, Krum H et al. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med 2009; 361: 932–3.
31. Bengel F. Imaging targets of the sympathetic nervous system of the heart: transla- tional considerations. J Nucl Med 2011; 52: 1167–70.
32. Mahfoud F et al. Effect of Renal Sympathetic Denervation on Glucose Metabolism in Patients With Resistant Hypertension. Circulation 2011; 123: 1940–6.