Сопоставление векторкардиографических параметров со структурно-функциональным состоянием правого желудочка у пациентов с легочной гипертензией
Сопоставление векторкардиографических параметров со структурно-функциональным состоянием правого желудочка у пациентов с легочной гипертензией
Блинова Е.В., Сахнова Т.А., Саидова М.А. и др. Сопоставление векторкардиографических параметров со структурно-функциональным состоянием правого желудочка у пациентов с легочной гипертензией. Системные гипертензии. 2015; 12 (4): 57–60.
________________________________________________
Blinova E.V., Sakhnova T.A., Saidova M.A. et al. Comparison of vectorcardiographic parameters with structural-functional state of the right ventricle in patients with pulmonary hypertension. Systemic Hypertension. 2015; 12 (4): 57–60.
Сопоставление векторкардиографических параметров со структурно-функциональным состоянием правого желудочка у пациентов с легочной гипертензией
Блинова Е.В., Сахнова Т.А., Саидова М.А. и др. Сопоставление векторкардиографических параметров со структурно-функциональным состоянием правого желудочка у пациентов с легочной гипертензией. Системные гипертензии. 2015; 12 (4): 57–60.
________________________________________________
Blinova E.V., Sakhnova T.A., Saidova M.A. et al. Comparison of vectorcardiographic parameters with structural-functional state of the right ventricle in patients with pulmonary hypertension. Systemic Hypertension. 2015; 12 (4): 57–60.
Изменения векторкардиографического желудочкового градиента (VG) у пациентов с легочной артериальной гипертензией (ЛАГ) являются показателем перегрузки правого желудочка (ПЖ) и могут использоваться для оценки ее тяжести. Целью исследования было оценить взаимосвязь векторкардиографических показателей VG и пространственный угол QRS-T с эхокардиографическими показателями структурно-функционального состояния ПЖ.
У 30 пациентов с ЛАГ были оценены размеры ПЖ; амплитуда экскурсии фиброзного кольца трикуспидального клапана (TAPSE), относительное изменение площади ПЖ (FAC), систолическая скорость ПЖ (TDI-S’); продольная деформация (LS). VG и пространственный угол QRS-T рассчитывали с использованием ортогональных отведений, синтезированных из стандартной электрокардиографии.
Пространственная компонента VG-Y имела умеренную отрицательную корреляцию с LS (r=-0,62; p<0,005); амплитуда VG и компоненты VG-Х и VG-Y – положительные корреляции с FAC (r от 0,50 до 0,65; р<0,005); амплитуда VG и компонента VG-Y – положительные корреляции с TDI-S’ (r 0,58 и 0,53; p<0,005), пространственный угол QRS-T – отрицательные корреляции с TAPSE (r=-0,59; p<0,005), FAC (r=-0,66; p<0,005) и TDI-S’ (r=-0,67); p<0,005.
У лиц с тяжелой ЛАГ VG и пространственный угол QRS-T коррелируют не только с размерами ПЖ и давлением в легочной артерии, но и с параметрами систолической функции ПЖ.
Ключевые слова: векторкардиография, желудочковый градиент, эхокардиография, систолическая функция правого желудочка.
________________________________________________
Changes of the vectrocardiographic ventricular gradient (VG) in patients with pulmonary arterial hypertension (PAH) are indicative of right ventricular (RV) overload and may be used to assess its severity. The study aim was to evaluate interrelations between vectrocardiographic VG, spatial QRS-T angle and echocardiographic parameters of structural-functional state of the RV.
The following parameters were assessed in 30 PAH patients: RV dimensions; tricuspid annular plane systolic excursion (TAPSE); RV fractional area change (FAC); RV peak systolic annular velocity (TDI-S’), and longitudinal strain (LS). VG and spatial QRS-T angle were calculated using the orthogonal leads derived from standard echocardiography.
Spatial component VG-Y had moderate negative correlation with LS (r=-0.62; p<0.005); VG magnitude, VG-X and VG-Y had positive correlations with FAC (r from 0.50 to 0.65; p<0.005); VG magnitude and VG-Y had positive correlations with TDI-S’ (0.58 and 0.53; p<0.005); spatial QRS-T angle had negative correlation with TAPSE (r=-0.59; p<0.005), FAC (r=-0.66; p<0.005) and TDI-S’ (r=-0.67); p<0.005.
In patients with severe PAH, VG and spatial QRS-T angle correlate not only with RV dimensions and pulmonary artery pressure, but with parameters of RV systolic function.
Key words: vectorcardiography, ventricular gradient, echocardiography, right ventricular systolic function.
1. Galiè N, Hoeper MM, Humbert M et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 2009; 30: 2493–537.
2. Vonk Noordegraaf A, Galiè N. The role of the right ventricle in pulmonary arterial hypertension. Eur Respir Rev 2011; 20 (122): 243–53.
3. Badano LP, Ginghina C, Easaw J et al. Right ventricle in pulmonary arterial hypertension: haemodynamics, structural changes, imaging, and proposal of a study protocol aimed to assess remodelling and treatment effects. Eur J Echocardiogr 2010; 11 (1): 27–37.
4. Macfarlane PW, Okin PM, Lawrie TDV, Milliken JA. Enlargement and Hypertrophy. In: P.W.Macfarlane, A.Van Oosterom, O.Pahlm, P.Kligfield, M.Janse, J.Camm, editors. Comprehensive electrocardiology. London: Springer Verlag; 2011; p. 607–44.
5. Henkens IR, Mouchaers KT, Vonk-Noordegraaf A et al. Improved ECG detection of presence and severity of right ventricular pressure load validated with cardiac magnetic resonance imaging. Am J Physiol Heart Circ Physiol 2008; 294 (5): H2150–H2157.
6. Kamphuis VP, Haeck ML, Wagner GS et al. Electrocardiographic detection of right ventricular pressure overload in patients with suspected pulmonary hypertension. J Electrocardiol 2014; 47 (2): 175–82.
7. Scherptong RW, Henkens IR, Kapel GF et al. Diagnosis and mortality prediction in pulmonary hypertension: the value of the electrocardiogram-derived ventricular gradient. J Electrocardiol 2012; 45(3): 312–8.
8. Rudski LG, Lai WW, Afilalo J et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010; 23 (7): 685–713.
9. Kors JA, Van Herpen G, Sittig AC, Van Bemmel JH. Reconstruction of the Frank vectorcardiogram from standard electrocardiographic leads: diagnostic comparison of different methods. Eur Heart J 1990; 11: 1083–92.
10. Scherptong RW, Henkens IR, Man SC et al. Normal limits of the spatial QRS-T angle and ventricular gradient in 12-lead electrocardiograms of young adults: dependence on sex and heart rate. J Electrocardiol 2008; 41 (6): 648–55.
11. Voulgari C, Pagoni S, Tesfaye S, Tentolouris N. The spatial QRS-T angle: implications in clinical practice. Curr Cardiol Rev 2013; 9 (3): 197–210.
12. Man S, Rahmattulla C, Maan AC et al. Role of the vectorcardiogram-derived spatial QRS-T angle in diagnosing left ventricular hypertrophy. J Electrocardiol 2012; 45 (2): 154–60.
13. Bacharova L, Estes H, Bang L et al. The first statement of the Working Group on Electrocardiographic Diagnosis of Left Ventricular Hypertrophy. J Electrocardiol 2010; 43 (3): 197–9.
14. Bacharova L, Estes EH, Bang LE et al. Second statement of the working group on electrocardiographic diagnosis of left ventricular hypertrophy. J Electrocardiol 2011; 44 (5): 568–70.
15. Jr. Estes EH. ECG manifestations of left ventricular electrical remodelling. J Electrocardiol 2012; 45 (6): 612–6.
16. Hill JA. Hypertrophic reprogramming of the left ventricle: translation to the ECG. J Electrocardiol 2012; 45 (6): 624–9.
17. Bacharova L. Left ventricular hypertrophy: disagreements between increased left ventricular mass and ECG-LVH criteria: the effect of impaired electrical properties of myocardium. J Electrocardiol 2014; 47 (5): 625–9.
18. Blyth KG, Kinsella J, Hakacova N et al. Quantitative estimation of right ventricular hypertrophy using ECG criteria in patients with pulmonary hypertension: A comparison with cardiac MRI. Pulm Circ 2011; 1 (4): 470–4.
19. Siddiqui AM, Samad Z, Hakacova N et al. The utility of modified Butler-Leggett criteria for right ventricular hypertrophy in detection of clinically significant shunt ratio in ostium secundum-type atrial septal defect in adults. J Electrocardiol 2010; 43 (2): 161–6.
20. Motoji Y, Tanaka H, Fukuda Y et al. Efficacy of right ventricular free-wall longitudinal speckle-tracking strain for predicting long-term outcome in patients with pulmonary hypertension. Circ J 2013; 77 (3): 756–63.
________________________________________________
1. Galiè N, Hoeper MM, Humbert M et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 2009; 30: 2493–537.
2. Vonk Noordegraaf A, Galiè N. The role of the right ventricle in pulmonary arterial hypertension. Eur Respir Rev 2011; 20 (122): 243–53.
3. Badano LP, Ginghina C, Easaw J et al. Right ventricle in pulmonary arterial hypertension: haemodynamics, structural changes, imaging, and proposal of a study protocol aimed to assess remodelling and treatment effects. Eur J Echocardiogr 2010; 11 (1): 27–37.
4. Macfarlane PW, Okin PM, Lawrie TDV, Milliken JA. Enlargement and Hypertrophy. In: P.W.Macfarlane, A.Van Oosterom, O.Pahlm, P.Kligfield, M.Janse, J.Camm, editors. Comprehensive electrocardiology. London: Springer Verlag; 2011; p. 607–44.
5. Henkens IR, Mouchaers KT, Vonk-Noordegraaf A et al. Improved ECG detection of presence and severity of right ventricular pressure load validated with cardiac magnetic resonance imaging. Am J Physiol Heart Circ Physiol 2008; 294 (5): H2150–H2157.
6. Kamphuis VP, Haeck ML, Wagner GS et al. Electrocardiographic detection of right ventricular pressure overload in patients with suspected pulmonary hypertension. J Electrocardiol 2014; 47 (2): 175–82.
7. Scherptong RW, Henkens IR, Kapel GF et al. Diagnosis and mortality prediction in pulmonary hypertension: the value of the electrocardiogram-derived ventricular gradient. J Electrocardiol 2012; 45(3): 312–8.
8. Rudski LG, Lai WW, Afilalo J et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010; 23 (7): 685–713.
9. Kors JA, Van Herpen G, Sittig AC, Van Bemmel JH. Reconstruction of the Frank vectorcardiogram from standard electrocardiographic leads: diagnostic comparison of different methods. Eur Heart J 1990; 11: 1083–92.
10. Scherptong RW, Henkens IR, Man SC et al. Normal limits of the spatial QRS-T angle and ventricular gradient in 12-lead electrocardiograms of young adults: dependence on sex and heart rate. J Electrocardiol 2008; 41 (6): 648–55.
11. Voulgari C, Pagoni S, Tesfaye S, Tentolouris N. The spatial QRS-T angle: implications in clinical practice. Curr Cardiol Rev 2013; 9 (3): 197–210.
12. Man S, Rahmattulla C, Maan AC et al. Role of the vectorcardiogram-derived spatial QRS-T angle in diagnosing left ventricular hypertrophy. J Electrocardiol 2012; 45 (2): 154–60.
13. Bacharova L, Estes H, Bang L et al. The first statement of the Working Group on Electrocardiographic Diagnosis of Left Ventricular Hypertrophy. J Electrocardiol 2010; 43 (3): 197–9.
14. Bacharova L, Estes EH, Bang LE et al. Second statement of the working group on electrocardiographic diagnosis of left ventricular hypertrophy. J Electrocardiol 2011; 44 (5): 568–70.
15. Jr. Estes EH. ECG manifestations of left ventricular electrical remodelling. J Electrocardiol 2012; 45 (6): 612–6.
16. Hill JA. Hypertrophic reprogramming of the left ventricle: translation to the ECG. J Electrocardiol 2012; 45 (6): 624–9.
17. Bacharova L. Left ventricular hypertrophy: disagreements between increased left ventricular mass and ECG-LVH criteria: the effect of impaired electrical properties of myocardium. J Electrocardiol 2014; 47 (5): 625–9.
18. Blyth KG, Kinsella J, Hakacova N et al. Quantitative estimation of right ventricular hypertrophy using ECG criteria in patients with pulmonary hypertension: A comparison with cardiac MRI. Pulm Circ 2011; 1 (4): 470–4.
19. Siddiqui AM, Samad Z, Hakacova N et al. The utility of modified Butler-Leggett criteria for right ventricular hypertrophy in detection of clinically significant shunt ratio in ostium secundum-type atrial septal defect in adults. J Electrocardiol 2010; 43 (2): 161–6.
20. Motoji Y, Tanaka H, Fukuda Y et al. Efficacy of right ventricular free-wall longitudinal speckle-tracking strain for predicting long-term outcome in patients with pulmonary hypertension. Circ J 2013; 77 (3): 756–63.
1 ФГБУ Российский кардиологический научно-производственный комплекс Минздрава России. 121552, Россия, Москва, ул. 3-я Черепковская, д. 15а;
2 ФГБУН Институт проблем передачи информации им. А.А.Харкевича РАН. 127051, Россия, Москва, Большой Каретный пер., д. 19, стр. 1
*trukhiniv@mail.ru
1 Russian Cardiological Scientific-Industrial Complex of the Ministry of Health of the Russian Federation. 121552, Russian Federation, Moscow, 3-ia Cherepkovskaia, d. 15a;
2 А.A.Kharkevich Institute for Information Transmission Problems of RAS. 127051, Russian Federation, Moscow, Bol'shoi Karetnyi per., d. 19, str. 1
*trukhiniv@mail.ru