Руководство по диагностике, профилактике и лечению сердечно-сосудистых осложнений противоопухолевой терапии. Часть I
Руководство по диагностике, профилактике и лечению сердечно-сосудистых осложнений противоопухолевой терапии. Часть I
Чазова И.Е., Тюляндин С.А., Виценя М.В. и др. Руководство по диагностике, профилактике и лечению сердечно-сосудистых осложнений противоопухолевой терапии. Часть I. Системные гипертензии. 2017; 14 (3): 6–20. DOI: 10.26442/2075-082X_14.3.6-20
________________________________________________
Chazova I.Ye., Tyulyandin S.A., Vitsenia M.V. et al. Clinical Manual for Diagnosis, Prevention and Treatment of Cardiovascular Complications of Cancer Therapy. Part I. Systemic Hypertension. 2017; 14 (3): 6–20. DOI: 10.26442/2075-082X_14.3.6-20
Руководство по диагностике, профилактике и лечению сердечно-сосудистых осложнений противоопухолевой терапии. Часть I
Чазова И.Е., Тюляндин С.А., Виценя М.В. и др. Руководство по диагностике, профилактике и лечению сердечно-сосудистых осложнений противоопухолевой терапии. Часть I. Системные гипертензии. 2017; 14 (3): 6–20. DOI: 10.26442/2075-082X_14.3.6-20
________________________________________________
Chazova I.Ye., Tyulyandin S.A., Vitsenia M.V. et al. Clinical Manual for Diagnosis, Prevention and Treatment of Cardiovascular Complications of Cancer Therapy. Part I. Systemic Hypertension. 2017; 14 (3): 6–20. DOI: 10.26442/2075-082X_14.3.6-20
Достижения в лечении онкологических заболеваний привели к повышению выживаемости больных со злокачественными новообразованиями. В то же время противоопухолевая терапия сопряжена с риском развития побочных эффектов, среди которых сердечно-сосудистые осложнения занимают лидирующие позиции. Дисфункция левого желудочка и сердечная недостаточность, артериальная гипертония, ишемия миокарда, нарушения ритма сердца, тромбоэмболии и другие сердечно-сосудистые осложнения могут препятствовать проведению жизненно важной противоопухолевой терапии, снижать выживаемость и качество жизни больных. В представленном руководстве отражены диагностические и терапевтические подходы к ведению больных онкологического профиля, получающих потенциально кардиотоксичную противоопухолевую терапию. Первая часть руководства посвящена вопросам диагностики, профилактики и лечения дисфункции левого желудочка и сердечной недостаточности, связанной с противоопухолевой терапией.
Advances in treatment have led to improved survival of patients with cancer but have also resulted in untoward side effects associated with treatment. Cardiovascular diseases are one of the most frequent of these side effects. Myocardial dysfunction and heart failure, myocardial ischaemia, arrhythmias, arterial hypertension, thromboembolic disease and other cardiovascular complications can interfere with the efficacy of treatment, decrease quality of life, or impact the actual survival of the patient with cancer. This manual discusses concepts for timely diagnosis, intervention, and surveillance of patients treated with cardiotoxic cancer therapies. In this first part оf manual we discuss the diagnostic, prevention and treatment aspects of cancer therapy–related cardiac dysfunction and heart failure.
1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 2013; 49: 1374–403.
2. Siegel R, DeSantis C, Virgo K et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 2012; 62: 220–41.
3. Ewer MS, Ewer SM. Cardiotoxicity of anticancer treatments. Nat Rev Cardiol 2015; 12: 620.
4. Armstrong GT, Oeffinger KC, Chen Y et al. Modifiable risk factors and major cardiac events among adult survivors of childhood cancer. J Clin Oncol 2013; 31: 3673–80.
5. Yeh E, Tong A, Lenihan D et al. Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation 2004; 109: 3122–31.
6. Chen M, Colan S, Diller L. Cardiovascular disease: cause of morbidity and mortality in adult survivors of childhood cancers. Circ Res 2011; 108: 619–28.
7. Sawyer D, Lenihan D. Managing heart failure in cancer patients. In: Mann D., Felker G. Heart Failure: A Companion to Braunwald's Heart Disease, 3d ed. Philadelphia, Elsevier, 2016; p. 689–96.
8. Cardinale D, Colombo A, Bacchiani G et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 2015; 131 (22): 1981–8.
9. Ryberg M, Nielsen D, Skovsgaard T et al. Epirubicin cardiotoxicity: an analysis of 469 patients with metastatic breast cancer. J Clin Oncol 1998; 16: 3502–8.
10. Nielsen D, Jensen J, Dombernowsky P et al. Epirubicin cardiotoxicity: a study of 135 patients with advanced breast cancer. J Clin Oncol 1990; 8: 1806–10.
11. Felker G, Thompson R, Hare J et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med 2000; 342: 1077–84.
12. Kuramochi Y, Cote G, Guo X et al. Cardiac endothelial cells regulate reactive oxygen species-induced cardiomyocyte apoptosis through neuregulin-1beta/erbB4 signaling. J Biol Chem 2004; 279: 51141–7.
13. Hedhli N, Huang Q, Kalinowski A et al. Endothelium-derived neuregulin protects the heart against ischemic injury. Circulation 2011; 123: 2254–62.
14. Lemmens K, Segers VF, Demolder M et al. Role of neuregulin-1/ErbB2 signaling in endothelium-cardiomyocyte cross-talk. J Biol Chem 2006; 281 (28): 19469–77.
15. Graus-Porta D, Beerli R, Daly J et al. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 1997; 16: 1647–55.
16. Procter M, Suter T, de Azambuja E et al. Longer-term assessment of trastuzumab-related cardiac adverse events in the Herceptin Adjuvant (HERA) trial. J Clin Oncol 2010; 28: 3422–8.
17. Ewer MS, Vooletich MT, Durand JB et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol 2005; 23 (31): 7820–6.
18. Lenihan D, Suter T, Brammer M et al. Pooled analysis of cardiac safety in patients with cancer treated with pertuzumab. Ann Oncol 2012; 23: 791–800.
19. Perez E, Koehler M, Byrne J et al. Cardiac safety of lapatinib: pooled analysis of 3689 patients enrolled in clinical trials. Mayo Clin Proc 2008; 83: 679–86.
20. Von Hoff DD, Layard MW, Basa P et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 1979; 91: 710–7.
21. Speyer JL, Green MD, Zeleniuch-Jacquotte A et al. ICRF-187 permits longer treatment with doxorubicin in women with breast cancer. J Clin Oncol 1992; 10: 117–27.
22. Swain S, Whaley F, Ewer M. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 2003; 97: 2869–79.
23. Van Nimwegen FA, Schaapveld M, Janus CP et al. Cardiovascular disease after Hodgkin lymphoma treatment: 40-year disease risk. JAMA Intern Med 2015; 175: 1007–17.
24. Armenian SH, Sun CL, Shannon T et al. Incidence and predictors of congestive heart failure after autologous hematopoietic cell transplantation. Blood 2011; 118: 6023–9.
25. Baldini E, Prochilo T, Salvadori B et al. Multicenter randomized phase III trial of epirubicin plus paclitaxel vs epirubicin followed by paclitaxel in metastatic breast cancer patients: Focus on cardiac safety. Br J Cancer 2004; 91: 45–9.
26. Fumoleau P, Roche H, Kerbrat P et al. Longterm cardiac toxicity after adjuvant epirubicin-based chemotherapy in early breast cancer: French Adjuvant Study Group results. Ann Oncol 2006; 17: 85–92.
27. Ryberg M, Nielsen D, Cortese G et al. New insight into epirubicin cardiac toxicity: Competing risks analysis of 1097 breast cancer patients. J Natl Cancer Inst 2008; 100: 1058–67.
28. Van der Pal H, van Dalen E, van Delden E et al. High risk of symptomatic cardiac events in childhood cancer survivors. J Clin Oncol 2012; 30: 1429–37.
29. Di Cosimo S. Heart to heart with trastuzumab: A review on cardiac toxicity. Target Oncol 2011; 6: 189–95.
30. Zeglinski M, Ludke A, Jassal D et al. Trastuzumab-induced cardiac dysfunction: A «dual-hit». Exp Clin Cardiol 2011; 16: 70–4.
31. Romond EH, Jeong J-H, Rastogi P et al. Seven-year follow-up assessment of cardiac function in NSABP B-31, a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel (ACP) with ACP plus trastuzumab as adjuvant therapy for patients with node-positive, human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 2012; 30: 3792–9.
32. Advani PP, Ballman KV, Dockter TJ et al. Long-term cardiac safety analysis of NCCTG N9831 (Alliance) adjuvant trastuzumab trial. J Clin Oncol 2016; 34: 581–7.
33. Pinder MC, Duan Z, Goodwin JS et al. Congestive heart failure in older women treated with adjuvant anthracycline chemotherapy for breast cancer. J Clin Oncol 2007; 25: 3808–15.
34. Chow EJ, Baker KS, Lee SJ et al. Influence of conventional cardiovascular risk factors and lifestyle characteristics on cardiovascular disease after hematopoietic cell transplantation. J Clin Oncol 2014; 32: 191–8.
35. Armenian SH, Xu L, Ky B et al. Cardiovascular disease among survivors of adult-onset cancer: A community-based retrospective cohort study. J Clin Oncol 2016; 34: 1122–30.
36. Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al. Herceptin Adjuvant Trial Study Team. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005; 353: 1659–72.
37. Tan-Chiu E, Yothers G, Romond E et al. Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J Clin Oncol 2005; 23: 7811–9.
38. Bowles EJ, Wellman R, Feigelson HS et al. Risk of heart failure in breast cancer patients after anthracycline and trastuzumab treatment: A retrospective cohort study. J Natl Cancer Inst 2012; 104: 1293–305.
39. Farolfi A, Melegari E, Aquilina M et al. Trastuzumab-induced cardiotoxicity in early breast cancer patients: a retrospective study of possible risk and protective factors. Heart 2013; 99: 634–9.
40. Moja L, Tagliabue L, Balduzzi S et al. Trastuzumab containing regimens for early breast cancer. Cochrane Database Syst Rev 2012; 4: CD006243.
41. Ewer MS, Ewer SM. Cardiotoxicity of anticancer treatments: what the cardiologist needs to know. Nat Rev Cardiol 2010; 7: 564–75.
42. Robert N, Leyland-Jones B, Asmar L et al. Randomized phase III study of trastuzumab, paclitaxel, and carboplatin compared with trastuzumab and paclitaxel in women with HER-2-overexpressing metastatic breast cancer. J Clin Oncol 2006; 24: 2786–92.
43. Burstein H, Kuter I, Campos S et al. Clinical activity of trastuzumab and vinorelbine in women with HER2-overexpressing metastatic breast cancer. J Clin Oncol 2001; 19: 2722–30.
44. Jahanzeb M, Mortimer J, Yunus F et al. Phase II trial of weekly vinorelbine and trastuzumab as first-line therapy in patients with HER2(+) metastatic breast cancer. Oncologist 2002; 7: 410–7.
45. Pivot X, Suter T, Nabholtz JM et al. Cardiac toxicity events in the PHARE trial, an adjuvant trastuzumab randomised phase III study. Eur J Cancer 2015; 51: 1660–6.
46. Chavez-MacGregor M, Zhang N, Buchholz T et al. Trastuzumab-related cardiotoxicity among older patients with breast cancer. J Clin Oncol 2013; 31: 4222–8.
47. Mantarro S, Rossi M, Bonifazi M et al. Risk of severe cardiotoxicity following treatment with trastuzumab: a meta-analysis of randomized and cohort studies of 29,000 women with breast cancer. Intern Emerg Med 2015; 11: 123–40.
48. Gunaldi M, Duman B, Afsar C et al. Risk factors for developing cardiotoxicity of trastuzumab in breast cancer patients: An observational single-centre study. J Oncol Pharm Pract 2016; 22: 242–7.
49. Lemieux J, Diorio C, Cote M et al. Alcohol and HER2 polymorphisms as risk factor for cardiotoxicity in breast cancer treated with trastuzumab. Anticancer Res 2013; 33: 2569–76.
50. Plana JC, Galderisi M, Barac A et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2014; 27: 911–39.
51. Curigliano G, Cardinale D, Suter T et al. ESMO Guidelines Working Group. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol 2012; 23 (Suppl. 7): vii155–vii166.
52. Zamorano JL, Lancellotti P, Munoz DR et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J 2016; 37: 2768–801.
53. Thavendiranathan P, Grant AD, Negishi T et al. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: Application to patients undergoing cancer chemotherapy. J Am Coll Cardiol 2013; 61: 77–84.
54. Allen LA, Yood MU, Wagner EH et al. Performance of claims-based algorithms for identifying heart failure and cardiomyopathy among patients diagnosed with breast cancer. Med Care 2014; 52: e30–e38.
55. Negishi K, Negishi T, Hare J et al. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J Am Soc Echocardiogr 2013; 26: 493–8.
56. Sawaya H, Sebag I, Plana J et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging 2012; 5: 596–603.
57. Thavendiranathan P, Poulin F, Lim K et al. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol 2014; 63 (25 Pt A): 2751–68.
58. Curigliano G, Cardinale D, Dent S et al. Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA Cancer J Clin 2016; 66 (4): 309–25.
59. Cardinale D, Sandri M, Colombo A et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 2004; 109: 2749–54.
60. Cardinale D, Colombo A, Torrisi R et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol 2010; 28 (25): 3910–6.
61. Ky B, Putt M, Sawaya H et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol 2014; 63: 809–16.
62. Sawaya H, Sebag I, Plana J et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol 2011; 107: 1375–80.
63. Ponikowski P, Voors A, Anker S et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37: 2129–200.
64. Cardinale D, Salvatici M, Sandri MT. Role of biomarkers in cardioncology. Clin Chem Lab Med 2011; 49: 1937–48.
65. Christenson ES, James T, Agrawal V, Park BH. Use of biomarkers for the assessment of chemotherapy-induced cardiac toxicity. Clin Biochem 2015; 48 (4–5): 223–35.
66. Armenian SH, Lacchetti C, Barac A et al. Prevention and Monitoring of Cardiac Dysfunction in Survivors of Adult Cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2017; 35 (8): 893–911.
67. Penugonda N. Cardiac MRI in infiltrative disorders: a concise review. Curr Cardiol Rev 2010; 6: 134–6.
68. Gulati A, Jabbour A, Ismail T et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA 2013; 309: 896–908.
69. Thavendiranathan P, Wintersperger B, Flamm S et al. Cardiac MRI in the assessment of cardiac injury and toxicity from cancer chemotherapy: a systematic review. Circ Cardiovasc Imaging 2013; 6: 1080–91.
70. Bellenger N, Burgess M, Ray S et al. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J 2000; 21: 1387–96.
71. Pacciarini MA, Barbieri B, Colombo T et al. Distribution and antitumor activity of adriamycin given in a high-dose and a repeated low-dose schedule to mice. Cancer Treat Rep 1978; 62: 791–800.
72. Valdivieso M, Burgess MA, Ewer MS et al. Increased therapeutic index of weekly doxorubicin in the therapy of non-small cell lung cancer: a prospective, randomized study. J Clin Oncol 1984; 2 (3): 207–14.
73. Legha SS, Benjamin RS, Mackay B et al. Reduction of Doxorubicin Cardiotoxicity by Prolonged Continuous Intravenous Infusion. Ann Intern Med 1982; 96 (2): 133–9.
74. Smith LA, Cornelius VR, Plummer CJ et al. Cardiotoxicity of anthracycline agents for the treatment of cancer: Systematic review and meta-analysis of randomised controlled trials. BMC Cancer 2010; 10: 337.
75. Van Dalen EC, Michiels EM, Caron HN et al. Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database Syst Rev 2010; 5: CD005006.
76. Rafiyath SM, Rasul M, Lee B et al. Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: a meta-analysis. Exp Hematol Oncol 2012; 1: 10.
77. U.S. Food and Drug Administration. Drug safety and availability. FDA statement on DOXIL (doxorubicin HCl liposome injection) for intravenous infusion. Available at: http: //www.accessdata.fda. gov/drugsatfda_docs/label/2012/050718s043lbl. pdf
78. Jones SE, Savin MA, Holmes FA et al. Phase III trial comparing doxorubicin plus cyclophosphamide with docetaxel plus cyclophosphamide as adjuvant therapy for operable breast cancer. J Clin Oncol 2006; 24: 5381–7.
79. Hahn VS, Lenihan DJ, Ky B. Cancer Therapy-Induced Cardiotoxicity: Basic Mechanisms and Potential Cardioprotective Therapies J Am Heart Assoc 2014; 3 (2): e000665.
80. Kalam К, Marwick TH. Role of cardioprotective therapy for prevention of cardiotoxicity with chemotherapy: A systematic review and meta-analysis. Eur J Cancer 2013; 49: 2900–9.
81. U.S. Food and Drug Administration. Drug Safety and Availability. FDA statement on dexrazoxane. Jul 20, 2011. Available at: http: //www.fda. gov/Drugs/DrugSafety/ucm 263729.htm
82. Lipshultz SE, Scully RE, Lipsitz SR et al. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with highrisk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial. Lancet Oncol 2010; 11: 950–61.
83. Lyu YL, Kerrigan JE, Lin CP et al. Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res 2007; 67: 8839–46.
84. Vejpongsa P, Yeh ETH. Prevention of Anthracycline-Induced Cardiotoxicity Challenges and Opportunities. J Am Coll Cardiol 2014; 64 (9): 938–45.
85. Swain SM, Whaley FS, Gerber MC et al. Delayed administration of dexrazoxane provides cardioprotection for patients with advanced breast cancer treated with doxorubicin-containing therapy. J Clin Oncol 1997; 15: 1333–40.
86. Swain SM, Whaley FS, Gerber MC et al. Cardioprotection with dexrazoxane for doxorubicincontaining therapy in advanced breast cancer. J Clin Oncol 1997; 15: 1318–32.
87. Marty M, Espie M, Llombart A et al. Dexrazoxane Study Group. Multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (Cardioxane) in advanced/ metastatic breast cancer patients treated with anthracycline-based chemotherapy. Ann Oncol 2006; 17: 614–22.
88. Van Dalen EC, Caron HN, Dickinson HO et al. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev 2011; 6: CD003917.
89. Hensley ML, Hagerty KL, Kewalramani T et al. American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol 2009; 27: 127–45.
90. European Medicines Agency. Questions and answers on the review of dexrazoxane-containing medicines, powder for solution for infusion, 500 mg. Outcome of a procedure under Article 31 of Directive 2001/83/EC as amended.http: //www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/Dexrazoxane_31/WC500108011.pdf
91. Tebbi CK, London WB, Friedman D et al. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. J Clin Oncol 2007; 25: 493–500.
92. Vrooman LM, Neuberg DS, Stevenson KE et al. The low incidence of secondary acute myelogenous leukaemia in children and adolescents treated with dexrazoxane for acute lymphoblastic leukaemia: a report from the Dana-Farber Cancer Institute ALL Consortium. Eur J Cancer 2011; 47: 1373–9.
93. Salzer WL, Devidas M, Carroll WL et al. Longterm results of the pediatric oncology group studies for childhood acute lymphoblastic leukemia 1984–2001: a report from the children’s oncology group. Leukemia 2010; 24: 355–70.
94. Asanuma H, Minamino T, Sanada S et al. Beta-adrenoceptor blocker carvedilol provides cardioprotection via an adenosine-dependent mechanism in ischemic canine hearts. Circulation 2004; 109 (22): 2773–9.
95. Kim IM, Tilley DG, Chen J et al. Beta-blockers alprenolol and carvedilol stimulate beta-arrestin-mediated EGFR transactivation. Proc Natl Acad Sci U S A 2008; 105 (38): 14555–60.
96. Oliveira PJ, Bjork JA, Santos MS et al. Carvedilol-mediated antioxidant protection against doxorubicin- induced cardiac mitochondrial toxicity. Toxicol Appl Pharmacol 2004; 200: 159–68.
97. Elitok A, Oz F, Cizgici AY et al. Effect of carvedilol on silent anthracycline-induced cardiotoxicity assessed by strain imaging: a prospective randomized controlled study with six-month follow-up. Cardiol J 2014; 21: 509–15.
98. Kalay N, Basar E, Ozdogru I et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol 2006; 48: 2258–62.
99. Kaya MG, Ozkan M, Gunebakmaz O et al. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. Int J Cardiol 2013; 167: 2306–10.
100. Seicean S, Seicean A, Alan N et al. Cardioprotective effect of β-adrenoceptor blockade in patients with breast cancer undergoing chemotherapy: follow-up study of heart failure. Circ Heart Fail 2013; 6: 420–6.
101. Choe JY, Combs AB, Folkers K. Potentiation of the toxicity of adriamycin by propranolol. Res Commun Chem Pathol Pharmacol 1978; 21: 577–80.
102. Georgakopoulos P, Roussou P, Matsakas E et al. Cardioprotective effect of metoprolol and enalapril in doxorubicin-treated lymphoma patients: a prospective, parallel-group, randomized, controlled study with 36-month follow-up. Am J Hematol 2010; 85: 894–6.
103. Gulati G, Heck SL, Ree AH et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2×2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J 2016; 37 (21): 1671–80.
104. Abd El-Aziz MA, Othman AI, Amer M et al. Potential protective role of angiotensin-converting enzyme inhibitors captopril and enalapril against adriamycin-induced acute cardiac and hepatic toxicity in rats. J Appl Toxicol 2001; 21: 469–73.
105. Okumura K, Jin D, Takai S et al. Beneficial effects of angiotensinconverting enzyme inhibition in adriamycin-induced cardiomyopathy in hamsters. Jpn J Pharmacol 2002; 88: 183–8.
106. Hiona A, Lee AS, Nagendran J et al. Pretreatment with angiotensin-converting enzyme inhibitor improves doxorubicin-induced cardiomyopathy via preservation of mitochondrial function. J Thorac Cardiovasc Surg 2011; 142: 396–403.e3.
107. Maeda A, Honda M, Kuramochi T et al. An angiotensinconverting enzyme inhibitor protects against doxorubicin-induced impairment of calcium handling in neonatal rat cardiac myocytes. Clin Exp Pharmacol Physiol 1997; 24: 720–6.
108. Cernecka H, Ochodnicka-Mackovicova K, Kucerova D et al. Enalaprilat increases PPARbeta/delta expression, without influence on PPARalpha and PPARgamma, and modulate cardiac function in sub-acute model of daunorubicin-induced cardiomyopathy. Eur J Pharmacol 2013; 714: 472–7.
109. Tokudome T, Mizushige K, Noma T et al. Prevention of doxorubicin (adriamycin)-induced cardiomyopathy by simultaneous administration of angiotensin-converting enzyme inhibitor assessed by acoustic densitometry. J Cardiovasc Pharmacol 2000; 36: 361–8.
110. Boucek RJ Jr, Steele A, Miracle A et al. Effects of angiotensinconverting enzyme inhibitor on delayed-onset doxorubicin-induced cardiotoxicity. Cardiovasc Toxicol 2003; 3: 319–29.
111. Vaynblat M, Shah HR, Bhaskaran D et al. Simultaneous angiotensin converting enzyme inhibition moderates ventricular dysfunction caused by doxorubicin. Eur J Heart Fail 2002; 4: 583–6.
112. Cadeddu C, Piras A, Mantovani G et al. Protective effects of the angiotensin II receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and early ventricular impairment. Am Heart J 2010; 160: 487.
113. Nakamae H, Tsumura K, Terada Y et al. Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer 2005; 104 (11): 2492–8.
114. Bosch X, Rovira M, Sitges M et al. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J Am Coll Cardiol 2013; 61: 2355–62.
115. Akpek M, Ozdogru I, Sahin O et al. Protective effects of spironolactone against anthracycline-induced cardiomyopathy. Eur J Heart Fail 2015; 17: 81–9.
116. Damrot J, Nubel T, Epe B et al. Lovastatin protects human endothelial cells from the genotoxic and cytotoxic effects of the anticancer drugs doxorubicin and etoposide. Br J Pharmacol 2006; 149: 988–97.
117. Huelsenbeck J, Henninger C, Schad A et al. Inhibition of Rac1 signaling by lovastatin protects against anthracycline-induced cardiac toxicity. Cell Death Dis 2011; 2: e190.
118. Riad A, Bien S, Westermann D et al. Pretreatment with statin attenuates the cardiotoxicity of Doxorubicin in mice. Cancer Res 2009; 69: 695–9.
119. Seicean S, Seicean A, Plana JC et al. Effect of statin therapy on the risk for incident heart failure in patients with breast cancer receiving anthracycline chemotherapy: an observational clinical cohort study. J Am Coll Cardiol 2012; 60: 2384–90.
120. Acar Z, Kale A, Turgut M et al. Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy. J Am Coll Cardiol 2011; 58: 988–9.
121. Scott JM, Khakoo A, Mackey JR et al. Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: current evidence and underlying mechanisms. Circulation 2011; 124: 642–50.
122. Sturgeon KM, Ky B, Libonati JR, Schmitz KH. Breast Cancer Res Treat 2014; 143 (2): 219–26.
123. Kirkham AA, Davis MK. Exercise Prevention of Cardiovascular Disease in Breast Cancer Survivors. J Oncol 2015.
124. Jones LW, Liu Q, Armstrong GT et al. Exercise and risk of major cardiovascular events in adult survivors of childhood Hodgkin lymphoma: a report from the Childhood Cancer Survivor Study. J Clin Oncol 2014; 32: 3643–50.
125. Jones LW, Habel LA, Weltzien E et al. Exercise and Risk of Cardiovascular Events in Women With Nonmetastatic Breast Cancer. J Clin Oncol 2016; 34: 2743–9.
126. Hayes SC, Spence RR, Galvao DA et al. Australian Association for Exercise and Sport Science position stand: optimising cancer outcomes through exercise. J Sci Med Sport 2009; 12: 428–34.
127. Scott JM, Koelwyn GJ, Hornsby WE et al. Exercise therapy as treatment for cardiovascular and oncologic disease after a diagnosis of early-stage cancer. Semin Oncol 2013; 40 (2): 218–28.
128. Mishra SI, Scherer RW, Snyder C et al. Exercise interventions on health-related quality of life for people with cancer during active treatment. Cochrane Database Syst Rev 2012; 8: CD008465.
129. Cardinale D, Colombo A, Sandri MT et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensinconverting enzyme inhibition. Circulation 2006; 114: 2474–81.
130. Negishi K, Negishi T, Haluska BA et al. Use of speckle strain to assess left ventricular responses to cardiotoxic chemotherapy and cardioprotection. Eur Heart J Cardiovasc Imaging 2014; 15: 324–31.
131. Мареев В.Ю., Агеев Ф.Т., Арутюнов Г.П. и др. Национальные рекомендации ОССН, РКО и РНМОТ по диагностике и лечению хронической сердечной недостаточности (четвертый пересмотр). Сердечная недостаточность. 2013; 7 (81): 379–472. / Mareev V.Iu., Ageev F.T., Arutiunov G.P. i dr. Natsional'nye rekomendatsii OSSN, RKO i RNMOT po diagnostike i lecheniiu khronicheskoi serdechnoi nedostatochnosti (chetvertyi peresmotr). Serdechnaia nedostatochnost'. 2013; 7 (81): 379–472. [in Russian]
132. Hamo CE, Bloom MW, Cardinale D et al. Cancer Therapy–Related Cardiac Dysfunction and Heart Failure Part 2: Prevention, Treatment, Guidelines, and Future Directions. Circ Heart Fail 2016; 9: e002843.
133. Cardinale D, Colombo A, Lamantia G et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol 2010; 55: 213–20.
134. Oliveira GH, Dupont M, Naftel D et al. Increased need for right ventricular support in patients with chemotherapy-induced cardiomyopathy undergoing mechanical circulatory support: outcomes from the INTERMACS Registry (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol 2014; 63: 240–8.
135. Oliveira GH, Hardaway BW, Kucheryavaya AY et al. Characteristics and survival of patients with chemotherapyinduced cardiomyopathy undergoing heart transplantation. J Heart Lung Transplant 2012; 31: 805–10.
136. Rickard J, Kumbhani DJ, Baranowski B et al. Usefulness of cardiac resynchronization therapy in patients with adriamycin- induced cardiomyopathy. Am J Cardiol 2010; 105: 522–6. DOI: 10.1016/j.amjcard.2009.10.024.
137. Lenneman AJ, Wang L, Wigger M et al. Heart transplant survival outcomes for adriamycin-dilated cardiomyopathy. Am J Cardiol 2013; 111 (4): 609–12.
138. Slamon D, Eiermann W, Robert N et al. Breast Cancer International Research Group. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med 2011; 365: 1273–83.
139. Slamon D, Eiermann W, Robert N et al. Phase III randomized trial comparing doxorubicin and cyclophosphamide followed by docetaxel (AC→T) with doxorubicin and cyclophosphamide followed by docetaxel and trastuzumab (AC→TH) with docetaxel, carboplatin and trastuzumab (TCH) in Her-2/neu-positive early breast cancer patients: BCIRG 006 Study. 32nd Annual San Antonio Breast Cancer Symposium 2009. Abstr. 62.
140. Pituskin E, Mackey JR, Koshman S et al. Multidisciplinary Approach to Novel Therapies in Cardio-Oncology Research (MANTICORE 101-Breast): A Randomized Trial for the Prevention of Trastuzumab-Associated Cardiotoxicity. J Clin Oncol 2016: JCO2016687830.
141. Boekhout AH, Gietema JA, Kerklaan BM et al. Angiotensin II–Receptor Inhibition With Candesartan to Prevent Trastuzumab-Related Cardiotoxic Effects in Patients With Early Breast CancerA Randomized Clinical Trial. JAMA Oncol 2016; 2 (8): 1030–7.
142. Yavas G, Elsurer R, Yavas C et al. Does spironolactone ameliorate trastuzumab-induced cardiac toxicity? Med Hypotheses 2013; 81: 231–4.
143. Oliva S, Cioffi G, Frattini S et al. Italian Cardio-Oncological Network. Administration of angiotensin-converting enzyme inhibitors and b-blockers during adjuvant trastuzumab chemotherapy for nonmetastatic breast cancer: marker of risk or cardioprotection in the real world? Oncologist 2012; 17 (7): 917–24.
________________________________________________
1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 2013; 49: 1374–403.
2. Siegel R, DeSantis C, Virgo K et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 2012; 62: 220–41.
3. Ewer MS, Ewer SM. Cardiotoxicity of anticancer treatments. Nat Rev Cardiol 2015; 12: 620.
4. Armstrong GT, Oeffinger KC, Chen Y et al. Modifiable risk factors and major cardiac events among adult survivors of childhood cancer. J Clin Oncol 2013; 31: 3673–80.
5. Yeh E, Tong A, Lenihan D et al. Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation 2004; 109: 3122–31.
6. Chen M, Colan S, Diller L. Cardiovascular disease: cause of morbidity and mortality in adult survivors of childhood cancers. Circ Res 2011; 108: 619–28.
7. Sawyer D, Lenihan D. Managing heart failure in cancer patients. In: Mann D., Felker G. Heart Failure: A Companion to Braunwald's Heart Disease, 3d ed. Philadelphia, Elsevier, 2016; p. 689–96.
8. Cardinale D, Colombo A, Bacchiani G et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 2015; 131 (22): 1981–8.
9. Ryberg M, Nielsen D, Skovsgaard T et al. Epirubicin cardiotoxicity: an analysis of 469 patients with metastatic breast cancer. J Clin Oncol 1998; 16: 3502–8.
10. Nielsen D, Jensen J, Dombernowsky P et al. Epirubicin cardiotoxicity: a study of 135 patients with advanced breast cancer. J Clin Oncol 1990; 8: 1806–10.
11. Felker G, Thompson R, Hare J et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med 2000; 342: 1077–84.
12. Kuramochi Y, Cote G, Guo X et al. Cardiac endothelial cells regulate reactive oxygen species-induced cardiomyocyte apoptosis through neuregulin-1beta/erbB4 signaling. J Biol Chem 2004; 279: 51141–7.
13. Hedhli N, Huang Q, Kalinowski A et al. Endothelium-derived neuregulin protects the heart against ischemic injury. Circulation 2011; 123: 2254–62.
14. Lemmens K, Segers VF, Demolder M et al. Role of neuregulin-1/ErbB2 signaling in endothelium-cardiomyocyte cross-talk. J Biol Chem 2006; 281 (28): 19469–77.
15. Graus-Porta D, Beerli R, Daly J et al. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 1997; 16: 1647–55.
16. Procter M, Suter T, de Azambuja E et al. Longer-term assessment of trastuzumab-related cardiac adverse events in the Herceptin Adjuvant (HERA) trial. J Clin Oncol 2010; 28: 3422–8.
17. Ewer MS, Vooletich MT, Durand JB et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol 2005; 23 (31): 7820–6.
18. Lenihan D, Suter T, Brammer M et al. Pooled analysis of cardiac safety in patients with cancer treated with pertuzumab. Ann Oncol 2012; 23: 791–800.
19. Perez E, Koehler M, Byrne J et al. Cardiac safety of lapatinib: pooled analysis of 3689 patients enrolled in clinical trials. Mayo Clin Proc 2008; 83: 679–86.
20. Von Hoff DD, Layard MW, Basa P et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 1979; 91: 710–7.
21. Speyer JL, Green MD, Zeleniuch-Jacquotte A et al. ICRF-187 permits longer treatment with doxorubicin in women with breast cancer. J Clin Oncol 1992; 10: 117–27.
22. Swain S, Whaley F, Ewer M. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 2003; 97: 2869–79.
23. Van Nimwegen FA, Schaapveld M, Janus CP et al. Cardiovascular disease after Hodgkin lymphoma treatment: 40-year disease risk. JAMA Intern Med 2015; 175: 1007–17.
24. Armenian SH, Sun CL, Shannon T et al. Incidence and predictors of congestive heart failure after autologous hematopoietic cell transplantation. Blood 2011; 118: 6023–9.
25. Baldini E, Prochilo T, Salvadori B et al. Multicenter randomized phase III trial of epirubicin plus paclitaxel vs epirubicin followed by paclitaxel in metastatic breast cancer patients: Focus on cardiac safety. Br J Cancer 2004; 91: 45–9.
26. Fumoleau P, Roche H, Kerbrat P et al. Longterm cardiac toxicity after adjuvant epirubicin-based chemotherapy in early breast cancer: French Adjuvant Study Group results. Ann Oncol 2006; 17: 85–92.
27. Ryberg M, Nielsen D, Cortese G et al. New insight into epirubicin cardiac toxicity: Competing risks analysis of 1097 breast cancer patients. J Natl Cancer Inst 2008; 100: 1058–67.
28. Van der Pal H, van Dalen E, van Delden E et al. High risk of symptomatic cardiac events in childhood cancer survivors. J Clin Oncol 2012; 30: 1429–37.
29. Di Cosimo S. Heart to heart with trastuzumab: A review on cardiac toxicity. Target Oncol 2011; 6: 189–95.
30. Zeglinski M, Ludke A, Jassal D et al. Trastuzumab-induced cardiac dysfunction: A «dual-hit». Exp Clin Cardiol 2011; 16: 70–4.
31. Romond EH, Jeong J-H, Rastogi P et al. Seven-year follow-up assessment of cardiac function in NSABP B-31, a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel (ACP) with ACP plus trastuzumab as adjuvant therapy for patients with node-positive, human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 2012; 30: 3792–9.
32. Advani PP, Ballman KV, Dockter TJ et al. Long-term cardiac safety analysis of NCCTG N9831 (Alliance) adjuvant trastuzumab trial. J Clin Oncol 2016; 34: 581–7.
33. Pinder MC, Duan Z, Goodwin JS et al. Congestive heart failure in older women treated with adjuvant anthracycline chemotherapy for breast cancer. J Clin Oncol 2007; 25: 3808–15.
34. Chow EJ, Baker KS, Lee SJ et al. Influence of conventional cardiovascular risk factors and lifestyle characteristics on cardiovascular disease after hematopoietic cell transplantation. J Clin Oncol 2014; 32: 191–8.
35. Armenian SH, Xu L, Ky B et al. Cardiovascular disease among survivors of adult-onset cancer: A community-based retrospective cohort study. J Clin Oncol 2016; 34: 1122–30.
36. Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al. Herceptin Adjuvant Trial Study Team. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005; 353: 1659–72.
37. Tan-Chiu E, Yothers G, Romond E et al. Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J Clin Oncol 2005; 23: 7811–9.
38. Bowles EJ, Wellman R, Feigelson HS et al. Risk of heart failure in breast cancer patients after anthracycline and trastuzumab treatment: A retrospective cohort study. J Natl Cancer Inst 2012; 104: 1293–305.
39. Farolfi A, Melegari E, Aquilina M et al. Trastuzumab-induced cardiotoxicity in early breast cancer patients: a retrospective study of possible risk and protective factors. Heart 2013; 99: 634–9.
40. Moja L, Tagliabue L, Balduzzi S et al. Trastuzumab containing regimens for early breast cancer. Cochrane Database Syst Rev 2012; 4: CD006243.
41. Ewer MS, Ewer SM. Cardiotoxicity of anticancer treatments: what the cardiologist needs to know. Nat Rev Cardiol 2010; 7: 564–75.
42. Robert N, Leyland-Jones B, Asmar L et al. Randomized phase III study of trastuzumab, paclitaxel, and carboplatin compared with trastuzumab and paclitaxel in women with HER-2-overexpressing metastatic breast cancer. J Clin Oncol 2006; 24: 2786–92.
43. Burstein H, Kuter I, Campos S et al. Clinical activity of trastuzumab and vinorelbine in women with HER2-overexpressing metastatic breast cancer. J Clin Oncol 2001; 19: 2722–30.
44. Jahanzeb M, Mortimer J, Yunus F et al. Phase II trial of weekly vinorelbine and trastuzumab as first-line therapy in patients with HER2(+) metastatic breast cancer. Oncologist 2002; 7: 410–7.
45. Pivot X, Suter T, Nabholtz JM et al. Cardiac toxicity events in the PHARE trial, an adjuvant trastuzumab randomised phase III study. Eur J Cancer 2015; 51: 1660–6.
46. Chavez-MacGregor M, Zhang N, Buchholz T et al. Trastuzumab-related cardiotoxicity among older patients with breast cancer. J Clin Oncol 2013; 31: 4222–8.
47. Mantarro S, Rossi M, Bonifazi M et al. Risk of severe cardiotoxicity following treatment with trastuzumab: a meta-analysis of randomized and cohort studies of 29,000 women with breast cancer. Intern Emerg Med 2015; 11: 123–40.
48. Gunaldi M, Duman B, Afsar C et al. Risk factors for developing cardiotoxicity of trastuzumab in breast cancer patients: An observational single-centre study. J Oncol Pharm Pract 2016; 22: 242–7.
49. Lemieux J, Diorio C, Cote M et al. Alcohol and HER2 polymorphisms as risk factor for cardiotoxicity in breast cancer treated with trastuzumab. Anticancer Res 2013; 33: 2569–76.
50. Plana JC, Galderisi M, Barac A et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2014; 27: 911–39.
51. Curigliano G, Cardinale D, Suter T et al. ESMO Guidelines Working Group. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol 2012; 23 (Suppl. 7): vii155–vii166.
52. Zamorano JL, Lancellotti P, Munoz DR et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J 2016; 37: 2768–801.
53. Thavendiranathan P, Grant AD, Negishi T et al. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: Application to patients undergoing cancer chemotherapy. J Am Coll Cardiol 2013; 61: 77–84.
54. Allen LA, Yood MU, Wagner EH et al. Performance of claims-based algorithms for identifying heart failure and cardiomyopathy among patients diagnosed with breast cancer. Med Care 2014; 52: e30–e38.
55. Negishi K, Negishi T, Hare J et al. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J Am Soc Echocardiogr 2013; 26: 493–8.
56. Sawaya H, Sebag I, Plana J et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging 2012; 5: 596–603.
57. Thavendiranathan P, Poulin F, Lim K et al. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol 2014; 63 (25 Pt A): 2751–68.
58. Curigliano G, Cardinale D, Dent S et al. Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA Cancer J Clin 2016; 66 (4): 309–25.
59. Cardinale D, Sandri M, Colombo A et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 2004; 109: 2749–54.
60. Cardinale D, Colombo A, Torrisi R et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol 2010; 28 (25): 3910–6.
61. Ky B, Putt M, Sawaya H et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol 2014; 63: 809–16.
62. Sawaya H, Sebag I, Plana J et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol 2011; 107: 1375–80.
63. Ponikowski P, Voors A, Anker S et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37: 2129–200.
64. Cardinale D, Salvatici M, Sandri MT. Role of biomarkers in cardioncology. Clin Chem Lab Med 2011; 49: 1937–48.
65. Christenson ES, James T, Agrawal V, Park BH. Use of biomarkers for the assessment of chemotherapy-induced cardiac toxicity. Clin Biochem 2015; 48 (4–5): 223–35.
66. Armenian SH, Lacchetti C, Barac A et al. Prevention and Monitoring of Cardiac Dysfunction in Survivors of Adult Cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2017; 35 (8): 893–911.
67. Penugonda N. Cardiac MRI in infiltrative disorders: a concise review. Curr Cardiol Rev 2010; 6: 134–6.
68. Gulati A, Jabbour A, Ismail T et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA 2013; 309: 896–908.
69. Thavendiranathan P, Wintersperger B, Flamm S et al. Cardiac MRI in the assessment of cardiac injury and toxicity from cancer chemotherapy: a systematic review. Circ Cardiovasc Imaging 2013; 6: 1080–91.
70. Bellenger N, Burgess M, Ray S et al. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J 2000; 21: 1387–96.
71. Pacciarini MA, Barbieri B, Colombo T et al. Distribution and antitumor activity of adriamycin given in a high-dose and a repeated low-dose schedule to mice. Cancer Treat Rep 1978; 62: 791–800.
72. Valdivieso M, Burgess MA, Ewer MS et al. Increased therapeutic index of weekly doxorubicin in the therapy of non-small cell lung cancer: a prospective, randomized study. J Clin Oncol 1984; 2 (3): 207–14.
73. Legha SS, Benjamin RS, Mackay B et al. Reduction of Doxorubicin Cardiotoxicity by Prolonged Continuous Intravenous Infusion. Ann Intern Med 1982; 96 (2): 133–9.
74. Smith LA, Cornelius VR, Plummer CJ et al. Cardiotoxicity of anthracycline agents for the treatment of cancer: Systematic review and meta-analysis of randomised controlled trials. BMC Cancer 2010; 10: 337.
75. Van Dalen EC, Michiels EM, Caron HN et al. Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database Syst Rev 2010; 5: CD005006.
76. Rafiyath SM, Rasul M, Lee B et al. Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: a meta-analysis. Exp Hematol Oncol 2012; 1: 10.
77. U.S. Food and Drug Administration. Drug safety and availability. FDA statement on DOXIL (doxorubicin HCl liposome injection) for intravenous infusion. Available at: http: //www.accessdata.fda. gov/drugsatfda_docs/label/2012/050718s043lbl. pdf
78. Jones SE, Savin MA, Holmes FA et al. Phase III trial comparing doxorubicin plus cyclophosphamide with docetaxel plus cyclophosphamide as adjuvant therapy for operable breast cancer. J Clin Oncol 2006; 24: 5381–7.
79. Hahn VS, Lenihan DJ, Ky B. Cancer Therapy-Induced Cardiotoxicity: Basic Mechanisms and Potential Cardioprotective Therapies J Am Heart Assoc 2014; 3 (2): e000665.
80. Kalam К, Marwick TH. Role of cardioprotective therapy for prevention of cardiotoxicity with chemotherapy: A systematic review and meta-analysis. Eur J Cancer 2013; 49: 2900–9.
81. U.S. Food and Drug Administration. Drug Safety and Availability. FDA statement on dexrazoxane. Jul 20, 2011. Available at: http: //www.fda. gov/Drugs/DrugSafety/ucm 263729.htm
82. Lipshultz SE, Scully RE, Lipsitz SR et al. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with highrisk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial. Lancet Oncol 2010; 11: 950–61.
83. Lyu YL, Kerrigan JE, Lin CP et al. Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res 2007; 67: 8839–46.
84. Vejpongsa P, Yeh ETH. Prevention of Anthracycline-Induced Cardiotoxicity Challenges and Opportunities. J Am Coll Cardiol 2014; 64 (9): 938–45.
85. Swain SM, Whaley FS, Gerber MC et al. Delayed administration of dexrazoxane provides cardioprotection for patients with advanced breast cancer treated with doxorubicin-containing therapy. J Clin Oncol 1997; 15: 1333–40.
86. Swain SM, Whaley FS, Gerber MC et al. Cardioprotection with dexrazoxane for doxorubicincontaining therapy in advanced breast cancer. J Clin Oncol 1997; 15: 1318–32.
87. Marty M, Espie M, Llombart A et al. Dexrazoxane Study Group. Multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (Cardioxane) in advanced/ metastatic breast cancer patients treated with anthracycline-based chemotherapy. Ann Oncol 2006; 17: 614–22.
88. Van Dalen EC, Caron HN, Dickinson HO et al. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev 2011; 6: CD003917.
89. Hensley ML, Hagerty KL, Kewalramani T et al. American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol 2009; 27: 127–45.
90. European Medicines Agency. Questions and answers on the review of dexrazoxane-containing medicines, powder for solution for infusion, 500 mg. Outcome of a procedure under Article 31 of Directive 2001/83/EC as amended.http: //www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/Dexrazoxane_31/WC500108011.pdf
91. Tebbi CK, London WB, Friedman D et al. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. J Clin Oncol 2007; 25: 493–500.
92. Vrooman LM, Neuberg DS, Stevenson KE et al. The low incidence of secondary acute myelogenous leukaemia in children and adolescents treated with dexrazoxane for acute lymphoblastic leukaemia: a report from the Dana-Farber Cancer Institute ALL Consortium. Eur J Cancer 2011; 47: 1373–9.
93. Salzer WL, Devidas M, Carroll WL et al. Longterm results of the pediatric oncology group studies for childhood acute lymphoblastic leukemia 1984–2001: a report from the children’s oncology group. Leukemia 2010; 24: 355–70.
94. Asanuma H, Minamino T, Sanada S et al. Beta-adrenoceptor blocker carvedilol provides cardioprotection via an adenosine-dependent mechanism in ischemic canine hearts. Circulation 2004; 109 (22): 2773–9.
95. Kim IM, Tilley DG, Chen J et al. Beta-blockers alprenolol and carvedilol stimulate beta-arrestin-mediated EGFR transactivation. Proc Natl Acad Sci U S A 2008; 105 (38): 14555–60.
96. Oliveira PJ, Bjork JA, Santos MS et al. Carvedilol-mediated antioxidant protection against doxorubicin- induced cardiac mitochondrial toxicity. Toxicol Appl Pharmacol 2004; 200: 159–68.
97. Elitok A, Oz F, Cizgici AY et al. Effect of carvedilol on silent anthracycline-induced cardiotoxicity assessed by strain imaging: a prospective randomized controlled study with six-month follow-up. Cardiol J 2014; 21: 509–15.
98. Kalay N, Basar E, Ozdogru I et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol 2006; 48: 2258–62.
99. Kaya MG, Ozkan M, Gunebakmaz O et al. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. Int J Cardiol 2013; 167: 2306–10.
100. Seicean S, Seicean A, Alan N et al. Cardioprotective effect of β-adrenoceptor blockade in patients with breast cancer undergoing chemotherapy: follow-up study of heart failure. Circ Heart Fail 2013; 6: 420–6.
101. Choe JY, Combs AB, Folkers K. Potentiation of the toxicity of adriamycin by propranolol. Res Commun Chem Pathol Pharmacol 1978; 21: 577–80.
102. Georgakopoulos P, Roussou P, Matsakas E et al. Cardioprotective effect of metoprolol and enalapril in doxorubicin-treated lymphoma patients: a prospective, parallel-group, randomized, controlled study with 36-month follow-up. Am J Hematol 2010; 85: 894–6.
103. Gulati G, Heck SL, Ree AH et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2×2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J 2016; 37 (21): 1671–80.
104. Abd El-Aziz MA, Othman AI, Amer M et al. Potential protective role of angiotensin-converting enzyme inhibitors captopril and enalapril against adriamycin-induced acute cardiac and hepatic toxicity in rats. J Appl Toxicol 2001; 21: 469–73.
105. Okumura K, Jin D, Takai S et al. Beneficial effects of angiotensinconverting enzyme inhibition in adriamycin-induced cardiomyopathy in hamsters. Jpn J Pharmacol 2002; 88: 183–8.
106. Hiona A, Lee AS, Nagendran J et al. Pretreatment with angiotensin-converting enzyme inhibitor improves doxorubicin-induced cardiomyopathy via preservation of mitochondrial function. J Thorac Cardiovasc Surg 2011; 142: 396–403.e3.
107. Maeda A, Honda M, Kuramochi T et al. An angiotensinconverting enzyme inhibitor protects against doxorubicin-induced impairment of calcium handling in neonatal rat cardiac myocytes. Clin Exp Pharmacol Physiol 1997; 24: 720–6.
108. Cernecka H, Ochodnicka-Mackovicova K, Kucerova D et al. Enalaprilat increases PPARbeta/delta expression, without influence on PPARalpha and PPARgamma, and modulate cardiac function in sub-acute model of daunorubicin-induced cardiomyopathy. Eur J Pharmacol 2013; 714: 472–7.
109. Tokudome T, Mizushige K, Noma T et al. Prevention of doxorubicin (adriamycin)-induced cardiomyopathy by simultaneous administration of angiotensin-converting enzyme inhibitor assessed by acoustic densitometry. J Cardiovasc Pharmacol 2000; 36: 361–8.
110. Boucek RJ Jr, Steele A, Miracle A et al. Effects of angiotensinconverting enzyme inhibitor on delayed-onset doxorubicin-induced cardiotoxicity. Cardiovasc Toxicol 2003; 3: 319–29.
111. Vaynblat M, Shah HR, Bhaskaran D et al. Simultaneous angiotensin converting enzyme inhibition moderates ventricular dysfunction caused by doxorubicin. Eur J Heart Fail 2002; 4: 583–6.
112. Cadeddu C, Piras A, Mantovani G et al. Protective effects of the angiotensin II receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and early ventricular impairment. Am Heart J 2010; 160: 487.
113. Nakamae H, Tsumura K, Terada Y et al. Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer 2005; 104 (11): 2492–8.
114. Bosch X, Rovira M, Sitges M et al. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J Am Coll Cardiol 2013; 61: 2355–62.
115. Akpek M, Ozdogru I, Sahin O et al. Protective effects of spironolactone against anthracycline-induced cardiomyopathy. Eur J Heart Fail 2015; 17: 81–9.
116. Damrot J, Nubel T, Epe B et al. Lovastatin protects human endothelial cells from the genotoxic and cytotoxic effects of the anticancer drugs doxorubicin and etoposide. Br J Pharmacol 2006; 149: 988–97.
117. Huelsenbeck J, Henninger C, Schad A et al. Inhibition of Rac1 signaling by lovastatin protects against anthracycline-induced cardiac toxicity. Cell Death Dis 2011; 2: e190.
118. Riad A, Bien S, Westermann D et al. Pretreatment with statin attenuates the cardiotoxicity of Doxorubicin in mice. Cancer Res 2009; 69: 695–9.
119. Seicean S, Seicean A, Plana JC et al. Effect of statin therapy on the risk for incident heart failure in patients with breast cancer receiving anthracycline chemotherapy: an observational clinical cohort study. J Am Coll Cardiol 2012; 60: 2384–90.
120. Acar Z, Kale A, Turgut M et al. Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy. J Am Coll Cardiol 2011; 58: 988–9.
121. Scott JM, Khakoo A, Mackey JR et al. Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: current evidence and underlying mechanisms. Circulation 2011; 124: 642–50.
122. Sturgeon KM, Ky B, Libonati JR, Schmitz KH. Breast Cancer Res Treat 2014; 143 (2): 219–26.
123. Kirkham AA, Davis MK. Exercise Prevention of Cardiovascular Disease in Breast Cancer Survivors. J Oncol 2015.
124. Jones LW, Liu Q, Armstrong GT et al. Exercise and risk of major cardiovascular events in adult survivors of childhood Hodgkin lymphoma: a report from the Childhood Cancer Survivor Study. J Clin Oncol 2014; 32: 3643–50.
125. Jones LW, Habel LA, Weltzien E et al. Exercise and Risk of Cardiovascular Events in Women With Nonmetastatic Breast Cancer. J Clin Oncol 2016; 34: 2743–9.
126. Hayes SC, Spence RR, Galvao DA et al. Australian Association for Exercise and Sport Science position stand: optimising cancer outcomes through exercise. J Sci Med Sport 2009; 12: 428–34.
127. Scott JM, Koelwyn GJ, Hornsby WE et al. Exercise therapy as treatment for cardiovascular and oncologic disease after a diagnosis of early-stage cancer. Semin Oncol 2013; 40 (2): 218–28.
128. Mishra SI, Scherer RW, Snyder C et al. Exercise interventions on health-related quality of life for people with cancer during active treatment. Cochrane Database Syst Rev 2012; 8: CD008465.
129. Cardinale D, Colombo A, Sandri MT et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensinconverting enzyme inhibition. Circulation 2006; 114: 2474–81.
130. Negishi K, Negishi T, Haluska BA et al. Use of speckle strain to assess left ventricular responses to cardiotoxic chemotherapy and cardioprotection. Eur Heart J Cardiovasc Imaging 2014; 15: 324–31.
131. Mareev V.Iu., Ageev F.T., Arutiunov G.P. i dr. Natsional'nye rekomendatsii OSSN, RKO i RNMOT po diagnostike i lecheniiu khronicheskoi serdechnoi nedostatochnosti (chetvertyi peresmotr). Serdechnaia nedostatochnost'. 2013; 7 (81): 379–472. [in Russian]
132. Hamo CE, Bloom MW, Cardinale D et al. Cancer Therapy–Related Cardiac Dysfunction and Heart Failure Part 2: Prevention, Treatment, Guidelines, and Future Directions. Circ Heart Fail 2016; 9: e002843.
133. Cardinale D, Colombo A, Lamantia G et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol 2010; 55: 213–20.
134. Oliveira GH, Dupont M, Naftel D et al. Increased need for right ventricular support in patients with chemotherapy-induced cardiomyopathy undergoing mechanical circulatory support: outcomes from the INTERMACS Registry (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol 2014; 63: 240–8.
135. Oliveira GH, Hardaway BW, Kucheryavaya AY et al. Characteristics and survival of patients with chemotherapyinduced cardiomyopathy undergoing heart transplantation. J Heart Lung Transplant 2012; 31: 805–10.
136. Rickard J, Kumbhani DJ, Baranowski B et al. Usefulness of cardiac resynchronization therapy in patients with adriamycin- induced cardiomyopathy. Am J Cardiol 2010; 105: 522–6. DOI: 10.1016/j.amjcard.2009.10.024.
137. Lenneman AJ, Wang L, Wigger M et al. Heart transplant survival outcomes for adriamycin-dilated cardiomyopathy. Am J Cardiol 2013; 111 (4): 609–12.
138. Slamon D, Eiermann W, Robert N et al. Breast Cancer International Research Group. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med 2011; 365: 1273–83.
139. Slamon D, Eiermann W, Robert N et al. Phase III randomized trial comparing doxorubicin and cyclophosphamide followed by docetaxel (AC→T) with doxorubicin and cyclophosphamide followed by docetaxel and trastuzumab (AC→TH) with docetaxel, carboplatin and trastuzumab (TCH) in Her-2/neu-positive early breast cancer patients: BCIRG 006 Study. 32nd Annual San Antonio Breast Cancer Symposium 2009. Abstr. 62.
140. Pituskin E, Mackey JR, Koshman S et al. Multidisciplinary Approach to Novel Therapies in Cardio-Oncology Research (MANTICORE 101-Breast): A Randomized Trial for the Prevention of Trastuzumab-Associated Cardiotoxicity. J Clin Oncol 2016: JCO2016687830.
141. Boekhout AH, Gietema JA, Kerklaan BM et al. Angiotensin II–Receptor Inhibition With Candesartan to Prevent Trastuzumab-Related Cardiotoxic Effects in Patients With Early Breast CancerA Randomized Clinical Trial. JAMA Oncol 2016; 2 (8): 1030–7.
142. Yavas G, Elsurer R, Yavas C et al. Does spironolactone ameliorate trastuzumab-induced cardiac toxicity? Med Hypotheses 2013; 81: 231–4.
143. Oliva S, Cioffi G, Frattini S et al. Italian Cardio-Oncological Network. Administration of angiotensin-converting enzyme inhibitors and b-blockers during adjuvant trastuzumab chemotherapy for nonmetastatic breast cancer: marker of risk or cardioprotection in the real world? Oncologist 2012; 17 (7): 917–24.
1 Институт клинической кардиологии им. А.Л.Мясникова ФГБУ «Национальный медицинский исследовательский центр кардиологии» Минздрава России. 121552, Россия, Москва, ул. 3-я Черепковская, д. 15а;
2 ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н.Блохина» Минздрава России. 115478, Россия, Москва, Каширское ш., д. 23;
3 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М.Сеченова» Минздрава России. 119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 1;
4 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России. 125993, Россия, Москва, ул. Баррикадная, д. 2/1
*marinavitsenya@gmail.com
1 A.L.Myasnikov Institute of Clinical Cardiology National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation. 121552, Russian Federation, Moscow, ul. 3-ia Cherepkovskaia, d. 15a;
2 N.N.Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation. 115478, Russian Federation, Moscow, Kashirskoe sh., d. 23;
3 I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation. 119991, Russian Federation, Moscow, ul. Trubetskaia, d. 8, str. 2;
4 Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation. 125993, Russian Federation, Moscow, ul. Barrikadnaia, d. 2/1
*marinavitsenya@gmail.com