Эпикардиальный жир: новый маркер кардиометаболического риска – новая терапевтическая цель у пациентов с ожирением
Эпикардиальный жир: новый маркер кардиометаболического риска – новая терапевтическая цель у пациентов с ожирением
Блинова Н.В., Жернакова Ю.В., Азимова М.О. и др. Эпикардиальный жир: новый маркер кардиометаболического риска – новая терапевтическая цель у пациентов с ожирением. Системные гипертензии. 2018; 15 (4): 66–69. DOI: 10.26442/2075082X.2018.4.180111
________________________________________________
Blinova N.V., Zhernakova Yu.V., Azimova M.O. et al. Epicardial fat: a new cardiometabolic risk marker, a new therapeutic goal in obese patients. Systemic Hypertension. 2018; 15 (4): 66–69. DOI: 10.26442/2075082X.2018.4.180111
Эпикардиальный жир: новый маркер кардиометаболического риска – новая терапевтическая цель у пациентов с ожирением
Блинова Н.В., Жернакова Ю.В., Азимова М.О. и др. Эпикардиальный жир: новый маркер кардиометаболического риска – новая терапевтическая цель у пациентов с ожирением. Системные гипертензии. 2018; 15 (4): 66–69. DOI: 10.26442/2075082X.2018.4.180111
________________________________________________
Blinova N.V., Zhernakova Yu.V., Azimova M.O. et al. Epicardial fat: a new cardiometabolic risk marker, a new therapeutic goal in obese patients. Systemic Hypertension. 2018; 15 (4): 66–69. DOI: 10.26442/2075082X.2018.4.180111
Эпикардиальный жир (ЭКЖ), позиционируемый как один из факторов риска развития сердечно-сосудистых заболеваний, вызывает большой интерес у исследователей и является актуальным предметом для изучения. В данной статье представлен обзор по влиянию ЭКЖ на сердечно-сосудистую систему и метаболические параметры, новые терапевтические возможности по влиянию на выраженность ЭКЖ. В настоящее время не существует общепринятых методов по измерению выраженности ЭКЖ, в качестве одного из методов предлагается использование трансторакальной эхокардиографии – простого доступного информативного метода.
Epicardial fat (EF) is thought to be a cardiovascular risk factor, it has attracted a great interest from researchers and is relevant to study. The article presents a review on EF influence on cardiovascular system and metabolic parameters, as well as new therapeutic approaches to modify EF volume. There are no established methods for EF parameters measurement at present. The use of transthoracic echocardiography which is a simple, accessible, and informative procedure is suggested as one of these methods.
1. Hubert HB, Feinleib M, McNamara PM et al. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation 1983; 67 (5): 968–77.
2. Fox CS, Massaro JM, Hoffmann U et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 2007; 116: 39–48.
3. Eckel N, Li Y, Kuxhaus O et al. Transition from metabolic healthy to unhealthy phenotypes and association with cardiovascular disease risk across BMI categories in 90 257 women (the Nurses' Health Study): 30 year follow-up from a prospective cohort study. Lancet Diabetes Endocrinol 2018. DOI: 10.1016/S2213-8587(18)30137-2
4. Азимова М.О., Блинова Н.В., Жернакова Ю.В., Чазова И.Е. Ожирение как предиктор сердечно-сосудистых заболеваний: роль локальных жировых депо. Системные гипертензии. 2018; 15 (3): 39–43. DOI: 10.26442/2075-082X_2018.3.39-43 / Azimova M.O., Blinova N.V., Zhernakova Iu.V., Chazova I.E. Ozhirenie kak prediktor serdechno-sosudistykh zabolevanii: rol' lokal'nykh zhirovykh depo. Sistemnye gipertenzii. 2018; 15 (3): 39–43. DOI: 10.26442/2075-082X_2018.3.39-43 [in Russian]
5. Sun K, Kusminski C, Scherer P. Adipose tissue remodeling and obesity. J Clin Invest 2011; 121 (6): 2094–101. DOI: 10.1172/JCI45887
6. Hajer G, Haeften T, Visseren F. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 2008; 29: 2959–71. DOI:10.1093/eurheartj/ehn387
7. Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med 2005; 2: 536–43. DOI: 10.1038/ncpcardio0319
8. Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J 2007; 153: 907–17. DOI: 10.1016/j.ahj.2007.03.019
9. Rosito GA, Massaro JM, Hoffman U et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: The Framingham Heart Study. Circulation 2008; 117: 605–13. DOI: 10.1161/CIRCULATIONAHA.107.743062
10. Mahabadi AA, Massaro JM, Rosito GA et al. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: The Framingham Heart Study. Eur Heart J 2009; 30: 850–6. DOI:10.1093/eurheartj/ehn573
11. Ding J, Hsu FC, Harris TB et al. The association of pericardial fat with incident coronary heart disease. The Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 2009; 90: 499–504. DOI: 10.3945/ajcn.2008.27358
12. Mazurek T, Zhang LF, Zalewski A et al. Human epicardial adipose tissue is a source of inflammatory markers. Circulation 2003; 108: 2460–6. DOI: 10.1161/01.CIR.0000099542.57313.C5
13. Hirata Y, Tabata M, Kurobe H et al. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue. J Am Coll Cardiol 2011; 58: 248–55. DOI: 10.1016/j.jacc.2011.01.048
14. Hatem SN, Sanders P. Epicardial adipose tissue and atrial fibrillation. Cardiovasc Res 2014; 102: 205–13. DOI:10.1093/cvr/cvu045
15. Chung MK, Martin DO, Sprecher D et al. C-reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation. Circulation 2001; 104: 2886–91.
16. Aviles RJ, Martin DO, Apperson-Hansen C et al. Inflammation as a risk factor for atrial fibrillation. Circulation 2003; 108: 3006–10. DOI: 10.1161/01.CIR.0000103131.70301.4F
17. Mazurek T, Kiliszek M, Kobylecka M et al. Relation of proinflammatory activity of epicardial adipose tissue to the occurrence of atrial fibrillation. Am J Cardiol 2014; 113: 1505–8. DOI: 10.1016/j.amjcard.2014.02.005
18. Arnoldi CT Ng, Strudwick M, van der Geest RJ et al. Impact of Epicardial Adipose Tissue, Left Ventricular Myocardial Fat Content, and Interstitial Fibrosis on Myocardial Contractile Function. Circ Cardiovasc Imaging 2018; 11: e007372. DOI: 10.1161/CIRCIMAGING.117.007372
19. Corradi D et al. The ventricular epicardial fat is related to the myocardial mass in normal, тischemic and hypertrophic hearts. Cardiovasc Pathol 2004; 13: 313–6. DOI: 10.1016/j.carpath.2004.08.005
20. Iacobellis G, Ribaudo MC, Zappaterreno A et al. Relation between epicardial adipose tissue and left ventricular mass. Am J Cardiol 2004; 94: 1084–7. DOI: 10.1016/j.amjcard.2004.06.075
21. Mancio J, Azevedo D, Fragao-Marques et al. Meta-Analysis of Relation of Epicardial Adipose Tissue Volume to Left Atrial Dilation and to Left Ventricular Hypertrophy and Functions. Am J Cardiol 2018. pii: S0002-9149(18)32034-4. DOI: 10.1016/j.amjcard.2018.10.020
22. Iacobelis G, Ribaudo MC, Assael F et al. Echocardiographic Epicardial Adipose Tissue Is Related to Anthropometric and Clinical Parameters of Metabolic Syndrome: A New Indicator of Cardiovascular Risk. J Clin Endocrinol Metab 2003; 88 (11): 5163–8. DOI:10.1210/jc.2003-030698
23. Natale F, Tedesco MA, Mocerino R et al. Visceral adiposity and arterial stiffness: echocardiographic epicardial fat thickness reflects, better than waist circumference, carotid arterial stiffness in a large population of hypertensives. Eur J Echocardiography 2009; 10: 549–55. DOI: 10.1093/ejechocard/jep002
24. Roever L, Santos Resende E, Lemos Debs Diniz A et al. Epicardial adipose tissue and carotid artery disease. Protocol for systematic review and meta-analysis. Medicine 2018; 97 (17): e0273. DOI: 10.1097/md.0000000000010273
25. Sacks HS, Fain JN, Cheema P et al. Inflammatory genes in epicardial fat contiguous with coronary atherosclerosis in the metabolic syndrome and type 2 diabetes: changes associated with pioglitazone. Diabetes Care 2011; 34: 730–3. DOI: 10.2337/dc10-2083
26. Distel E, Penot G, Cadoudal T et al. Early induction of a brown-like phenotype by rosiglitazone in the epicardial adipose tissue of fatty Zucker rats. Biochimie 2012; 94: 1660–7. DOI: 10.1016/j.biochi.2012.04.014
27. Iacobellis G, Mohseni M, Bianco SD et al. Liraglutide Causes Large and Rapid Epicardial Fat Reduction. Obesity 2017; 25: 311–6. DOI: 10.1002/oby.21718
28. Morano S, Romagnoli E, Filardi T et al. Short-term effects of glucagon-like peptide 1 (GLP-1) receptor agonists on fat distribution in patients with type2 diabetes mellitus: an ultrasonography study. Acta Diabetol 2015; 52: 727–32. DOI: 10.1007/s00592-014-0710-z
29. Lima-Martinez MM, Paoli M, Rodney M et al. Effect of sitagliptin on epicardial fatthickness in subjects with type 2 diabetes and obesity: a pilotstudy. Endocrine 2016; 51 (3): 448–55. DOI: 10.1007/s12020-015-0710-y
30. Park JH, Park YS, Kim YJ et al. Effects of statins on the epicardial fat thickness in patients with coronary artery stenosis underwent percutaneous coronary intervention: comparison of atorvastatin with simvastatin/ ezetimibe. J Cardiovasc Ultrasound 2010; 18: 121–6. DOI: 10.4250/jcu.2010.18.4.121
31. Iacobellis G, Assael F, Ribaudo MC et al. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res 2003; 11: 304–10. DOI: 10.1038/oby.2003.45
32. Iacobellis G, Willens HJ. Echocardiographic epicardial fat: a review of research and clinical applications. J Am Soc Echocardiogr 2009; 22: 1311–9. DOI: 10.1016/j.echo.2009.10.013
33. Iacobellis G, Singh N, Wharton S, Sharma AM. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity (Silver Spring) 2008; 16 (7): 1693–7. DOI: 10.1038/oby.2008.251
34. Flüchter S, Lindert AS, Vos AM et al. Volumetric assessment of epicardial adipose tissue with cardiovascular magnetic resonance imaging. Obesity 2007; 15: 870–8. DOI: 10.1038/oby.2007.591
________________________________________________
1. Hubert HB, Feinleib M, McNamara PM et al. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation 1983; 67 (5): 968–77.
2. Fox CS, Massaro JM, Hoffmann U et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 2007; 116: 39–48.
3. Eckel N, Li Y, Kuxhaus O et al. Transition from metabolic healthy to unhealthy phenotypes and association with cardiovascular disease risk across BMI categories in 90 257 women (the Nurses' Health Study): 30 year follow-up from a prospective cohort study. Lancet Diabetes Endocrinol 2018. DOI: 10.1016/S2213-8587(18)30137-2
4. Azimova M.O., Blinova N.V., Zhernakova Iu.V., Chazova I.E. Ozhirenie kak prediktor serdechno-sosudistykh zabolevanii: rol' lokal'nykh zhirovykh depo. Sistemnye gipertenzii. 2018; 15 (3): 39–43. DOI: 10.26442/2075-082X_2018.3.39-43 [in Russian]
5. Sun K, Kusminski C, Scherer P. Adipose tissue remodeling and obesity. J Clin Invest 2011; 121 (6): 2094–101. DOI: 10.1172/JCI45887
6. Hajer G, Haeften T, Visseren F. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 2008; 29: 2959–71. DOI:10.1093/eurheartj/ehn387
7. Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med 2005; 2: 536–43. DOI: 10.1038/ncpcardio0319
8. Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J 2007; 153: 907–17. DOI: 10.1016/j.ahj.2007.03.019
9. Rosito GA, Massaro JM, Hoffman U et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: The Framingham Heart Study. Circulation 2008; 117: 605–13. DOI: 10.1161/CIRCULATIONAHA.107.743062
10. Mahabadi AA, Massaro JM, Rosito GA et al. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: The Framingham Heart Study. Eur Heart J 2009; 30: 850–6. DOI:10.1093/eurheartj/ehn573
11. Ding J, Hsu FC, Harris TB et al. The association of pericardial fat with incident coronary heart disease. The Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 2009; 90: 499–504. DOI: 10.3945/ajcn.2008.27358
12. Mazurek T, Zhang LF, Zalewski A et al. Human epicardial adipose tissue is a source of inflammatory markers. Circulation 2003; 108: 2460–6. DOI: 10.1161/01.CIR.0000099542.57313.C5
13. Hirata Y, Tabata M, Kurobe H et al. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue. J Am Coll Cardiol 2011; 58: 248–55. DOI: 10.1016/j.jacc.2011.01.048
14. Hatem SN, Sanders P. Epicardial adipose tissue and atrial fibrillation. Cardiovasc Res 2014; 102: 205–13. DOI:10.1093/cvr/cvu045
15. Chung MK, Martin DO, Sprecher D et al. C-reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation. Circulation 2001; 104: 2886–91.
16. Aviles RJ, Martin DO, Apperson-Hansen C et al. Inflammation as a risk factor for atrial fibrillation. Circulation 2003; 108: 3006–10. DOI: 10.1161/01.CIR.0000103131.70301.4F
17. Mazurek T, Kiliszek M, Kobylecka M et al. Relation of proinflammatory activity of epicardial adipose tissue to the occurrence of atrial fibrillation. Am J Cardiol 2014; 113: 1505–8. DOI: 10.1016/j.amjcard.2014.02.005
18. Arnoldi CT Ng, Strudwick M, van der Geest RJ et al. Impact of Epicardial Adipose Tissue, Left Ventricular Myocardial Fat Content, and Interstitial Fibrosis on Myocardial Contractile Function. Circ Cardiovasc Imaging 2018; 11: e007372. DOI: 10.1161/CIRCIMAGING.117.007372
19. Corradi D et al. The ventricular epicardial fat is related to the myocardial mass in normal, тischemic and hypertrophic hearts. Cardiovasc Pathol 2004; 13: 313–6. DOI: 10.1016/j.carpath.2004.08.005
20. Iacobellis G, Ribaudo MC, Zappaterreno A et al. Relation between epicardial adipose tissue and left ventricular mass. Am J Cardiol 2004; 94: 1084–7. DOI: 10.1016/j.amjcard.2004.06.075
21. Mancio J, Azevedo D, Fragao-Marques et al. Meta-Analysis of Relation of Epicardial Adipose Tissue Volume to Left Atrial Dilation and to Left Ventricular Hypertrophy and Functions. Am J Cardiol 2018. pii: S0002-9149(18)32034-4. DOI: 10.1016/j.amjcard.2018.10.020
22. Iacobelis G, Ribaudo MC, Assael F et al. Echocardiographic Epicardial Adipose Tissue Is Related to Anthropometric and Clinical Parameters of Metabolic Syndrome: A New Indicator of Cardiovascular Risk. J Clin Endocrinol Metab 2003; 88 (11): 5163–8. DOI:10.1210/jc.2003-030698
23. Natale F, Tedesco MA, Mocerino R et al. Visceral adiposity and arterial stiffness: echocardiographic epicardial fat thickness reflects, better than waist circumference, carotid arterial stiffness in a large population of hypertensives. Eur J Echocardiography 2009; 10: 549–55. DOI: 10.1093/ejechocard/jep002
24. Roever L, Santos Resende E, Lemos Debs Diniz A et al. Epicardial adipose tissue and carotid artery disease. Protocol for systematic review and meta-analysis. Medicine 2018; 97 (17): e0273. DOI: 10.1097/md.0000000000010273
25. Sacks HS, Fain JN, Cheema P et al. Inflammatory genes in epicardial fat contiguous with coronary atherosclerosis in the metabolic syndrome and type 2 diabetes: changes associated with pioglitazone. Diabetes Care 2011; 34: 730–3. DOI: 10.2337/dc10-2083
26. Distel E, Penot G, Cadoudal T et al. Early induction of a brown-like phenotype by rosiglitazone in the epicardial adipose tissue of fatty Zucker rats. Biochimie 2012; 94: 1660–7. DOI: 10.1016/j.biochi.2012.04.014
27. Iacobellis G, Mohseni M, Bianco SD et al. Liraglutide Causes Large and Rapid Epicardial Fat Reduction. Obesity 2017; 25: 311–6. DOI: 10.1002/oby.21718
28. Morano S, Romagnoli E, Filardi T et al. Short-term effects of glucagon-like peptide 1 (GLP-1) receptor agonists on fat distribution in patients with type2 diabetes mellitus: an ultrasonography study. Acta Diabetol 2015; 52: 727–32. DOI: 10.1007/s00592-014-0710-z
29. Lima-Martinez MM, Paoli M, Rodney M et al. Effect of sitagliptin on epicardial fatthickness in subjects with type 2 diabetes and obesity: a pilotstudy. Endocrine 2016; 51 (3): 448–55. DOI: 10.1007/s12020-015-0710-y
30. Park JH, Park YS, Kim YJ et al. Effects of statins on the epicardial fat thickness in patients with coronary artery stenosis underwent percutaneous coronary intervention: comparison of atorvastatin with simvastatin/ ezetimibe. J Cardiovasc Ultrasound 2010; 18: 121–6. DOI: 10.4250/jcu.2010.18.4.121
31. Iacobellis G, Assael F, Ribaudo MC et al. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res 2003; 11: 304–10. DOI: 10.1038/oby.2003.45
32. Iacobellis G, Willens HJ. Echocardiographic epicardial fat: a review of research and clinical applications. J Am Soc Echocardiogr 2009; 22: 1311–9. DOI: 10.1016/j.echo.2009.10.013
33. Iacobellis G, Singh N, Wharton S, Sharma AM. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity (Silver Spring) 2008; 16 (7): 1693–7. DOI: 10.1038/oby.2008.251
34. Flüchter S, Lindert AS, Vos AM et al. Volumetric assessment of epicardial adipose tissue with cardiovascular magnetic resonance imaging. Obesity 2007; 15: 870–8. DOI: 10.1038/oby.2007.591
ФГБУ «Национальный медицинский исследовательский центр кардиологии» Минздрава России. 121552, Россия, Москва, ул. 3-я Черепковская, д. 15а *nat-cardio1@yandex.ru
National Medical Research Center for Cardiology of the Ministry of Health of the Russian Federation. 121552, Russian Federation, Moscow, ul. 3-ia Cherepkovskaia, d. 15a *nat-cardio1@yandex.ru