Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Возможности блокатора рецепторов к ангиотензину азилсартана медоксомила и его комбинации с хлорталидоном в снижении сердечно-сосудистого риска у пациентов с ожирением, метаболическим синдромом и сахарным диабетом - Журнал Системные Гипертензии Том 16, №3
Возможности блокатора рецепторов к ангиотензину азилсартана медоксомила и его комбинации с хлорталидоном в снижении сердечно-сосудистого риска у пациентов с ожирением, метаболическим синдромом и сахарным диабетом
Жернакова Ю.В., Чазова И.Е., Блинова Н.В. Возможности блокатора рецепторов к ангиотензину азилсартана медоксомила и его комбинации с хлорталидоном в снижении сердечно-сосудистого риска у пациентов с ожирением, метаболическим синдромом и сахарным диабетом. Системные гипертензии. 2019; 16 (3): 36–42.
DOI: 10.26442/2075082X.2019.3.190467
and its combination with chlortalidone in cardiovascular risk decrease
in patients with obesity, metabolic syndrome and diabetes mellitus. Systemic Hypertension. 2019; 16 (3): 36–42.
DOI: 10.26442/2075082X.2019.3.190467
________________________________________________
and its combination with chlortalidone in cardiovascular risk decrease
in patients with obesity, metabolic syndrome and diabetes mellitus. Systemic Hypertension. 2019; 16 (3): 36–42.
DOI: 10.26442/2075082X.2019.3.190467
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Для лечения артериальной гипертонии все чаще применяются блокаторы рецепторов к ангиотензину (БРА), особенно актуален этот класс препаратов у пациентов с ожирением, метаболическим синдромом и сахарным диабетом. Однако не все БРА могут стать препаратами первого выбора у этой категории пациентов. К антигипертензивным препаратам для больных артериальной гипертонией с метаболическими нарушениями предъявляются особые требования – высокая антигипертензивная эффективность, максимальная продолжительность действия, возможность улучшать чувствительность периферических тканей к инсулину и, соответственно, метаболический профиль. Кроме того, данная категория пациентов нуждается в комбинированной терапии уже на старте лечения. Комбинаций БРА, обладающих всеми этими свойствами, с тиазидоподобными диуретиками крайне мало. Настоящий обзор посвящен возможностям нового БРА азилсартана медоксомила (Эдарби®) и его комбинации с хлорталидоном (Эдарби® Кло) в снижении сердечно-сосудистого риска у пациентов с ожирением, метаболическим синдромом и сахарным диабетом.
Ключевые слова: артериальная гипертония, ожирение, метаболический синдром, сахарный диабет, блокаторы рецепторов к ангиотензину, хлорталидон, антигипертензивная терапия, комбинированная терапия, сердечно-сосудистый риск.
Ключевые слова: артериальная гипертония, ожирение, метаболический синдром, сахарный диабет, блокаторы рецепторов к ангиотензину, хлорталидон, антигипертензивная терапия, комбинированная терапия, сердечно-сосудистый риск.
________________________________________________
Полный текст
Список литературы
1. Emdin CA, Rahimi K, Neal B et al. Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA 2015; 313: 603–15.
2. Ettehad D, Emdin CA, Kiran A et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 2016; 387: 957–67.
3. Forouzanfar MH, Liu P, Roth GA et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. JAMA 2017; 317: 165–82.
4. Lewington S, Clarke R, Qizilbash N et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903–13.
5. NCD Risk Factor Collaboration. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet 2017; 389: 37–55.
6. O’Donnell MJ, Chin SL, Rangarajan S et al. INTERSTROKE Investigators. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet 2016; 388: 761–75.
7. Rapsomaniki E, Timmis A, George J et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet 2014; 383: 1899–911.
8. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension. 1. Overview, meta-analyses, and metaregression analyses of randomized trials. J Hypertens 2014; 32: 2285–95.
9. Tsai WC, Wu HY, Peng YS et al. Association of intensive blood pressure control and kidney disease progression in nondiabetic patients with chronic kidney disease: a systematic review and meta-analysis. JAMA Intern Med 2017; 177: 792–9.
10. Yusuf S, Hawken S, Ounpuu S et al.; INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364: 937–52.
11. Banegas JR, Lopez-Garcia E, Dallongeville J et al. Achievement of treatment goals for primary prevention of cardiovascular disease in clinical practice across Europe: the EURIKA study. Eur Heart J 2011; 32: 2143–52.
12. Chow CK, Teo KK, Rangarajan S et al; PURE Study Investigators. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA 2013; 310: 959–68.
13. Falaschetti E, Mindell J, Knott C, Poulter N. Hypertension management in England: a serial cross-sectional study from 1994 to 2011. Lancet 2014; 383: 1912–9.
14. Tocci G, Rosei EA, Ambrosioni E et al. Blood pressure control in Italy: analysis of clinical data from 2005–2011 surveys on hypertension. J Hypertens 2012; 30: 1065–74.
15. Finucane MM et al. National, regional, and global trends in body mass index since 1980: Systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet Lond Engl 2011; 377 (9765): 557–67.
16. Caleyachetty R et al. Metabolically Healthy Obese and Incident Cardiovascular Disease Events Among 3.5 Million Men and Women. J Am Coll Cardiol 2017; 70 (12): 1429–37.
17. Guh DP, Zhang W, Bansback N et al. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health 2009; 9 (88).
18. Anari R, Amani R, Latifi SM et al. Association of obesity with hypertension and dyslipidemia in type 2 diabetes mellitus subjects. Diabetes Metab Syndr Clin Res. Rev 2017; 11 (1): 37–41.
19. Wilson PWF, D’Agostino RB, Sullivan L et al. Overweight and Obesity as Determinants of Cardiovascular Risk: The Framingham Experience. Arch Intern Med 2002; 162 (16): 1867–72.
20. Mancusi C et al. Differential effect of obesity on prevalence of cardiac and carotid target organ damage in hypertension (the Campania Salute Network). Int J Cardiol 2017; 244: 260–4.
21. Ohnishi H et al. Incidence of Hypertension in Individuals with Abdominal Obesity in a Rural Japanese Population: The Tanno and Sobetsu Study. Hypertens Res 2008; 31 (7): 1385–90.
22. Jahangir E, Schutter ADe, Lavie CJ. The relationship between obesity and coronary artery disease. Transl Res 2014; 164 (4): 336–44.
23. Despres JP, Moorjani S, Lupien PJ et al. Regional distribution of body fat, plasma insulin, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 1990; 10: 497–511.
24. Fox CS, Massaro JM, Hoffmann U et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 2007; 116: 39–48.
25. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 1998; 317: 703–13.
26. Tatti P, Pahor M, Byington RP et al. Outcome results of the Fosinopril Versus Amlodipine Cardiovascular Events Randomized Trial (FACET) in patients with hypertension and NIDDM. Diabetes Care 1998; 21: 597–603.
27. Estacio RO, JeffersBW, Hiatt WR et al. The effect of nisoldipine as compared with enalapril on cardiovascular outcomes in patients with non-insulin-dependent diabetes and hypertension. N Engl J Med 1998; 338: 645–52.
28. Niskanen L, Hedner T, Hansson L et al. Reduced cardiovascular morbidity and mortality in hypertensive diabetic patients on first-line therapy with an ACE inhibitor compared with a diuretic/beta-blocker-based treatment regimen: a subanalysis of the Captopril Prevention Project. Diabetes Care 2001; 24: 2091–6.
29. Lindholm LH, Hansson L, Ekbom T et al. Comparison of antihypertensive treatments in preventing cardiovascular events in elderly diabetic patients: results from the Swedish Trial in Old Patients with Hypertension-2. STOP Hypertension-2 Study Group. J Hypertens 2000; 18: 1671–5.
30. Thomopoulosa C, Parati G, Zanchetti A. Effects of blood-pressure-lowering treatment on outcome incidence in hypertension: Should blood pressure management differ in hypertensive patients with and without diabetes mellitus? Overview and meta-analyses of randomized trials. J Hypertension 2017, 35: 922–44.
31. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension. Head-to-head comparisons of various classes of antihypertensive drugs. Overview and meta-analyses. J Hypertens 2015; 33: 1321–41.
32. Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet 2007; 369 (9557): 201–7.
33. Edarbi® (azilsartan medoxomil) prescribing information. Takeda Pharmaceuticals America, Inc., 2012. Data on file. Takeda Pharmaceutical Company Limited.
34. Bönner G et al. Comparison of antihypertensive efficacy of the new angiotensin receptor blocker azilsartan medoxomil with ramipril. J Hypertens 2010; 28: e283.
35. White WB et al. Effects of the angiotensin receptor blocker azilsartan medoxomil versus olmesartan and valsartan on ambulatory and clinic blood pressure in patients with stages 1 and 2 hypertension. Hypertension 2011; 57: 413–20.
36. Kusumoto K et al. Antihypertensive, insulin-sensitising and renoprotective effects of a novel, potent and long-acting angiotensin II type 1 receptor blocker, azilsartan medoxomil, in rat and dog models. Eur J Pharmacology 2011; 669: 84–93.
37. Iwai M. TAK-536, a new receptor blocker, improved glucose intolerans and adipocyt differentiation. AJH 2007; 20: 579–86.
38. Недогода С.В., Чумачек Е.В., Цома В.В. и др. Возможности азилсартана в коррекции инсулинорезистентности и уровня адипокинов при артериальной гипертензии в сравнении с другими сартанами. Рос. кардиол. журн. 2019; 24 (1): 1–9.
[Nedogoda S.V., Chumachek E.V., Tsoma V.V. et al. Vozmozhnosti azilsartana v korrektsii insulinorezistentnosti i urovnia adipokinov pri arterial'noi gipertenzii v sravnenii s drugimi sartanami. Ros. kardiol. zhurn. 2019; 24 (1): 1–9. (in Russian).]
39. Чазова И.Е., Жернакова Ю.В., Блинова Н.В., Рогоза А.Н. Новый блокатор рецепторов к ангиотензину II Эдарби®, как часть патогенетического лечения артериальной гипертонии у больных с метаболическими нарушениями. Системные гипертензии. 2017; 14 (3): 28–35. DOI: 10.26442/2075-082X_14.3.28-35
[Chazova I.E., Zhernakova Yu.V., Blinova N.V., Rogoza A.N. Novyi blokator retseptorov k angiotenzinu II Edarbi®, kak chast' patogeneticheskogo lecheniia arterial'noi gipertonii u bol'nykh s metabolicheskimi narusheniiami. Systemic Hypertension. 2017; 14 (3): 28–35. DOI: 10.26442/2075-082X_14.3.28-35 (in Russian).]
40. Williams B, Mancia G, Spiering W et al; ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018; 39 (33): 3021–104.
41. Чазова И.Е., Жернакова Ю.В. от имени экспертов. Клинические рекомендации. Диагностика и лечение артериальной гипертонии. Системные гипертензии. 2019; 16 (1): 6–31.
[Chazova I.E., Zhernakova Yu.V. ot imeni ekspertov. Klinicheskie rekomendatsii. Diagnostika i lechenie arterial'noi gipertonii. Systemic Hypertension. 2019; 16 (1): 6–31. DOI: 10.26442/2075082X.2019.1.190179 (in Russian).]
42. Gradman AH, Parisé H, Lefebvre P et al. Initial combination therapy reduces the risk of cardiovascular events in hypertensive patients: a matched cohort study. Hypertension 2013; 61: 309–18.
43. Arnett DK, Blumenthal RS, Albert MA et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019. DOI: 10.1161/CIR.0000000000000678
44. ALLHAT Officers and Coordinators; ALLHAT Collaborative Research Group. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 2002; 288 (23): 2981–97.
45. Mortality after 10 1/2 years for hypertensive participants in the Multiple Risk Factor Intervention Trial. Circulation 1990; 82 (5): 1616–28.
46. Кurtz TW. Chlorthalidone: don’t call it “thiazide-like” anymore. Hypertension 2010; 56: 335–7.
47. Carter BL, Ernst ME, Cohen JD. Hydrochlorothiazide versus chlorthalidone: evidence supporting their interchangeability. Hypertension 2004; 43: 4–9.
48. George L. Bakris, MD, Domenic Sica et al. Antihypertensive Efficacy of Hydrochlorothiazide vs Chlorthalidone Combined with Azilsartan Medoxomil. Am J Med 2012; 125 (12): 1229.e1-1229.e10
49. Cushman WC, Bakris GL et al. Azilsartan Medoxomil Plus Chlorthalidone Reduces Blood Pressure More Effectively Than Olmesartan Plus Hydrochlorothiazide in Stage 2 Systolic Hypertension. Hypertension 2012; 60: 310–8.
2. Ettehad D, Emdin CA, Kiran A et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 2016; 387: 957–67.
3. Forouzanfar MH, Liu P, Roth GA et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. JAMA 2017; 317: 165–82.
4. Lewington S, Clarke R, Qizilbash N et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903–13.
5. NCD Risk Factor Collaboration. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet 2017; 389: 37–55.
6. O’Donnell MJ, Chin SL, Rangarajan S et al. INTERSTROKE Investigators. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet 2016; 388: 761–75.
7. Rapsomaniki E, Timmis A, George J et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet 2014; 383: 1899–911.
8. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension. 1. Overview, meta-analyses, and metaregression analyses of randomized trials. J Hypertens 2014; 32: 2285–95.
9. Tsai WC, Wu HY, Peng YS et al. Association of intensive blood pressure control and kidney disease progression in nondiabetic patients with chronic kidney disease: a systematic review and meta-analysis. JAMA Intern Med 2017; 177: 792–9.
10. Yusuf S, Hawken S, Ounpuu S et al.; INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364: 937–52.
11. Banegas JR, Lopez-Garcia E, Dallongeville J et al. Achievement of treatment goals for primary prevention of cardiovascular disease in clinical practice across Europe: the EURIKA study. Eur Heart J 2011; 32: 2143–52.
12. Chow CK, Teo KK, Rangarajan S et al; PURE Study Investigators. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA 2013; 310: 959–68.
13. Falaschetti E, Mindell J, Knott C, Poulter N. Hypertension management in England: a serial cross-sectional study from 1994 to 2011. Lancet 2014; 383: 1912–9.
14. Tocci G, Rosei EA, Ambrosioni E et al. Blood pressure control in Italy: analysis of clinical data from 2005–2011 surveys on hypertension. J Hypertens 2012; 30: 1065–74.
15. Finucane MM et al. National, regional, and global trends in body mass index since 1980: Systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet Lond Engl 2011; 377 (9765): 557–67.
16. Caleyachetty R et al. Metabolically Healthy Obese and Incident Cardiovascular Disease Events Among 3.5 Million Men and Women. J Am Coll Cardiol 2017; 70 (12): 1429–37.
17. Guh DP, Zhang W, Bansback N et al. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health 2009; 9 (88).
18. Anari R, Amani R, Latifi SM et al. Association of obesity with hypertension and dyslipidemia in type 2 diabetes mellitus subjects. Diabetes Metab Syndr Clin Res. Rev 2017; 11 (1): 37–41.
19. Wilson PWF, D’Agostino RB, Sullivan L et al. Overweight and Obesity as Determinants of Cardiovascular Risk: The Framingham Experience. Arch Intern Med 2002; 162 (16): 1867–72.
20. Mancusi C et al. Differential effect of obesity on prevalence of cardiac and carotid target organ damage in hypertension (the Campania Salute Network). Int J Cardiol 2017; 244: 260–4.
21. Ohnishi H et al. Incidence of Hypertension in Individuals with Abdominal Obesity in a Rural Japanese Population: The Tanno and Sobetsu Study. Hypertens Res 2008; 31 (7): 1385–90.
22. Jahangir E, Schutter ADe, Lavie CJ. The relationship between obesity and coronary artery disease. Transl Res 2014; 164 (4): 336–44.
23. Despres JP, Moorjani S, Lupien PJ et al. Regional distribution of body fat, plasma insulin, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 1990; 10: 497–511.
24. Fox CS, Massaro JM, Hoffmann U et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 2007; 116: 39–48.
25. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 1998; 317: 703–13.
26. Tatti P, Pahor M, Byington RP et al. Outcome results of the Fosinopril Versus Amlodipine Cardiovascular Events Randomized Trial (FACET) in patients with hypertension and NIDDM. Diabetes Care 1998; 21: 597–603.
27. Estacio RO, JeffersBW, Hiatt WR et al. The effect of nisoldipine as compared with enalapril on cardiovascular outcomes in patients with non-insulin-dependent diabetes and hypertension. N Engl J Med 1998; 338: 645–52.
28. Niskanen L, Hedner T, Hansson L et al. Reduced cardiovascular morbidity and mortality in hypertensive diabetic patients on first-line therapy with an ACE inhibitor compared with a diuretic/beta-blocker-based treatment regimen: a subanalysis of the Captopril Prevention Project. Diabetes Care 2001; 24: 2091–6.
29. Lindholm LH, Hansson L, Ekbom T et al. Comparison of antihypertensive treatments in preventing cardiovascular events in elderly diabetic patients: results from the Swedish Trial in Old Patients with Hypertension-2. STOP Hypertension-2 Study Group. J Hypertens 2000; 18: 1671–5.
30. Thomopoulosa C, Parati G, Zanchetti A. Effects of blood-pressure-lowering treatment on outcome incidence in hypertension: Should blood pressure management differ in hypertensive patients with and without diabetes mellitus? Overview and meta-analyses of randomized trials. J Hypertension 2017, 35: 922–44.
31. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension. Head-to-head comparisons of various classes of antihypertensive drugs. Overview and meta-analyses. J Hypertens 2015; 33: 1321–41.
32. Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet 2007; 369 (9557): 201–7.
33. Edarbi® (azilsartan medoxomil) prescribing information. Takeda Pharmaceuticals America, Inc., 2012. Data on file. Takeda Pharmaceutical Company Limited.
34. Bönner G et al. Comparison of antihypertensive efficacy of the new angiotensin receptor blocker azilsartan medoxomil with ramipril. J Hypertens 2010; 28: e283.
35. White WB et al. Effects of the angiotensin receptor blocker azilsartan medoxomil versus olmesartan and valsartan on ambulatory and clinic blood pressure in patients with stages 1 and 2 hypertension. Hypertension 2011; 57: 413–20.
36. Kusumoto K et al. Antihypertensive, insulin-sensitising and renoprotective effects of a novel, potent and long-acting angiotensin II type 1 receptor blocker, azilsartan medoxomil, in rat and dog models. Eur J Pharmacology 2011; 669: 84–93.
37. Iwai M. TAK-536, a new receptor blocker, improved glucose intolerans and adipocyt differentiation. AJH 2007; 20: 579–86.
38. Nedogoda S.V., Chumachek E.V., Tsoma V.V. et al. Vozmozhnosti azilsartana v korrektsii insulinorezistentnosti i urovnia adipokinov pri arterial'noi gipertenzii v sravnenii s drugimi sartanami. Ros. kardiol. zhurn. 2019; 24 (1): 1–9. (in Russian).
39. Chazova I.E., Zhernakova Yu.V., Blinova N.V., Rogoza A.N. Novyi blokator retseptorov k angiotenzinu II Edarbi®, kak chast' patogeneticheskogo lecheniia arterial'noi gipertonii u bol'nykh s metabolicheskimi narusheniiami. Systemic Hypertension. 2017; 14 (3): 28–35. DOI: 10.26442/2075-082X_14.3.28-35 (in Russian).
40. Williams B, Mancia G, Spiering W et al; ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018; 39 (33): 3021–104.
41. Chazova I.E., Zhernakova Yu.V. ot imeni ekspertov. Klinicheskie rekomendatsii. Diagnostika i lechenie arterial'noi gipertonii. Systemic Hypertension. 2019; 16 (1): 6–31. DOI: 10.26442/2075082X.2019.1.190179 (in Russian).
42. Gradman AH, Parisé H, Lefebvre P et al. Initial combination therapy reduces the risk of cardiovascular events in hypertensive patients: a matched cohort study. Hypertension 2013; 61: 309–18.
43. Arnett DK, Blumenthal RS, Albert MA et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019. DOI: 10.1161/CIR.0000000000000678
44. ALLHAT Officers and Coordinators; ALLHAT Collaborative Research Group. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 2002; 288 (23): 2981–97.
45. Mortality after 10 1/2 years for hypertensive participants in the Multiple Risk Factor Intervention Trial. Circulation 1990; 82 (5): 1616–28.
46. Кurtz TW. Chlorthalidone: don’t call it “thiazide-like” anymore. Hypertension 2010; 56: 335–7.
47. Carter BL, Ernst ME, Cohen JD. Hydrochlorothiazide versus chlorthalidone: evidence supporting their interchangeability. Hypertension 2004; 43: 4–9.
48. George L. Bakris, MD, Domenic Sica et al. Antihypertensive Efficacy of Hydrochlorothiazide vs Chlorthalidone Combined with Azilsartan Medoxomil. Am J Med 2012; 125 (12): 1229.e1-1229.e10
49. Cushman WC, Bakris GL et al. Azilsartan Medoxomil Plus Chlorthalidone Reduces Blood Pressure More Effectively Than Olmesartan Plus Hydrochlorothiazide in Stage 2 Systolic Hypertension. Hypertension 2012; 60: 310–8.
2. Ettehad D, Emdin CA, Kiran A et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 2016; 387: 957–67.
3. Forouzanfar MH, Liu P, Roth GA et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. JAMA 2017; 317: 165–82.
4. Lewington S, Clarke R, Qizilbash N et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903–13.
5. NCD Risk Factor Collaboration. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet 2017; 389: 37–55.
6. O’Donnell MJ, Chin SL, Rangarajan S et al. INTERSTROKE Investigators. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet 2016; 388: 761–75.
7. Rapsomaniki E, Timmis A, George J et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet 2014; 383: 1899–911.
8. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension. 1. Overview, meta-analyses, and metaregression analyses of randomized trials. J Hypertens 2014; 32: 2285–95.
9. Tsai WC, Wu HY, Peng YS et al. Association of intensive blood pressure control and kidney disease progression in nondiabetic patients with chronic kidney disease: a systematic review and meta-analysis. JAMA Intern Med 2017; 177: 792–9.
10. Yusuf S, Hawken S, Ounpuu S et al.; INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364: 937–52.
11. Banegas JR, Lopez-Garcia E, Dallongeville J et al. Achievement of treatment goals for primary prevention of cardiovascular disease in clinical practice across Europe: the EURIKA study. Eur Heart J 2011; 32: 2143–52.
12. Chow CK, Teo KK, Rangarajan S et al; PURE Study Investigators. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA 2013; 310: 959–68.
13. Falaschetti E, Mindell J, Knott C, Poulter N. Hypertension management in England: a serial cross-sectional study from 1994 to 2011. Lancet 2014; 383: 1912–9.
14. Tocci G, Rosei EA, Ambrosioni E et al. Blood pressure control in Italy: analysis of clinical data from 2005–2011 surveys on hypertension. J Hypertens 2012; 30: 1065–74.
15. Finucane MM et al. National, regional, and global trends in body mass index since 1980: Systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet Lond Engl 2011; 377 (9765): 557–67.
16. Caleyachetty R et al. Metabolically Healthy Obese and Incident Cardiovascular Disease Events Among 3.5 Million Men and Women. J Am Coll Cardiol 2017; 70 (12): 1429–37.
17. Guh DP, Zhang W, Bansback N et al. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health 2009; 9 (88).
18. Anari R, Amani R, Latifi SM et al. Association of obesity with hypertension and dyslipidemia in type 2 diabetes mellitus subjects. Diabetes Metab Syndr Clin Res. Rev 2017; 11 (1): 37–41.
19. Wilson PWF, D’Agostino RB, Sullivan L et al. Overweight and Obesity as Determinants of Cardiovascular Risk: The Framingham Experience. Arch Intern Med 2002; 162 (16): 1867–72.
20. Mancusi C et al. Differential effect of obesity on prevalence of cardiac and carotid target organ damage in hypertension (the Campania Salute Network). Int J Cardiol 2017; 244: 260–4.
21. Ohnishi H et al. Incidence of Hypertension in Individuals with Abdominal Obesity in a Rural Japanese Population: The Tanno and Sobetsu Study. Hypertens Res 2008; 31 (7): 1385–90.
22. Jahangir E, Schutter ADe, Lavie CJ. The relationship between obesity and coronary artery disease. Transl Res 2014; 164 (4): 336–44.
23. Despres JP, Moorjani S, Lupien PJ et al. Regional distribution of body fat, plasma insulin, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 1990; 10: 497–511.
24. Fox CS, Massaro JM, Hoffmann U et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 2007; 116: 39–48.
25. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 1998; 317: 703–13.
26. Tatti P, Pahor M, Byington RP et al. Outcome results of the Fosinopril Versus Amlodipine Cardiovascular Events Randomized Trial (FACET) in patients with hypertension and NIDDM. Diabetes Care 1998; 21: 597–603.
27. Estacio RO, JeffersBW, Hiatt WR et al. The effect of nisoldipine as compared with enalapril on cardiovascular outcomes in patients with non-insulin-dependent diabetes and hypertension. N Engl J Med 1998; 338: 645–52.
28. Niskanen L, Hedner T, Hansson L et al. Reduced cardiovascular morbidity and mortality in hypertensive diabetic patients on first-line therapy with an ACE inhibitor compared with a diuretic/beta-blocker-based treatment regimen: a subanalysis of the Captopril Prevention Project. Diabetes Care 2001; 24: 2091–6.
29. Lindholm LH, Hansson L, Ekbom T et al. Comparison of antihypertensive treatments in preventing cardiovascular events in elderly diabetic patients: results from the Swedish Trial in Old Patients with Hypertension-2. STOP Hypertension-2 Study Group. J Hypertens 2000; 18: 1671–5.
30. Thomopoulosa C, Parati G, Zanchetti A. Effects of blood-pressure-lowering treatment on outcome incidence in hypertension: Should blood pressure management differ in hypertensive patients with and without diabetes mellitus? Overview and meta-analyses of randomized trials. J Hypertension 2017, 35: 922–44.
31. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension. Head-to-head comparisons of various classes of antihypertensive drugs. Overview and meta-analyses. J Hypertens 2015; 33: 1321–41.
32. Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet 2007; 369 (9557): 201–7.
33. Edarbi® (azilsartan medoxomil) prescribing information. Takeda Pharmaceuticals America, Inc., 2012. Data on file. Takeda Pharmaceutical Company Limited.
34. Bönner G et al. Comparison of antihypertensive efficacy of the new angiotensin receptor blocker azilsartan medoxomil with ramipril. J Hypertens 2010; 28: e283.
35. White WB et al. Effects of the angiotensin receptor blocker azilsartan medoxomil versus olmesartan and valsartan on ambulatory and clinic blood pressure in patients with stages 1 and 2 hypertension. Hypertension 2011; 57: 413–20.
36. Kusumoto K et al. Antihypertensive, insulin-sensitising and renoprotective effects of a novel, potent and long-acting angiotensin II type 1 receptor blocker, azilsartan medoxomil, in rat and dog models. Eur J Pharmacology 2011; 669: 84–93.
37. Iwai M. TAK-536, a new receptor blocker, improved glucose intolerans and adipocyt differentiation. AJH 2007; 20: 579–86.
38. Недогода С.В., Чумачек Е.В., Цома В.В. и др. Возможности азилсартана в коррекции инсулинорезистентности и уровня адипокинов при артериальной гипертензии в сравнении с другими сартанами. Рос. кардиол. журн. 2019; 24 (1): 1–9.
[Nedogoda S.V., Chumachek E.V., Tsoma V.V. et al. Vozmozhnosti azilsartana v korrektsii insulinorezistentnosti i urovnia adipokinov pri arterial'noi gipertenzii v sravnenii s drugimi sartanami. Ros. kardiol. zhurn. 2019; 24 (1): 1–9. (in Russian).]
39. Чазова И.Е., Жернакова Ю.В., Блинова Н.В., Рогоза А.Н. Новый блокатор рецепторов к ангиотензину II Эдарби®, как часть патогенетического лечения артериальной гипертонии у больных с метаболическими нарушениями. Системные гипертензии. 2017; 14 (3): 28–35. DOI: 10.26442/2075-082X_14.3.28-35
[Chazova I.E., Zhernakova Yu.V., Blinova N.V., Rogoza A.N. Novyi blokator retseptorov k angiotenzinu II Edarbi®, kak chast' patogeneticheskogo lecheniia arterial'noi gipertonii u bol'nykh s metabolicheskimi narusheniiami. Systemic Hypertension. 2017; 14 (3): 28–35. DOI: 10.26442/2075-082X_14.3.28-35 (in Russian).]
40. Williams B, Mancia G, Spiering W et al; ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018; 39 (33): 3021–104.
41. Чазова И.Е., Жернакова Ю.В. от имени экспертов. Клинические рекомендации. Диагностика и лечение артериальной гипертонии. Системные гипертензии. 2019; 16 (1): 6–31.
[Chazova I.E., Zhernakova Yu.V. ot imeni ekspertov. Klinicheskie rekomendatsii. Diagnostika i lechenie arterial'noi gipertonii. Systemic Hypertension. 2019; 16 (1): 6–31. DOI: 10.26442/2075082X.2019.1.190179 (in Russian).]
42. Gradman AH, Parisé H, Lefebvre P et al. Initial combination therapy reduces the risk of cardiovascular events in hypertensive patients: a matched cohort study. Hypertension 2013; 61: 309–18.
43. Arnett DK, Blumenthal RS, Albert MA et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019. DOI: 10.1161/CIR.0000000000000678
44. ALLHAT Officers and Coordinators; ALLHAT Collaborative Research Group. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 2002; 288 (23): 2981–97.
45. Mortality after 10 1/2 years for hypertensive participants in the Multiple Risk Factor Intervention Trial. Circulation 1990; 82 (5): 1616–28.
46. Кurtz TW. Chlorthalidone: don’t call it “thiazide-like” anymore. Hypertension 2010; 56: 335–7.
47. Carter BL, Ernst ME, Cohen JD. Hydrochlorothiazide versus chlorthalidone: evidence supporting their interchangeability. Hypertension 2004; 43: 4–9.
48. George L. Bakris, MD, Domenic Sica et al. Antihypertensive Efficacy of Hydrochlorothiazide vs Chlorthalidone Combined with Azilsartan Medoxomil. Am J Med 2012; 125 (12): 1229.e1-1229.e10
49. Cushman WC, Bakris GL et al. Azilsartan Medoxomil Plus Chlorthalidone Reduces Blood Pressure More Effectively Than Olmesartan Plus Hydrochlorothiazide in Stage 2 Systolic Hypertension. Hypertension 2012; 60: 310–8.
________________________________________________
2. Ettehad D, Emdin CA, Kiran A et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 2016; 387: 957–67.
3. Forouzanfar MH, Liu P, Roth GA et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. JAMA 2017; 317: 165–82.
4. Lewington S, Clarke R, Qizilbash N et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903–13.
5. NCD Risk Factor Collaboration. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet 2017; 389: 37–55.
6. O’Donnell MJ, Chin SL, Rangarajan S et al. INTERSTROKE Investigators. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet 2016; 388: 761–75.
7. Rapsomaniki E, Timmis A, George J et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet 2014; 383: 1899–911.
8. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension. 1. Overview, meta-analyses, and metaregression analyses of randomized trials. J Hypertens 2014; 32: 2285–95.
9. Tsai WC, Wu HY, Peng YS et al. Association of intensive blood pressure control and kidney disease progression in nondiabetic patients with chronic kidney disease: a systematic review and meta-analysis. JAMA Intern Med 2017; 177: 792–9.
10. Yusuf S, Hawken S, Ounpuu S et al.; INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364: 937–52.
11. Banegas JR, Lopez-Garcia E, Dallongeville J et al. Achievement of treatment goals for primary prevention of cardiovascular disease in clinical practice across Europe: the EURIKA study. Eur Heart J 2011; 32: 2143–52.
12. Chow CK, Teo KK, Rangarajan S et al; PURE Study Investigators. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA 2013; 310: 959–68.
13. Falaschetti E, Mindell J, Knott C, Poulter N. Hypertension management in England: a serial cross-sectional study from 1994 to 2011. Lancet 2014; 383: 1912–9.
14. Tocci G, Rosei EA, Ambrosioni E et al. Blood pressure control in Italy: analysis of clinical data from 2005–2011 surveys on hypertension. J Hypertens 2012; 30: 1065–74.
15. Finucane MM et al. National, regional, and global trends in body mass index since 1980: Systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet Lond Engl 2011; 377 (9765): 557–67.
16. Caleyachetty R et al. Metabolically Healthy Obese and Incident Cardiovascular Disease Events Among 3.5 Million Men and Women. J Am Coll Cardiol 2017; 70 (12): 1429–37.
17. Guh DP, Zhang W, Bansback N et al. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health 2009; 9 (88).
18. Anari R, Amani R, Latifi SM et al. Association of obesity with hypertension and dyslipidemia in type 2 diabetes mellitus subjects. Diabetes Metab Syndr Clin Res. Rev 2017; 11 (1): 37–41.
19. Wilson PWF, D’Agostino RB, Sullivan L et al. Overweight and Obesity as Determinants of Cardiovascular Risk: The Framingham Experience. Arch Intern Med 2002; 162 (16): 1867–72.
20. Mancusi C et al. Differential effect of obesity on prevalence of cardiac and carotid target organ damage in hypertension (the Campania Salute Network). Int J Cardiol 2017; 244: 260–4.
21. Ohnishi H et al. Incidence of Hypertension in Individuals with Abdominal Obesity in a Rural Japanese Population: The Tanno and Sobetsu Study. Hypertens Res 2008; 31 (7): 1385–90.
22. Jahangir E, Schutter ADe, Lavie CJ. The relationship between obesity and coronary artery disease. Transl Res 2014; 164 (4): 336–44.
23. Despres JP, Moorjani S, Lupien PJ et al. Regional distribution of body fat, plasma insulin, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 1990; 10: 497–511.
24. Fox CS, Massaro JM, Hoffmann U et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 2007; 116: 39–48.
25. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 1998; 317: 703–13.
26. Tatti P, Pahor M, Byington RP et al. Outcome results of the Fosinopril Versus Amlodipine Cardiovascular Events Randomized Trial (FACET) in patients with hypertension and NIDDM. Diabetes Care 1998; 21: 597–603.
27. Estacio RO, JeffersBW, Hiatt WR et al. The effect of nisoldipine as compared with enalapril on cardiovascular outcomes in patients with non-insulin-dependent diabetes and hypertension. N Engl J Med 1998; 338: 645–52.
28. Niskanen L, Hedner T, Hansson L et al. Reduced cardiovascular morbidity and mortality in hypertensive diabetic patients on first-line therapy with an ACE inhibitor compared with a diuretic/beta-blocker-based treatment regimen: a subanalysis of the Captopril Prevention Project. Diabetes Care 2001; 24: 2091–6.
29. Lindholm LH, Hansson L, Ekbom T et al. Comparison of antihypertensive treatments in preventing cardiovascular events in elderly diabetic patients: results from the Swedish Trial in Old Patients with Hypertension-2. STOP Hypertension-2 Study Group. J Hypertens 2000; 18: 1671–5.
30. Thomopoulosa C, Parati G, Zanchetti A. Effects of blood-pressure-lowering treatment on outcome incidence in hypertension: Should blood pressure management differ in hypertensive patients with and without diabetes mellitus? Overview and meta-analyses of randomized trials. J Hypertension 2017, 35: 922–44.
31. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension. Head-to-head comparisons of various classes of antihypertensive drugs. Overview and meta-analyses. J Hypertens 2015; 33: 1321–41.
32. Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet 2007; 369 (9557): 201–7.
33. Edarbi® (azilsartan medoxomil) prescribing information. Takeda Pharmaceuticals America, Inc., 2012. Data on file. Takeda Pharmaceutical Company Limited.
34. Bönner G et al. Comparison of antihypertensive efficacy of the new angiotensin receptor blocker azilsartan medoxomil with ramipril. J Hypertens 2010; 28: e283.
35. White WB et al. Effects of the angiotensin receptor blocker azilsartan medoxomil versus olmesartan and valsartan on ambulatory and clinic blood pressure in patients with stages 1 and 2 hypertension. Hypertension 2011; 57: 413–20.
36. Kusumoto K et al. Antihypertensive, insulin-sensitising and renoprotective effects of a novel, potent and long-acting angiotensin II type 1 receptor blocker, azilsartan medoxomil, in rat and dog models. Eur J Pharmacology 2011; 669: 84–93.
37. Iwai M. TAK-536, a new receptor blocker, improved glucose intolerans and adipocyt differentiation. AJH 2007; 20: 579–86.
38. Nedogoda S.V., Chumachek E.V., Tsoma V.V. et al. Vozmozhnosti azilsartana v korrektsii insulinorezistentnosti i urovnia adipokinov pri arterial'noi gipertenzii v sravnenii s drugimi sartanami. Ros. kardiol. zhurn. 2019; 24 (1): 1–9. (in Russian).
39. Chazova I.E., Zhernakova Yu.V., Blinova N.V., Rogoza A.N. Novyi blokator retseptorov k angiotenzinu II Edarbi®, kak chast' patogeneticheskogo lecheniia arterial'noi gipertonii u bol'nykh s metabolicheskimi narusheniiami. Systemic Hypertension. 2017; 14 (3): 28–35. DOI: 10.26442/2075-082X_14.3.28-35 (in Russian).
40. Williams B, Mancia G, Spiering W et al; ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018; 39 (33): 3021–104.
41. Chazova I.E., Zhernakova Yu.V. ot imeni ekspertov. Klinicheskie rekomendatsii. Diagnostika i lechenie arterial'noi gipertonii. Systemic Hypertension. 2019; 16 (1): 6–31. DOI: 10.26442/2075082X.2019.1.190179 (in Russian).
42. Gradman AH, Parisé H, Lefebvre P et al. Initial combination therapy reduces the risk of cardiovascular events in hypertensive patients: a matched cohort study. Hypertension 2013; 61: 309–18.
43. Arnett DK, Blumenthal RS, Albert MA et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019. DOI: 10.1161/CIR.0000000000000678
44. ALLHAT Officers and Coordinators; ALLHAT Collaborative Research Group. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 2002; 288 (23): 2981–97.
45. Mortality after 10 1/2 years for hypertensive participants in the Multiple Risk Factor Intervention Trial. Circulation 1990; 82 (5): 1616–28.
46. Кurtz TW. Chlorthalidone: don’t call it “thiazide-like” anymore. Hypertension 2010; 56: 335–7.
47. Carter BL, Ernst ME, Cohen JD. Hydrochlorothiazide versus chlorthalidone: evidence supporting their interchangeability. Hypertension 2004; 43: 4–9.
48. George L. Bakris, MD, Domenic Sica et al. Antihypertensive Efficacy of Hydrochlorothiazide vs Chlorthalidone Combined with Azilsartan Medoxomil. Am J Med 2012; 125 (12): 1229.e1-1229.e10
49. Cushman WC, Bakris GL et al. Azilsartan Medoxomil Plus Chlorthalidone Reduces Blood Pressure More Effectively Than Olmesartan Plus Hydrochlorothiazide in Stage 2 Systolic Hypertension. Hypertension 2012; 60: 310–8.
Авторы
Ю.В. Жернакова*, И.Е. Чазова, Н.В. Блинова
ФГБУ «Национальный медицинский исследовательский центр кардиологии» Минздрава России, Москва, Россия
*juli001@mail.ru
National Medical Research Center for Cardiology, Moscow, Russia
*juli001@mail.ru
ФГБУ «Национальный медицинский исследовательский центр кардиологии» Минздрава России, Москва, Россия
*juli001@mail.ru
________________________________________________
National Medical Research Center for Cardiology, Moscow, Russia
*juli001@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
