Состояние сосудистой стенки и его связь с периваскулярной жировой тканью и другими жировыми депо у пациентов молодого возраста с абдоминальным ожирением
Состояние сосудистой стенки и его связь с периваскулярной жировой тканью и другими жировыми депо у пациентов молодого возраста с абдоминальным ожирением
Железнова Е.А., Жернакова Ю.В., Погорелова О.А. и др. Состояние сосудистой стенки и его связь с периваскулярной жировой тканью и другими жировыми депо у пациентов молодого возраста с абдоминальным ожирением. Системные гипертензии. 2019; 16 (4): 80–86. DOI: 10.26442/2075082X.2019.4.190742
________________________________________________
Zheleznova E.A., Zhernakova Ju.V., Pogorelova O.A. et al. Vascular wall status and its link with perivascular adipose tissue and other fat depots in young patients with abdominal obesity. Systemic Hypertension. 2019; 16 (4): 80–86.
DOI: 10.26442/2075082X.2019.4.190742
Состояние сосудистой стенки и его связь с периваскулярной жировой тканью и другими жировыми депо у пациентов молодого возраста с абдоминальным ожирением
Железнова Е.А., Жернакова Ю.В., Погорелова О.А. и др. Состояние сосудистой стенки и его связь с периваскулярной жировой тканью и другими жировыми депо у пациентов молодого возраста с абдоминальным ожирением. Системные гипертензии. 2019; 16 (4): 80–86. DOI: 10.26442/2075082X.2019.4.190742
________________________________________________
Zheleznova E.A., Zhernakova Ju.V., Pogorelova O.A. et al. Vascular wall status and its link with perivascular adipose tissue and other fat depots in young patients with abdominal obesity. Systemic Hypertension. 2019; 16 (4): 80–86.
DOI: 10.26442/2075082X.2019.4.190742
Цель. Оценить толщину комплекса интима–медиа (ТИМ) общей сонной артерии (ОСА) и наличие атеросклеротических бляшек (АСБ) у лиц молодого возраста с абдоминальным ожирением без метаболического синдрома и с ним, связь жировых депо (периваскулярного, висцерального, подкожного, эпикардиального) с параметром ТИМ ОСА. Материалы и методы. 145 человек в возрасте 18–45 лет. Для анализа были сформированы 3 группы: 1-я (n=18) – здоровые добровольцы (контрольная группа), 2-я (n=48) – лица с абдоминальным ожирением и наличием не более чем одного дополнительного фактора риска (метаболически здоровые), 3-я (n=79) – лица с метаболическим синдромом. Включенным в исследование измерены рост, масса тела, индекс массы тела, окружность талии, проведен биохимический анализ крови (глюкоза тощаковая и в ходе теста толерантности к глюкозе, мочевая кислота), липидный профиль, инсулин, индекс инсулинорезистентности – HOMA-IR. Выполнены суточное мониторирование артериального давления, по данным дуплексного сканирования брахиоцефальных артерий оценена ТИМ ОСА, наличие АСБ в сонных артериях и максимальная степень стеноза внутренней сонной артерии. Проведена компьютерная томография (Aquilion One Vision Edition, Toshiba, Япония) с определением подкожного, висцерального, периваскулярного, эпикардиального жира, а также рассчитано отношение подкожного к висцеральному жиру. Результаты. При оценке ТИМ ОСА статистически значимая разница в средних значениях выявлена только между лицами 1 и 3-й группы (p=0,025), при этом медиана значений ТИМ была в пределах нормальных значений (1-я группа: 0,49 [0,46; 0,56]; 2-я: 0,53 [0,49; 0,59]; 3-я: 0,56 [0,52; 0,62]). Достоверных различий в распределении по группам лиц с увеличенной ТИМ также не получено. Однако доля лиц с АСБ была статистически значимо больше во 2-й группе по сравнению с 1-й (р<0,001) и в 3-й группе по сравнению со 2-й (р<0,001), так же как и наличие максимального стеноза в сонной артерии. Выявлены прямые корреляционные связи ТИМ ОСА с периаортальным (r=0,440; p=0,000), эпикардиальным (r=0,329; p<0,001) и висцеральным (r=0,326; p<0,001) жировыми депо, а также обратная корреляционная связь с отношением подкожного жира к висцеральному (r=-0,241; p=0,005). Кроме того, ТИМ ОСА коррелировала с индексом массы тела, окружностью талии, параметрами липидного профиля и суточного мониторирования артериального давления, что еще раз доказывает наличие тесной патогенетической связи между ожирением, нарушениями липидного обмена и состоянием сосудистой стенки.
Aim. To evaluate the common carotid artery (CCA) intima-media complex thickness (IMT) and the presence of atherosclerotic plaques (ASP) in young people with abdominal obesity who don’t have metabolic syndrome and those who have it, as well as a link between fat depots (perivascular, visceral, subcutaneous, epicardial) and CCA IMT. Materials and methods. The study included 145 people aged 18–45 years. They were divided into 3 groups: group 1 (n=18) – healthy volunteers (control group), group 2 (n=48) – patients with abdominal obesity and no more than one additional risk factor (metabolically healthy) and group 3 (n=79) – patients with metabolic syndrome. In persons included in the study the following parameters were measured: the height, weight, body mass index, waist circumference, fasting blood glucose, glucose tolerance, uric acid, lipid profile, insulin and the insulin resistance index (HOMA-IR). They also were given a 24-hour blood pressure monitoring, and an evaluation of CCA IMT, a presence of ASP in the carotid arteries and a maximum degree of internal carotid stenosis was performed using the duplex scan of brachiocephalic arteries. Computed tomography (Aquilion One Vision Edition, Toshiba, Japan) with determining subcutaneous, visceral, perivascular, epicardial fat was performed, and the ratio of subcutaneous to visceral fat was calculated. Results. Significant differences in mean CCA IMT were revealed only between persons of group 1 and group 3 (p=0.025), while the median of IMT were within normal ranges (group 1: 0.49 [0.46; 0.56]; group 2: 0.53 [0.49; 0.59]; group 3: 0.56 [0.52; 0.62]). Significant differences in a distribution of individuals with increased IMT between groups were also not revealed. However, the proportion of individuals with ASP was significantly higher in group 2 compared with group 1 (p<0.001) and in group 3 compared with group 2 (p<0.001), as well as the presence of maximum stenosis in the carotid artery. Direct correlation between CCA IMT and periaortic (r=0.440; p=0.000), epicardial (r=0.329; p<0.001) and visceral (r=0.326; p<0.001) fat depots, as well as the inverse correlation with a ratio subcutaneous fat/visceral fat (r=-0.241; p=0.005) were revealed. In addition, there were correlations between CCA IMT and body mass index, waist circumference, lipid profile and 24-hour blood pressure monitoring parameters, that once again confirms a close pathogenetic link between obesity, disorders of lipid metabolism and vascular wall status.
1. Prevalence of Obesity, World Obesity Federation. https://www.worldobesity.org/about/about-obesity/prevalence-of-obesity
2. GBD 2015 Obesity Collaborators. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med 2017; 377 (1): 13–27. DOI: 10.1056/NEJMoa1614362
3. Mancio J, Oikonomou EK, Antoniades C. Perivascular adipose tissue and coronary atherosclerosis. Heart Br Card Soc 2018; 104 (20): 1654–62. DOI: 10.1136/heartjnl-2017-312324
4. Psaltis PJ, Simari RD. Vascular wall progenitor cells in health and disease. Circ Res 2015; 116 (8): 1392–412. DOI: 10.1161/CIRCRESAHA.116.305368
5. Chen Y et al. Adventitial stem cells in vein grafts display multilineage potential that contributes to neointimal formation. Arterioscler Thromb Vasc Biol 2013; 33 (8): 1844–51. DOI: 10.1161/ATVBAHA.113.300902
6. Fox CS et al. Periaortic fat deposition is associated with peripheral arterial disease: the Framingham heart study. Circ Cardiovasc Imaging 2010; 3 (5): 515–9. DOI: 10.1161/CIRCIMAGING.110.958884
7. Brown NK et al. Perivascular adipose tissue in vascular function and disease: a review of current research and animal models. Arterioscler Thromb Vasc Biol 2014; 34 (8): 1621–30. DOI: 10.1161/
ATVBAHA.114.303029
8. Gil-Ortega M et al. Imbalance between pro and anti-oxidant mechanisms in perivascular adipose tissue aggravates long-term high-fat diet-derived endothelial dysfunction. Plos One 2014; 9 (4): e95312. DOI: 10.1371/journal.pone.0095312
9. Hu Y et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest 2004; 113 (9): 1258–65. DOI: 10.1172/JCI19628
10. Grudzinska MK et al. Monocyte chemoattractant protein 1-mediated migration of mesenchymal stem cells is a source of intimal hyperplasia. Arterioscler Thromb Vasc Biol 2013; 33 (6): 1271–9. DOI: 10.1161/ATVBAHA.112.300773
11. Öhman MK et al. Perivascular Visceral Adipose Tissue Induces Atherosclerosis in Apolipoprotein E Deficient. Atherosclerosis 2011; 219 (1): 33–9. DOI: 10.1016/j.atherosclerosis.2011.07.012
12. Gast KB et al. Abdominal adiposity largely explains associations between insulin resistance, hyperglycemia and subclinical atherosclerosis: the NEO study. Atherosclerosis 2013; 229 (2): 423–9. DOI: 10.1016/j.atherosclerosis.2013.05.021
13. Recio-Rodriguez JI et al. Abdominal obesity vs general obesity for identifying arterial stiffness, subclinical atherosclerosis and wave reflection in healthy, diabetics and hypertensive. BMC Cardiovasc Dis 2012; 12 (1). DOI: 10.1186/1471-2261-12-3
14. Liu J-J et al. Obesity is a determinant of arterial stiffness independent of traditional risk factors in Asians with young-onset type 2 diabetes. Atherosclerosis 2014; 236 (2): 286–91. DOI: 10.1016/j.atherosclerosis.2014.07.017
15. Huang Y et al. Nonalcoholic fatty liver disease is associated with atherosclerosis in middle-aged and elderly Chinese. Arterioscler Thromb Vasc Biol 2012; 32 (9): 2321–6. DOI: 10.1161/ATVBAHA.112.252957
16. Gaggini M, Morelli M, Buzzigoli E et al. Non-Alcoholic Fatty Liver Disease (NAFLD) and Its Connection with Insulin Resistance, Dyslipidemia, Atherosclerosis and Coronary Heart Disease. Nutrients 2013; 5 (5): 1544–60. DOI: 10.3390/nu5051544
17. Gastaldelli A et al. Fatty liver is associated with insulin resistance, risk of coronary heart disease, and early atherosclerosis in a large European population. Hepatology 2009; 49 (5): 1537–44. DOI: 10.1002/hep.22845
18. Yi X et al. The Influence of Abdominal and Ectopic Fat Accumulation on Carotid Intima-Media Thickness: A Chongqing Study. J Stroke Cerebrovasc Dis 2018; 27 (7): 1992–7. DOI: 10.1016/j.jstrokecerebrovasdis.2018.02.052
19. Abazid RM et al. Relation Between Epicardial Fat and Subclinical Atherosclerosis in Asymptomatic Individuals. J Thorac Imaging 2017; 32 (6): 378–82. DOI: 10.1097/RTI.0000000000000296
20. Soliman EZ, Ding J, Hsu F-C et al. Association between Carotid Intima-Media Thickness and Pericardial Fat in the Multi-Ethnic Study of Atherosclerosis (MESA). J Stroke Cerebrovasc Dis 2010; 19 (1): 58–65. DOI: 10.1016/j.jstrokecerebrovasdis.2009.03.008
21. Tanaka K, Sata M. Roles of Perivascular Adipose Tissue in the Pathogenesis of Atherosclerosis. Front Physiol 2018; 9. DOI: 10.3389/fphys.2018.00003
22. Costa RM, Neves KB, Tostes RC, Lobato NS. Perivascular Adipose Tissue as a Relevant Fat Depot for Cardiovascular Risk in Obesity. Front Physiol 2018; 9. DOI: 10.3389/fphys.2018.00253
23. Touboul P-J, Hennerici MG, Meairs S et al. Mannheim Carotid Intima-Media Thickness and Plaque Consensus (2004–2006–2011). Cerebrovasc Dis 2012; 34: 290–6. DOI: 10.1159/000343145
24. Van Vliet-Ostaptchouk JV et al. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large cohort studies. BMC Endocr Dis 2014; 14: 9. DOI: 10.1186/1472-6823-14-9
25. Mustafina S, Shcherbakova L, Kozupeeva D et al. Тhe prevalence of metabolically healthy obesity: Data from the epidemiological survey in of Novosibirsk. Obes Metab 2018; 15: 31–7. DOI: 10.14341/OMET9615
26. Buscemi S et al. Characterization of Metabolically Healthy Obese People and Metabolically Unhealthy Normal-Weight People in a General Population Cohort of the ABCD Study. J Diabetes Res 2017; 2017: 9294038. DOI: 10.1155/2017/9294038
27. Zhang Y et al. Association between anthropometric indicators of obesity and cardiovascular risk factors among adults in Shanghai, China. BMC Public Health 2019; 19 (1): 1035. DOI: 10.1186/s12889-019-7366-0
28. Chiolero A, Faeh D, Paccaud F, Cornuz J. Consequences of smoking for body weight, body fat distribution, and insulin resistance. Am J Clin Nutr 2008; 87 (4): 801–9. DOI: 10.1093/ajcn/87.4.801
29. Keska A, Lutoslawska G, Czajkowska A et al. Variability in HOMA-IR, Lipoprotein Profile and Selected Hormones in Young Active Men. Sci World J 2013; 2013. DOI: 10.1155/2013/412764
30. Xia N, Li H. The role of perivascular adipose tissue in obesity-induced vascular dysfunction. Br J Pharmacol 2017; 174 (20): 3425–42. DOI: 10.1111/bph.13650
31. Fernández-Alfonso MS, Gil-Ortega M, García-Prieto CF et al. Mechanisms of perivascular adipose tissue dysfunction in obesity. Int J Endocrinol 2013; 2013: 402053. DOI: 10.1155/2013/402053
32. Lorenz MW et al. Predictive value for cardiovascular events of common carotid intima media thickness and its rate of change in individuals at high cardiovascular risk – Results from the PROG-IMT collaboration. PloS One 2018; 13 (4): e0191172. DOI: 10.1371/journal.pone.0191172
33. Den Ruijter HM et al. Common carotid intima-media thickness measurements in cardiovascular risk prediction: a meta-analysis. JAMA 2012; 308 (8): 796–803. DOI: 10.1001/jama.2012.9630
34. Nambi V et al. Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk: the ARIC (Atherosclerosis Risk In Communities) study. J Am Coll Cardiol 2010; 55 (15): 1600–7. DOI: 10.1016/j.jacc.2009.11.075
35. Lee H-Y, Després J-P, Koh KK. Perivascular adipose tissue in the pathogenesis of cardiovascular disease. Atherosclerosis 2013; 230 (2): 177–84. DOI: 10.1016/j.atherosclerosis.2013.07.037
36. Antonopoulos AS, Tousoulis D. The molecular mechanisms of obesity paradox. Cardiovasc Res 2017; 113 (9): 1074–86. DOI: 10.1093/cvr/cvx106
37. Lim S, Meigs JB. Links between ectopic fat and vascular disease in humans. Arterioscler Thromb Vasc Biol 2014; 34 (9): 1820–6. DOI: 10.1161/ATVBAHA.114.303035
________________________________________________
1. Prevalence of Obesity, World Obesity Federation. https://www.worldobesity.org/about/about-obesity/prevalence-of-obesity
2. GBD 2015 Obesity Collaborators. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med 2017; 377 (1): 13–27. DOI: 10.1056/NEJMoa1614362
3. Mancio J, Oikonomou EK, Antoniades C. Perivascular adipose tissue and coronary atherosclerosis. Heart Br Card Soc 2018; 104 (20): 1654–62. DOI: 10.1136/heartjnl-2017-312324
4. Psaltis PJ, Simari RD. Vascular wall progenitor cells in health and disease. Circ Res 2015; 116 (8): 1392–412. DOI: 10.1161/CIRCRESAHA.116.305368
5. Chen Y et al. Adventitial stem cells in vein grafts display multilineage potential that contributes to neointimal formation. Arterioscler Thromb Vasc Biol 2013; 33 (8): 1844–51. DOI: 10.1161/ATVBAHA.113.300902
6. Fox CS et al. Periaortic fat deposition is associated with peripheral arterial disease: the Framingham heart study. Circ Cardiovasc Imaging 2010; 3 (5): 515–9. DOI: 10.1161/CIRCIMAGING.110.958884
7. Brown NK et al. Perivascular adipose tissue in vascular function and disease: a review of current research and animal models. Arterioscler Thromb Vasc Biol 2014; 34 (8): 1621–30. DOI: 10.1161/
ATVBAHA.114.303029
8. Gil-Ortega M et al. Imbalance between pro and anti-oxidant mechanisms in perivascular adipose tissue aggravates long-term high-fat diet-derived endothelial dysfunction. Plos One 2014; 9 (4): e95312. DOI: 10.1371/journal.pone.0095312
9. Hu Y et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest 2004; 113 (9): 1258–65. DOI: 10.1172/JCI19628
10. Grudzinska MK et al. Monocyte chemoattractant protein 1-mediated migration of mesenchymal stem cells is a source of intimal hyperplasia. Arterioscler Thromb Vasc Biol 2013; 33 (6): 1271–9. DOI: 10.1161/ATVBAHA.112.300773
11. Öhman MK et al. Perivascular Visceral Adipose Tissue Induces Atherosclerosis in Apolipoprotein E Deficient. Atherosclerosis 2011; 219 (1): 33–9. DOI: 10.1016/j.atherosclerosis.2011.07.012
12. Gast KB et al. Abdominal adiposity largely explains associations between insulin resistance, hyperglycemia and subclinical atherosclerosis: the NEO study. Atherosclerosis 2013; 229 (2): 423–9. DOI: 10.1016/j.atherosclerosis.2013.05.021
13. Recio-Rodriguez JI et al. Abdominal obesity vs general obesity for identifying arterial stiffness, subclinical atherosclerosis and wave reflection in healthy, diabetics and hypertensive. BMC Cardiovasc Dis 2012; 12 (1). DOI: 10.1186/1471-2261-12-3
14. Liu J-J et al. Obesity is a determinant of arterial stiffness independent of traditional risk factors in Asians with young-onset type 2 diabetes. Atherosclerosis 2014; 236 (2): 286–91. DOI: 10.1016/j.atherosclerosis.2014.07.017
15. Huang Y et al. Nonalcoholic fatty liver disease is associated with atherosclerosis in middle-aged and elderly Chinese. Arterioscler Thromb Vasc Biol 2012; 32 (9): 2321–6. DOI: 10.1161/ATVBAHA.112.252957
16. Gaggini M, Morelli M, Buzzigoli E et al. Non-Alcoholic Fatty Liver Disease (NAFLD) and Its Connection with Insulin Resistance, Dyslipidemia, Atherosclerosis and Coronary Heart Disease. Nutrients 2013; 5 (5): 1544–60. DOI: 10.3390/nu5051544
17. Gastaldelli A et al. Fatty liver is associated with insulin resistance, risk of coronary heart disease, and early atherosclerosis in a large European population. Hepatology 2009; 49 (5): 1537–44. DOI: 10.1002/hep.22845
18. Yi X et al. The Influence of Abdominal and Ectopic Fat Accumulation on Carotid Intima-Media Thickness: A Chongqing Study. J Stroke Cerebrovasc Dis 2018; 27 (7): 1992–7. DOI: 10.1016/j.jstrokecerebrovasdis.2018.02.052
19. Abazid RM et al. Relation Between Epicardial Fat and Subclinical Atherosclerosis in Asymptomatic Individuals. J Thorac Imaging 2017; 32 (6): 378–82. DOI: 10.1097/RTI.0000000000000296
20. Soliman EZ, Ding J, Hsu F-C et al. Association between Carotid Intima-Media Thickness and Pericardial Fat in the Multi-Ethnic Study of Atherosclerosis (MESA). J Stroke Cerebrovasc Dis 2010; 19 (1): 58–65. DOI: 10.1016/j.jstrokecerebrovasdis.2009.03.008
21. Tanaka K, Sata M. Roles of Perivascular Adipose Tissue in the Pathogenesis of Atherosclerosis. Front Physiol 2018; 9. DOI: 10.3389/fphys.2018.00003
22. Costa RM, Neves KB, Tostes RC, Lobato NS. Perivascular Adipose Tissue as a Relevant Fat Depot for Cardiovascular Risk in Obesity. Front Physiol 2018; 9. DOI: 10.3389/fphys.2018.00253
23. Touboul P-J, Hennerici MG, Meairs S et al. Mannheim Carotid Intima-Media Thickness and Plaque Consensus (2004–2006–2011). Cerebrovasc Dis 2012; 34: 290–6. DOI: 10.1159/000343145
24. Van Vliet-Ostaptchouk JV et al. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large cohort studies. BMC Endocr Dis 2014; 14: 9. DOI: 10.1186/1472-6823-14-9
25. Mustafina S, Shcherbakova L, Kozupeeva D et al. Тhe prevalence of metabolically healthy obesity: Data from the epidemiological survey in of Novosibirsk. Obes Metab 2018; 15: 31–7. DOI: 10.14341/OMET9615
26. Buscemi S et al. Characterization of Metabolically Healthy Obese People and Metabolically Unhealthy Normal-Weight People in a General Population Cohort of the ABCD Study. J Diabetes Res 2017; 2017: 9294038. DOI: 10.1155/2017/9294038
27. Zhang Y et al. Association between anthropometric indicators of obesity and cardiovascular risk factors among adults in Shanghai, China. BMC Public Health 2019; 19 (1): 1035. DOI: 10.1186/s12889-019-7366-0
28. Chiolero A, Faeh D, Paccaud F, Cornuz J. Consequences of smoking for body weight, body fat distribution, and insulin resistance. Am J Clin Nutr 2008; 87 (4): 801–9. DOI: 10.1093/ajcn/87.4.801
29. Keska A, Lutoslawska G, Czajkowska A et al. Variability in HOMA-IR, Lipoprotein Profile and Selected Hormones in Young Active Men. Sci World J 2013; 2013. DOI: 10.1155/2013/412764
30. Xia N, Li H. The role of perivascular adipose tissue in obesity-induced vascular dysfunction. Br J Pharmacol 2017; 174 (20): 3425–42. DOI: 10.1111/bph.13650
31. Fernández-Alfonso MS, Gil-Ortega M, García-Prieto CF et al. Mechanisms of perivascular adipose tissue dysfunction in obesity. Int J Endocrinol 2013; 2013: 402053. DOI: 10.1155/2013/402053
32. Lorenz MW et al. Predictive value for cardiovascular events of common carotid intima media thickness and its rate of change in individuals at high cardiovascular risk – Results from the PROG-IMT collaboration. PloS One 2018; 13 (4): e0191172. DOI: 10.1371/journal.pone.0191172
33. Den Ruijter HM et al. Common carotid intima-media thickness measurements in cardiovascular risk prediction: a meta-analysis. JAMA 2012; 308 (8): 796–803. DOI: 10.1001/jama.2012.9630
34. Nambi V et al. Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk: the ARIC (Atherosclerosis Risk In Communities) study. J Am Coll Cardiol 2010; 55 (15): 1600–7. DOI: 10.1016/j.jacc.2009.11.075
35. Lee H-Y, Després J-P, Koh KK. Perivascular adipose tissue in the pathogenesis of cardiovascular disease. Atherosclerosis 2013; 230 (2): 177–84. DOI: 10.1016/j.atherosclerosis.2013.07.037
36. Antonopoulos AS, Tousoulis D. The molecular mechanisms of obesity paradox. Cardiovasc Res 2017; 113 (9): 1074–86. DOI: 10.1093/cvr/cvx106
37. Lim S, Meigs JB. Links between ectopic fat and vascular disease in humans. Arterioscler Thromb Vasc Biol 2014; 34 (9): 1820–6. DOI: 10.1161/ATVBAHA.114.303035
Авторы
Е.А. Железнова*1, Ю.В. Жернакова1, О.А. Погорелова1, М.И. Трипотень1, Н.В. Блинова1, М.А. Шария1, М.О. Азимова1, Ш.Б. Гориева1, А.В. Маслов2, Т.В. Балахонова1, И.Е. Чазова1
1ФГБУ «Национальный медицинский исследовательский центр кардиологии» Минздрава России, Москва, Россия;
2ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия
*katia.zheleznova@yandex.ru
________________________________________________
Ekaterina A. Zheleznova*1, Juliya V. Zhernakova1, Olga A. Pogorelova1, Mariia I. Tripoten1,
Nataliia V. Blinova1, Merab A. Shariya1,
Marina O. Azimova1, Shurat B. Gorieva1,
Andrei V. Maslov2, Tatiana V. Balakhonova1,
Irina E. Chazova1
1National Medical Research Center of Cardiology, Moscow, Russia;
2Pirogov Russian National Research Medical University, Moscow, Russia
*katia.zheleznova@yandex.ru