Рекомендации по ведению больных артериальной гипертонией с метаболическими нарушениями и сахарным диабетом 2-го типа
Рекомендации по ведению больных артериальной гипертонией с метаболическими нарушениями и сахарным диабетом 2-го типа
Российское медицинское общество по артериальной гипертонии. Рекомендации по ведению больных артериальной гипертонией с метаболическими нарушениями и сахарным диабетом 2-го типа. Системные гипертензии. 2020; 17 (1): 7–45.
DOI: 10.26442/2075082X.2020.1.200051
________________________________________________
Guidelines on treatment of patients with arterial hypertension comorbid with metabolic disorders and diabetes mellitus type 2. Systemic Hypertension. 2020; 17 (1): 7–45.
DOI: 10.26442/2075082X.2020.1.200051
Рекомендации по ведению больных артериальной гипертонией с метаболическими нарушениями и сахарным диабетом 2-го типа
Российское медицинское общество по артериальной гипертонии. Рекомендации по ведению больных артериальной гипертонией с метаболическими нарушениями и сахарным диабетом 2-го типа. Системные гипертензии. 2020; 17 (1): 7–45.
DOI: 10.26442/2075082X.2020.1.200051
________________________________________________
Guidelines on treatment of patients with arterial hypertension comorbid with metabolic disorders and diabetes mellitus type 2. Systemic Hypertension. 2020; 17 (1): 7–45.
DOI: 10.26442/2075082X.2020.1.200051
Российское медицинское общество по артериальной гипертонии
Рекомендации по ведению больных артериальной гипертонией с метаболическими нарушениями и сахарным диабетом 2-го типа
Список литературы
1. Муромцева Г.А., Концевая А.В., Константинов В.В. и др. Распространенность факторов риска неинфекционных заболеваний в российской популяции в 2012–2013 гг. Результаты исследования ЭССЕ-РФ. Кардиоваскулярная терапия и профилактика. 2014; 13 (6): 4–11. [Muromtseva G.A., Kontsevaia A.V., Konstantinov V.V. et al. Rasprostranennost' faktorov riska neinfektsionnykh zabolevanii v rossiiskoi populiatsii v 2012–2013 gg. Rezul'taty issledovaniia ESSE-RF. Kardiovaskuliarnaia terapiia i profilaktika. 2014; 13 (6): 4–11 (in Russian).] 2. Жернакова Ю.В., Чазова И.Е., Ощепкова Е.В. и др. Распространенность сахарного диабета в популяции больных артериальной гипертонией. По данным исследования ЭССЕ-РФ. Системные гипертензии. 2018; 15 (1): 56–62. [Zhernakova Iu.V., Chazova I.E., Oshchepkova E.V. et al. Rasprostranennost' sakharnogo diabeta v populiatsii bol'nykh arterial'noi gipertoniei. Po dannym issledovaniia ESSE-RF. Systemic Hypertension. 2018; 15 (1): 56–62 (in Russian).] 3. Ощепкова Е.В., Лазарева Н.В., Чазова И.Е. Оценка качества обследования больных артериальной гипертонией в первичном звене здравоохранения (по данным российского Регистра артериальной гипертонии). Системные гипертензии. 2017; 14 (2): 29–35. [Oshchepkova E.V., Lazareva N.V., Chazova I.E. Otsenka kachestva obsledovaniia bol'nykh arterial'noi gipertoniei v pervichnom zvene zdravookhraneniia (po dannym rossiiskogo Registra arterial'noi gipertonii). Systemic Hypertension. 2017; 14 (2): 29–35 (in Russian).] 4. Piepoli MF, Hoes AW, Agewall S et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice. Eur Heart J 2016; 37: 2315–81. 5. Бойцов С.А., Погосова Н.В., Бубнова М.Г. и др. Кардиоваскулярная профилактика 2017. Российские национальные рекомендации. Рос. кардиолог. журн. 2018; 23 (6): 7–122. [Boitsov S.A., Pogosova N.V., Bubnova M.G. et al. Kardiovaskuliarnaia profilaktika 2017. Rossiiskie natsional'nye rekomendatsii. Ros. kardiolog. zhurn. 2018; 23 (6): 7–122 (in Russian).] 6. Cosentino F, Grant PJ, Aboyans V et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD) European Heart Journal 2019; 1-69 7. Чазова И.Е., Жернакова Ю.В. от имени экспертов. Клинические рекомендации. Диагностика и лечение артериальной гипертонии. Системные гипертензии. 2019; 16 (1): 6–31. [Chazova I.E., Zhernakova Iu.V. ot imeni ekspertov. Klinicheskie rekomendatsii. Diagnostika i lechenie arterial'noi gipertonii. Systemic Hypertension. 2019; 16 (1): 6–31 (in Russian).] 8. Aktas MK, Ozduran V, Pothier CE et al. Global risk scores and exercise testing for predicting all-cause mortality in a preventive medicine program. JAMA 2004; 292: 1462–8. 9. Чазова И.Е. и др. Распространенность факторов риска сердечно-сосудистых заболеваний в российской популяции больных артериальной гипертонией. Кардиология. 2014; 10 (54): 4–12. [Chazova I.E. i dr. Rasprostranennost' faktorov riska serdechno-sosudistykh zabolevanii v rossiiskoi populiatsii bol'nykh arterial'noi gipertoniei. Kardiologiia. 2014; 10 (54): 4–12. (in Russian).] 10. Sharma AM. Is there a rational for angiotensin blockade in the management of obesity hypertension. Hypertension 2004; 44: 12–9. 11. Peppard PE, Young T, Palta M et al. Prospective study of the association between sleep-disodeaders breathing and hypertension. N Eng J Med 2000; 342: 1378–84. 12. Siebenhofer A, Jeitler K, Horvath K et al. Long-term effect of weight reducing drug in people with hypertension. Cochraine Database Syst Rev 2016; 3: CD007654. 13. Lambert E, Sari CI, Dawood T et al. Sympathetic nervous system activity is associated with obesity-induced subclinical organ damage in young adults. Hypertension 2010; 56 (3): 351–8. 14. Lambert GW, Straznicky NE, Lambert EA et al. Sympathetic nervous activation in obesity and the metabolic syndrome – causes, consequences and therapeutic implications. Pharmacol Ther 2010; 126 (2): 159–72. 15. Vasilios Kotsis, Jens Jordan, Dragan Micic et al. Obesity and cardiovascular risk: a call for action from the European Society of Hypertension Working Group of Obesity, Diabetes and the High-risk Patient and European Association for the Study of Obesity: partA: mechanisms of obesity induced hypertension, diabetes and dyslipidemia and practice guidelines for treatment. J Hypertens 2018; 36: 1427–40. 16. Johnson AK, Xue B. Central nervous system neuroplasticity and the sensitization of hypertension. Nat Rev Nephrol 2018; 14 (12): 750–66. 17. McManus RJ, Mant J, Franssen M et al; TASMINH Investigators. Efficacy of self-monitored blood pressure, with or without telemonitoring, for titration of antihypertensive medication (TASMINH4): an unmasked randomised controlled trial. Lancet 2018; 391: 949–59. 18. Mancia G, Facchetti R, Bombelli M et al. Long-term risk of mortality associated with selective and combined elevation in office, home, and ambulatory blood pressure. Hypertension 2006; 47: 846–53. 19. Valensi P, Lorgis L, Cottin Y. Prevalence, incidence, predictive factors and prognosis of silent myocardial infarction: a review of the literature. Arch Cardiovasc Dis 2011; 104: 178–88. 20. Hadaegh F, Ehteshami-Afshar S, Hajebrahimi MA et al. Silent coronary artery disease and incidence of cardiovascular and mortality events at different levels of glucose regulation; results of greater than a decade follow-up. Int J Cardiol 2015; 182: 334–9. 21. Katakami N, Mita T, Gosho M et al. Clinical utility of carotid ultrasonography in the prediction of cardiovascular events in patients with diabetes: a combined analysis of data obtained in five longitudinal studies. J Atheroscler Thromb 2018; 25: 1053–66. 22. Kavousi M, Desai CS, Ayers C et al. Prevalence and prognostic implications of coronary artery calcification in low-risk women: a meta-analysis. JAMA 2016; 316: 2126–34. 23. Lorenz MW, Polak JF, Kavousi M et al. PROG-IMT Study Group. Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): a meta-analysis of individual participant data. Lancet 2012; 379: 2053–62. 24. Valenti V, Hartaigh BO, Cho I et al. Absence of coronary artery calcium identifies asymptomatic diabetic individuals at low near-term but not long-term risk of mortality: a 15-year follow-up study of 9715 patients. Circ Cardiovasc Imaging 2016; 9: e003528. 25. Wackers FJ, Young LH, Inzucchi SE et al. Detection of Ischemia in Asymptomatic Diabetics Investigators. Detection of silent myocardial ischemia in asymptomatic diabetic subjects: the DIAD study. Diabetes Care 2004; 27: 1954–61. 26. Zellweger MJ, Maraun M, Osterhues HH et al. Progression to overt or silent CAD in asymptomatic patients with diabetes mellitus at high coronary risk: main findings of the prospective multicenter BARDOT trial with a pilot randomized treatment substudy. JACC Cardiovasc Imaging 2014; 7: 1001–10. 27. Lièvre MM, Moulin P, Thivolet C et al, DYNAMIT investigators. Detection of silent myocardial ischemia in asymptomatic patients with diabetes: results of a randomized trial and metaanalysis assessing the effectiveness of systematic screening. Trials 2011; 12: 23. 28. Clerc OF, Fuchs TA, Stehli J et al. Non-invasive screening for coronary artery disease in asymptomatic diabetic patients: a systematic review and meta-analysis of randomised controlled trials. Eur Heart J Cardiovasc Imaging 2018; 19: 838–46. 29. Muhlestein JB, Lappe DL, Lima JA et al. Effect of screening for coronary artery disease using CT angiography on mortality and cardiac events in high-risk patients with diabetes: the FACTOR-64 randomized clinical trial. JAMA 2014; 312: 2234–43. 30. Young LH, Wackers FJ, Chyun DA et al; DIAD Investigators. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA 2009; 301: 1547–55. 31. Faglia E, Manuela M, Antonella Q et al. Risk reduction of cardiac events by screening of unknown asymptomatic coronary artery disease in subjects with type 2 diabetes mellitus at high cardiovascular risk: an open-label randomized pilot study. Am Heart J 2005; 149: e1–e6. 32. Turrini F, Scarlini S, Mannucci C et al. Does coronary Atherosclerosis Deserve to be Diagnosed earlY in Diabetic patients? The DADDY-D trial. Screening diabetic patients for unknown coronary disease. Eur J Intern Med 2015; 26: 407–13. 33. Hanssen NM, Huijberts MS, Schalkwijk CG et al. Associations between the ankle-brachial index and cardiovascular and allcause mortality are similar in individuals without and with type 2 diabetes: nineteen-year follow-up of a population-based cohort study. Diabetes Care 2012; 35: 1731–5. 34. Malik S, Budoff MJ, Katz R et al. Impact of subclinical atherosclerosis on cardiovascular disease events in individuals with metabolic syndrome and diabetes: the multi-ethnic study of atherosclerosis. Diabetes Care 2011; 34: 2285–90. 35. Den Ruijter HM, Peters SA, Anderson TJ et al. Common carotid intimamedia thickness measurements in cardiovascular risk prediction: a meta-analysis. JAMA 2012; 308: 796–803. 36. Emerging Risk Factors Collaboration. Kaptoge S, Di Angelantonio E, Pennells L et al. Creactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med 2012; 367: 1310–20. 37. Perkovic V, Verdon C, Ninomiya T et al. The relationship between proteinuria and coronary risk: a systematic review and meta-analysis. PLoS Med 2008; 5 (10): e207. 38. Gaede P, Vedel P, Parving HH, Pedersen O. Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study. Lancet 1999; 353: 617–22. 39. Gaede P, Oellgaard J, Carstensen B et al. Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno- 2 randomised trial. Diabetologia 2016; 59: 2298–307. 40. De Buyzere ML, Clement DL. Management of hypertension in peripheral arterial disease. Prog Cardiovasc Dis 2008; 50: 238–63. 41. Lewington S, Clarke R, Qizilbash N et al. Age-specific relevance of usual blood pressure to vascular mortality: a metaanalysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903–13. 42. Thomopoulos C, Parati G, Zanchetti A. Effects of blood-pressure-lowering treatment on outcome incidence in hypertension: 10 – Should blood pressure management differ in hypertensive patients with and without diabetes mellitus? Overview and meta-analyses of randomized trials. J Hypertens 2017; 35: 922–44. 43. D’Agostino RB Sr, Vasan RS, Pencina MJ et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008; 117: 743–53. 44. Perk J, De Backer G, Gohlke H et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012): The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J 2012; 33: 1635–701. 45. Sundstrom J, Arima H, Jackson R et al, Blood Pressure-Lowering Treatment Trialists’ Collaboration. Effects of blood pressure reduction in mild hypertension: a systematic review and meta-analysis. Ann Intern Med 2015; 162: 184–91. 46. Lonn EM, Bosch J, Lopez-Jaramillo P, Zhu J et al, HOPE-3 Investigators. Blood-pressure lowering in intermediate-risk persons without cardiovascular disease. N Engl J Med 2016; 374: 2009–20. 47. Zanchetti A, Grassi G, Mancia G. When should antihypertensive drug treatment be initiated and to what levels should systolic blood pressure be lowered? A critical reappraisal. J Hypertens 2009; 27: 923–34. 48. Brunstrom M, Carlberg B. Association of blood pressure lowering with mortality and cardiovascular disease across blood pressure levels: a systematic review and meta-analysis. JAMA Intern Med 2018; 178: 28–36. 49. Wald DS, Law M, Morris JK et al. Combination therapy versus monotherapy in reducing blood pressure: meta-analysis on 11,000 participants from 42 trials. Am J Med 2009; 122: 290–300. 50. MacDonald TM, Williams B, Webb DJ et al, British Hypertension Society Programme of Prevention And Treatment of Hypertension With Algorithm-based Therapy (PATHWAY). Combination therapy is superior to sequential monotherapy for the initial treatment of hypertension: a double-blind randomized controlled trial. J Am Heart Assoc 2017; 6: e006986. 51. Thomopoulos C, Parati G, Zanchetti A. Effects of blood-pressure-lowering treatment in hypertension: 9. Discontinuations for adverse events attributed to different classes of antihypertensive drugs: meta-analyses of randomized trials. J Hypertens 2016; 34: 1921–32. 52. Yusuf S, Lonn E, Pais P et al, HOPE-3 Investigators. Blood-pressure and cholesterol lowering in persons without cardiovascular disease. N Engl J Med 2016; 374: 2032–43. 53. Corrao G, Zambon A, Parodi A et al. Discontinuation of and changes in drug therapy for hypertension among newly-treated patients: a population-based study in Italy. J Hypertens 2008; 26: 819–24. 54. Gupta AK, Arshad S, Poulter NR. Compliance, safety, and effectiveness of fixed-dose combinations of antihypertensive agents: a meta-analysis. Hypertension 2010; 55: 399–407. 55. Weir MR, Hsueh WA, Nesbitt SD et al. A titrate-to-goal study of switching patients uncontrolled on antihypertensive monotherapy to fixed-dose combinations of amlodipine and olmesartan medoxomil ± hydrochlorothiazide. J Clin Hypertens (Greenwich) 2011; 13: 404–12. 56. Volpe M, Christian Rump L, Ammentorp B, Laeis P. Efficacy and safety of triple antihypertensive therapy with the olmesartan/amlodipine/hydrochlorothiazide combination. Clin Drug Investig 2012; 32: 649–64. 57. Williams B, MacDonald TM, Morant S et al, British Hypertension Society’s PATHWAY Studies Group. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet 2015; 386: 2059–68. 58. Ettehad D, Emdin CA, Kiran A et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 2016; 387: 957–67. 59. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure-lowering on outcome incidence in hypertension: 5. Head-to-head comparisons of various classes of antihypertensive drugs – overview and meta-analyses. J Hypertens 2015; 33: 1321–41. 60. Emdin CA, Rahimi K, Neal B et al. Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA 2015; 313: 603–15. 61. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension: 7. Effects of more vs. less intensive blood pressure lowering and different achieved blood pressure levels – updated overview and meta-analyses of randomized trials. J Hypertens 2016; 34: 613–22. 62. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension: 2. Effects at different baseline and achieved blood pressure levels–overview and meta-analyses of randomized trials. J Hypertens 2014; 32: 2296–304. 63. Zoungas S, Chalmers J, Neal B et al; ADVANCE-ON Collaborative Group. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N Engl J Med 2014; 371: 1392–1406. 64. Williams B, Mancia G, Spiering W et al; ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018; 39: 3021–104. 65. Holman RR, Paul SK, Bethel MA et al. Long-term follow-up after tight control of blood pressure in type 2 diabetes. N Engl J Med 2008; 359: 1565–76. 66. McBrien K, Rabi DM, Campbell N et al. Intensive and standard blood pressure targets in patients with type 2 diabetes mellitus: systematic review and meta-analysis. Arch Intern Med 2012; 172: 1296–1303. 67. Xie X, Atkins E, Lv J et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet 2016; 387: 435–43. 68. Sacks FM, Svetkey LP, Vollmer WM et al; DASHSodium Collaborative Research Group. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N Engl J Med 2001; 344: 3–10. 69. Kastorini CM, Milionis HJ, Esposito K et al. The effect of Mediterranean diet on metabolic syndrome and its components: a meta-analysis of 50 studies and 534,906 individuals. J Am Coll Cardiol 2011; 57: 1299–1313. 70. Toledo E, Hu FB, Estruch R et al. Effect of the Mediterranean diet on blood pressure inthe PREDIMED trial: results from a randomized controlled trial. BMC Med 2013; 11: 207. 71. Lindholm LH, Ibsen H, Dahlof B et al; LIFE Study Group. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002; 359: 1004–1010. 72. Niskanen L, Hedner T, Hansson L et al; CAPPP Study Group. Reduced cardiovascular morbidity and mortality in hypertensive diabetic patients on first-line therapy with an ACE inhibitor compared with a diuretic/beta-blocker-based treatment regimen: a subanalysis of the Captopril Prevention Project. Diabetes Care 2001; 24: 2091–96. 73. Ostergren J, Poulter NR, Sever PS et al; ASCOT Investigators. The Anglo-Scandinavian Cardiac Outcomes Trial: blood pressure-lowering limb: effects in patients with type II diabetes. J Hypertens 2008; 26: 2103–11. 74. Weber MA, Bakris GL, Jamerson K et al; ACCOMPLISH Investigators. Cardiovascular events during differing hypertension therapies in patients with diabetes. J Am Coll Cardiol 2010; 56: 77–85. 75. Tocci G, Paneni F, Palano F et al. Angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers and diabetes: a meta-analysis of placebo-controlled clinical trials. Am J Hypertens 2011; 24: 582–90. 76. DREAM Trial Investigators, Bosch J, Yusuf S, Gerstein HC et al. Effect of ramipril on the incidence of diabetes. N Engl J Med 2006; 355: 1551–62. 77. NAVIGATOR Study Group, McMurray JJ, Holman RR, Haffner SM et al. Effect of valsartan on the incidence of diabetes and cardiovascular events. N Engl J Med 2010; 362: 1477–90. 78. World Health Organization. Obesity: preventing and managing the global epidemic. Geneva: WHO, 1997. Kardiovaskuliarnaia terapiia i profilaktika. 2014; 13 (6): 4–11. 79. Stamler J. Epidemic Obesity in the United States. Arch Intern Med 1993; 153 (9): 1040–4. 80. Chandra A, Neeland IJ, Berry JD et al. The relationship of body mass and fat distribution with incident hypertension: Observations from the dallas heart study. J Am Coll Cardiol 2014; 64 (10): 997–1002. 81. Booth HP, Prevost AT, Gulliford MC. Severity of obesity and management of hypertension, hypercholesterolaemia and smoking in primary care: population-based cohort study. J Hum Hypertens 2016; 30: 40–5. 82. Бойцов С.А., Баланова Ю.А., Шальнова С.А. и др. Артериальная гипертония среди лиц 25–64 лет: распространенность, осведомленность, лечение и контроль. По материалам исследования ЭССЕ. Кардиоваскулярная терапия и профилактика. 2014; 14 (4): 4–14. [Boitsov S.A., Balanova Iu.A., Shal'nova S.A. i dr. Arterial'naia gipertoniia sredi lits 25–64 let: rasprostranennost', osvedomlennost', lechenie i kontrol'. Po materialam issledovaniia ESSE. Kardiovaskuliarnaia terapiia i profilaktika. 2014; 14 (4): 4–14 (in Russian).] 83. Lim K, Jackson KL, Sata Y et al. Factors Responsible for Obesity-Related Hypertension. Curr Hypertens Rep 2017; 19 (7): 53. 84. Hall JE, do Carmo JM, da Silva AA et al. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res 2015; 116: 991–1006. 85. Neter JE, Stam BE, Kok FJ et al. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension 2003; 42: 878–84. 86. Jebb SA, Ahern AL, Olson AD et al. Primary care referral to a commercial provider for weight loss treatment versus standard care: a randomised controlled trial. Lancet 2011; 378: 1485–92. 87. Prospective Studies Collaboration, Whitlock G, Lewington S, Sherliker P et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 2009; 373: 1083–96. 88. Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 2013; 309: 71–82. 89. Global BMI Mortality Collaboration, Di Angelantonio E, Bhupathiraju Sh N, Wormser D et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 2016; 388: 776–86. 90. Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc 2013; 2: e004473. 91. Leitzmann MF, Park Y, Blair A et al. Physical activity recommendations and decreased risk of mortality. Arch Intern Med 2007; 167: 2453–60. 92. Rossi A, Dikareva A, Bacon SL, Daskalopoulou SS. The impact of physical activity on mortality in patients with high blood pressure: a systematic review. J Hypertens 2012; 30: 1277–88. 93. Эндокринология. Национальное руководство. Под ред. И.И.Дедова, Г.А. Мельниченко. М.: ГЭОТАР-Медиа, 2019; с. 589–92. [Endocrinology. National leadership. Pod red. I.I.Dedova, G.A. Mel'nichenko. Moscow: GEOTAR-Media, 2019; p. 589–92 (in Russian).] 94. Rucker D, Padwal R, Li S et al. Long term pharmacotherapy for obesity and overweight updated meta-analysis. Br Med J 2007; 335: 1194–99. 95. Avenell A, Broom J, Brown T et al. Systematic review of the long-term effects and economic consequences of treatments for obesity and implications for health improvement. Health Technol Assess 2004; 8: iii-iv, 1–182. 96. Sjostrom L, Rissanen A, Andersen T et al. Randomised placebo-controlled trial of orlistat for weight loss and prevention of weight regain in obese patients. Lancet 1998; 352: 167–72. 97. Torgeson JS, Hauptman J. XENical in the prevention of diabetes in obese subjects (XENDOS) study. Diabetes Care 2004; 27: 155–61. 98. Rossner S, Sjostrom L, Noack R et al. Weight loss, weight maintenance, and improved cardiovascular risk factors after 2 years treatment with orlistat for obesity. European Orlistat Obesity Study Group. Obes Res 2000; 8 (1): 49–61. 99. Pi-Sunyer X, Astrup A, Fujioka K et al. A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. N Engl J Med 2015; 373 (1): 11–22. DOI: https://doi.org/10.1056/NEJMoa1411892 100. le Roux CW, Astrup A, Fujioka K et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet 2017; 389 (10077): 1399–1409. DOI: 10.1016/s0140-6736(17)30069-7 101. Blackman A, Foster GD, Zammit G et al. Effect of liraglutide 3.0 mg in individuals with obesity and moderate or severe obstructive sleep apnea: the SCALE Sleep Apnea randomized clinical trial. Int J Obes (Lond) 2016; 40 (8): 1310–19. DOI: 10.1038/ij o.2016.52 102. Wadden TA, Hollander P, Klein S et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: The SCALE Maintenance randomized study. Int J Obes 2013; 37: 1443–51. DOI: 10.1038/ijo.2013.120 103. Marso SP, Daniels GH, Brown-Frandsen K et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375 (4): 311–22. DOI: 10.1056/NEJMoa1603827 104. Jordan J, Yumuk V, Schlaich M et al. Joint statement of the European Association for the Study of Obesity and the European Society of Hypertension: obesity and difficult to treat arterial hypertension. J Hypertens 2012; 30: 1047–55. 105. Owen J, Yazdi F, Reisin E. Bariatric surgery and hypertension. Am J Hypertens 2018; 31 (1): 11–7. 106. Ricci C, Gaeta M, Rausa E et al. Long-term effects of bariatric surgery on type II diabetes, hypertension and hyperlipidemia: a meta-analysis and meta-regression study with 5-year follow-up. Obes Surg 2015; 25: 397–405. 107. Wilhelm SM, Young J, Kale-Pradhan PB. Effect of bariatric surgery on hypertension: a meta-analysis. Ann Pharmacother 2014; 48: 674–82. 108. Heneghan HM, Meron-Eldar S, Brethauer SA et al. Effect of bariatric surgery on cardiovascular risk profile. Am J Cardiol 2011; 108: 1499–507. 109. Vest AR, Heneghan HM, Agarwal S et al. Bariatric surgery and cardiovascular outcomes: a systematic review. Heart 2012; 98: 1763–77. 110. Sarkhosh K, Birch DW, Shi X et al. The impact of sleeve gastrectomy on hypertension: a systematic review. Obes Surg 2012; 22: 832–7. 111. Hallersund P, Sjöström L, Olbers T et al. Gastric bypass surgery is followed by lowered blood pressure and increased diuresis – long term results from the Swedish Obese Subjects (SOS) study. PLoS One 2012; 7: e49696. 112. Buchwald H, Estok R, Fahrbach K et al. Weight and Type 2 Diabetes after Bariatric Surgery: Systematic Review and Meta-analysis. Am J Med 2009; 122 (3): 248–56.e245. DOI: 10.1016/j.amjmed.2008.09.041. 113. Balk EM, Earley A, Raman G et al. Combined diet and physical activity promotion programs to prevent type 2 diabetes among persons at increased risk: a systematic review for the Community Preventive Services Task Force. Ann Intern Med 2015; 163: 437–51. 114. MacLeod J, Franz MJ, Handu D et al. Academy of Nutrition and Dietetics Nutrition Practice Guideline for Type 1 and Type 2 Diabetes in Adults: nutrition intervention evidence reviews and recommendations. J Acad Nutr Diet 2017; 117: 1637–58. 115. Hamdy O, Mottalib A, Morsi A et al. Long-term effect of intensive lifestyle intervention on cardiovascular risk factors in patients with diabetes in real-world clinical practice: a 5-year longitudinal study. BMJ Open Diabetes Res Care 2017; 5: e000259. 116. Brown MJ, Williams B, Morant SV et al. Effect of amiloride, or amiloride plus hydrochlorothiazide, versus hydrochlorothiazide on glucose tolerance and blood pressure (PATHWAY-3): a parallel-group, double-blind randomised phase 4 trial. Lancet Diabetes Endocrinol 2016; 4: 136–47. 117. Dondo TB, Hall M, West RM et al. Beta-blockers and mortality after acute myocardial infarction in patients without heart failure or ventricular dysfunction. J Am Coll Cardiol 2017; 69: 2710–20. 118. Buchwald H, Avidor Y, Braunwald E et al. Bariatric Surgery A Systematic Review and Meta-Analysis. JAMA 2004; 292 (14): 1724. DOI: 10.1001/jama.292.14.1724 119. International Diabetes Federation. IDF Diabetes Atlas. 9th edition. IDF; 2019; c.168. 120. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Под ред. И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. 9-й вып. Сахарный диабет. 2019; 22 (1S). [Algoritmy spetsializirovannoi meditsinskoi pomoshchi bol'nym sakharnym diabetom. Pod red. I.I. Dedova, M.V. Shestakovoi, A.Iu. Maiorova. 9-i vyp. Sakharnyi diabet. 2019; 22 (1S) (in Russian)] 121. The Diabetes Prevention Program Research Group: The Diabetes Prevention Program (DPP): description of lifestyle intervention. Diabetes Care 2002; 25: 2165–71. 122. American Diabetes Association. Standards of medical care in diabetes – 2019. Diabetes Care 2019; 42; (Suppl. 1): S1–193. 123. Griffin SJ, Borch-Johnsen K, Davies MJ et al. Effect of early intensive multifactorial therapy on 5-year cardiovascular outcomes in individuals with type 2 diabetes detected by screening (ADDITION-Europe): a cluster-randomised trial. Lancet 2011; 378: 156–67. 124. Herman WH, Ye W, Griffin SJ et al. Early detection and treatment of type 2 diabetes reduce cardiovascular morbidity and mortality: a simulation of the results of the Anglo-DanishDutch Study of Intensive Treatment in People with Screen-Detected Diabetes in Primary Care (ADDITION-Europe). Diabetes Care 2015; 38: 1449–55. 125. Johnson SL, Tabaei BP, Herman WH. The efficacy and cost of alternative strategies for systematic screening for type 2 diabetes in the U.S. population 45–74 years of age. Diabetes Care 2005; 28: 307–11 World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate and hyperglycaemia. Report of a WHO/IDF consultation. http:// www.who.int/diabetes/publications/diagnosis_diabetes2006/en/ (June 14 2019). 126. World Health Organization. Use of Ggycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus: abbreviated report of a WHO consultation. http:// www.who.int/diabetes/publications/report-hba1c_2011.pdf (June 14 2019). 127. Opie LH. Metabolic management of acute myocardial infarction comes to the fore and extends beyond control of hyperglycemia. Circulation 2008; 117: 2172–7. 128. Moin T, Schmittdiel JA, Flory JH et al. Review of metformin use for type 2 diabetes prevention. Am J Prev Med 2018; 55: 565–74. 129. Tuomilehto J, Lindstro¨m J, Eriksson JG et al; Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344: 1343–50. 130. Li G, Zhang P, Wang J et al. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: a 23-year follow-up study. Lancet Diabetes Endocrinol 2014;2:474_480. 131. Campion EW, Glynn RJ, Delabry LO. Asymptomatic hyperuricemia. Risks and consequences in the normative aging study. Am J Med 1987; 82 (3): 421–6. DOI: 10.1016/0002-9343(87)90441-4 132. Haig A. On uric acid and arterial tension. Br Med J 1889; 1 (1467): 288–91. DOI: 10.1136/bmj.1.1467.288 133. Alderman MH. Uric acid and cardiovascular risk. Curr Opin Pharmacol 2002; 2 (2): 126–30. DOI: 10.1016/S1471-4892(02)00143-1 134. Johnson RJ, Feig DI, Herrera-Acosta J, Kang DH. Resurrection of uric acid as a causal risk factor in essential hypertension. Hypertension 2005; 45 (1): 18–20. DOI: 10.1161/01.HYP.0000150785.39055.e8 135. Forman JP, Choi H, Curhan GC. Uric acid and insulin sensitivity and risk of hypertension. Arch Intern Med 2009; 169 (2): 155–62. DOI: 10.1001/archinternmed.2008.521 136. Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: The National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum 2011; 63 (10): 3136–41. DOI: 10.1002/art.30520 137. Richette P, Doherty M, Pascual E et al. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann Rheum Dis 2017; 76 (1): 29–42. DOI: 10.1136/annrheumdis-2016-209707 138. Mumford SL, Dasharathy SS, Pollack AZ, et al. Serum uric acid in relation to endogenous reproductive hormones during the menstrual cycle: findings from the BioCycle study. Hum Reprod 2013; 28 (7): 1853–62. DOI: 10.1093/humrep/det085 139. Elisabeth AE, Choi HK. Menopause, postmenopausal hormone use and serum uric acid levels in US women – The Third National Health and Nutrition Examination Survey. Arthritis Res Ther 2008; 10 (5): 1–7. DOI: 10.1186/ar2519 140. Sumino H, Ichikawa S, Kanda T et al. Reduction of serum uric acid by hormone replacement therapy in postmenopausal women with hyperuricaemia. Lancet 1999; 354 (9179): 650. DOI: 10.1016/S0140-6736(99)92381-4 141. Шальнова С.А., Деев А.Д., Артамонова Г.В. и др. Гиперурикемия и ее корреляты в российской популяции (результаты эпидемилогического исследования ЭССЕ-РФ). Рациональная фармакотерапия в кардиологии. 2014; 10 (2): 153–9. [Shal'nova S.A., Deev A.D., Artamonova G.V. et al. Giperurikemiia i ee korreliaty v rossiiskoi populiatsii (rezul'taty epidemilogicheskogo issledovaniia ESSE-RF). Ratsional'naia farmakoterapiia v kardiologii. 2014; 10 (2): 153–9 (in Russian).] 142. Nugent BCA, Tyler FH. The renal excretion of uric acid in patients with gout and in nongouty subjects. t. 1959: 1890–8. 143. Perez-Ruiz F, Calabozo M, Erauskin GG et al. Renal underexcretion of uric acid is present in patients with apparent high urinary uric acid output. Arthritis Rheum 2002; 47 (6): 610–3. DOI: 10.1002/art.10792 144. Ichida K, Matsuo H, Takada T et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun 2012; 3: 764–7. DOI: 10.1038/ncomms1756 145. Choi HK, Soriano LC, Zhang Y, Rodríguez LAG. Antihypertensive drugs and risk of incident gout among patients with hypertension: population based case-control study. BMJ 2012; 344: d8190-d8190. DOI: 10.1136/bmj.d8190 146. Choi HK, Athinson K, Karlson EW, Curhan G. Obesity, weight change, hypertension, diuretic use, and risk of gout in men: The health professionals follow-up study. Arch Intern Med 2005; 165 (7): 742–8. DOI: 10.1001/archinte.165.7.742 147. Pineda C, Amezcua-Guerra LM, Solano C et al. Joint and tendon subclinical involvement suggestive of gouty arthritis in asymptomatic hyperuricemia: An ultrasound controlled study. Arthritis Res Ther 2011; 13 (1): R4. DOI: 10.1186/ar3223 148. Howard R, Pillinger M, Gyftopoulos S. Reproducibility of Musculoskeletal Ultrasound for Determining Monosodium Urate Deposition: Concordance Between Readers. Arthritis Care Res 2011; 63 (10): 1456–62. DOI: 10.1002/acr.20527 149. Dalbeth N, House ME, Aati O et al. Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: A dual energy CT study. Ann Rheum Dis 2015; 74 (5): 908–11. DOI: 10.1136/annrheumdis-2014-206397 150. Kang DH, Nakagawa T, Feng L et al. A role for uric acid in the progression of renal disease. J Am Soc Nephrol 2002; 13 (12): 2888–97. DOI: 10.1097/01.ASN.0000034910.58454.FD 151. Mazzali M, Hughes J, Kim YG et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 2001; 38 (5): 1101–6. DOI: 10.1161/hy1101.092839 152. Langford HG, Blaufox MD, Borhani NO et al. Is Thiazide-Produced Uric Acid Elevation Harmful?: Analysis of Data From the Hypertension Detection and Follow-up Program. Arch Intern Med 1987; 147 (4): 645–9. DOI: 10.1001/archinte.1987.00370040027005 153. Mandal AK, Mount DB. The Molecular Physiology of Uric Acid Homeostasis. Annu Rev Physiol 2015; 77 (1): 323–45. DOI: 10.1146/annurev-physiol-021113-170343 154. Khanna D, Fitzegarld J, Khanna P et al. 2012 American College of Rheumatology Guidelines for Management of Gout Part I: Systematic Non-pharmacologic and Pharmacologic Therapeutic Approaches to Hyperuricemia. Arthritis Care Res 2012; 64 (10): 1431–46. DOI: 10.1002/acr.21772. 155. Hui M, Carr A, Cameron S et al. The British Society for Rheumatology Guideline for the Management of Gout. Rheumatology. 2017; 56 (7): 1246. DOI: 10.1093/rheumatology/kex250. 156. Fotherby MD, Potter JF. Metabolic and orthostatic blood pressure responses to a low-sodium diet in elderly hypertensives. J Hum Hypertens 1997; 11 (6): 361–6, in Pubmed: 9249230. 157. Singh JA, Reddy SG, Kundukulam J. Risk factors for gout and prevention: a systematic review of the literature. Curr Opin Rheumatol 2011; 23 (2): 192–202. DOI: 10.1097/BOR.0b013e3283438e13, in Pubmed: 21285714. 158. Jansen TLTA, Janssen M. Gout lessons from 2018: CARES, a direct comparison of febuxostat vs allopurinol, and CANTOS, IL1 blocker for cardiovascular risk minimisation. Clin Rheumatol 2019; 38 (1): 263–5. DOI: 10.1007/s10067-018-4396-4 159. Thanassoulis G, Brophy JM, Richard H et al. Gout, allopurinol use, and heart failure outcomes. Arch Intern Med 2010; 170 (15): 1358–64. DOI: 10.1001/archinternmed.2010.198, in Pubmed: 20696962 160. Schumacher HR, Becker MA, Wortmann RL et al. Effects of febuxostat versus allopurinol and placebo in reducing serum urate in subjects with hyperuricemia and gout: A 28-week, phase III, randomized, double-blind, parallel-group trial. Arthritis Care Res 2008; 59 (11): 1540–8. DOI: 10.1002/art.24209 161. Taylor TH, Mecchella JN, Larson RJ et al. Initiation of allopurinol at first medical contact for acute attacks of gout: A randomized clinical trial. Am J Med 2012; 125 (11): 1126–34.e7. DOI: 10.1016/j.amjmed.2012.05.025 162. Perez-Ruiz F, Herrero-Beites AM, Carmona L. A two-stage approach to the treatment of hyperuricemia in gout: The “dirty Dish” hypothesis. Arthritis Rheum 2011; 63 (12): 4002–6. DOI: 10.1002/art.30649 163. Würzner G, Gerster J-C, Chiolero A et al. Comparative effects of losartan and irbesartan on serum uric acid in hypertensive patients with hyperuricaemia and gout. J Hypertens 2001; 19 (10). https://journals.lww.com/jhypertension/Fulltext/2001/10000/Comparative_effects_of_losartan_and_irbes.... 164. Метельская В.А., Шальнова С.А., Деев А.Д. и др. Анализ распространенности показателей, характеризующих атерогенность спектра липопротеинов, у жителей Российской Федерации (по данным исследования ЭССЕ-РФ). Профилактическая медицина. 2016; 19 (1): 15–23. [Metel'skaia V.A., Shal'nova S.A., Deev A.D. i dr. Analiz rasprostranennosti pokazatelei, kharakterizuiushchikh aterogennost' spektra lipoproteinov, u zhitelei Rossiiskoi Federatsii (po dannym issledovaniia ESSE-RF). Profilakticheskaia meditsina. 2016; 19 (1): 15–23 (in Russian).] 165. Ежов М.В., Бажан С.С. Ершова А.И. и др. Клинические рекомендации по семейной гиперхолестеринемиию Атеросклероз и дислипидемии. 2019; 1 (34): 5–43. [Ezhov M.V., Bazhan S.S. Ershova A.I. i dr. Klinicheskie rekomendatsii po semeinoi giperkholesterinemiiiu Ateroskleroz i dislipidemii. 2019; 1 (34): 5–43. (in Russian).] 166. Langsted A, Nordestgaard BG. Nonfasting versus fasting lipid profile for cardiovascular risk prediction. Pathology 2019; 51 (2): 131–41. DOI: 10.1016/j.pathol.2018.09.062 167. Mach F, Baigent C, Catapano AL et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41 (1): 111–88. DOI: doi/10.1093/eurheartj/ehz455 168. Langsted A, Nordestgaard BG. Nonfasting Lipids, Lipoproteins, and Apolipoproteins in Individuals with and without Diabetes: 58 434 Individuals from the Copenhagen General Population Study. Clin Chem 2010; 57 (3): 482–9. DOI: 10.1373/clinchem.2010.157164 169. Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent C, Blackwell L, Emberson J et al. Cholesterol Treatment Trialists' (CTT) Collaboration. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet 2010; 376 (9753): 1670–81. 170. Cholesterol Treatment Trialists’ (CTT) Collaborators, Mihaylova B, Emberson J, Blackwell L et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 2012; 380: 581–90. 171. Giugliano RP, Cannon CP, Blazing MA et al; IMPROVE-IT Investigators. Benefit of adding ezetimibe to statin therapy on cardiovascular outcomes and safety in patients with versus without diabetes mellitus: results from IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial). Circulation 2018;137: 1571–82. 172. Cannon CP, Blazing MA, Giugliano RP et al, IMPROVE-IT Investigators. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 2015; 372: 2387–97. 173. Sabatine MS, Giugliano RP, Keech AC et al, Fourier Steering Committee and Investigators. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 2017; 376: 1713–22. 174. Sabatine MS, Leiter LA, Wiviott SD et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol 2017; 5: 941–50. 175. Schwartz GG, Steg PG, Szarek M et al, Odyssey Outcomes Committees and Investigators. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med 2018; 379: 2097–107. 176. Ray KK, Colhoun HM, Szarek M et al, Committees OO, Investigators. Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial. Lancet Diabetes Endocrinol 2019; 7: 618–28. 177. Moriarty PM, Thompson PD, Cannon CP et al, ODYSSEY ALTERNATIVE Investigators. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: The ODYSSEY ALTERNATIVE randomized trial. J Clin Lipidol 2015; 9: 758769 178. Nissen SE, Stroes E, Dent-Acosta RE et al, Gauss-3 Investigators. Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance: the GAUSS-3 randomized clinical trial. JAMA 2016; 315: 15801590 179. Schreml J, Gouni-Berthold I. Role of anti-PCSK9 antibodies in the treatment of patients with statin intolerance. Curr Med Chem 2018; 25: 15381548. 180. National Center for Health Statistics, Division of Health Interview Statistics. Crude and age-adjusted percentage of civilian, noninstitutionalized adults with diagnosed diabetes, United States, 1980– 2010. National Center for Chronic Disease Prevention and Health Promotion, Ed. Atlanta, GA, Centers for Disease Control and Prevention, Division of Diabetes Translation, 2012. 181. Obesity collaborators GBD, Afshin A, Forouzanfar MH, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 2017; 377: 13–27. 182. Mohammad G. Saklayen The Global Epidemic of the Metabolic. Syndrome. Curr Hypertens Rep 2018; 20: 12. 183. Grundy SM. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 2008; 28: 629–36. 184. Mendrick DL, Diehl AM, Topor LS et al. Metabolic Syndrome and Associated Diseases: From the Bench to the Clinic. Toxicol Sci 2018; 162 (1): 36–42. 185. Lakka HM, Laaksonen DЈ, Lakka ТА et al. The metabolic syndrome and total cardiovascular disease mortality in middle-aged men. JAMA 2002; 288 (21): 2709–16. 186. Isomaa B et al. Botnia study. Diabetes Care 2005; 683–9. 187. Eschwege E. The dysmetabolic syndrome, insulin resistance and increased cardiovascular morbidity and mortality in type 2 diabetes: etiological factors in the development of CV complications. Diabetes Metab 2003; 29: 19–27. 188. Linz D, Woehrle H, Bitter T et al. The importance of sleep-disordered breathing in cardiovascular disease. Clin Res Cardiol 2015; 104: 705–18. 189. Young T, Palta M, Dempsey J et al. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 1993; 328 (17): 1230–5. 190. Apilak Worachartcheewan, Nalini Schaduangrat, Virapong Prachayasittikul, Chanin Nantasenamat. Data mining for the identification of metabolic syndrome status. EXCLI J 2018; 17: 72–88. 191. Rauscher H, Formanek D, Popp W et al. Nasal CPAP and weight loss in hypertensive patients with obstructive sleep apnoea. Thorax 1993; 48: 529–33. 192. Kajaste S, Brander PE, Telakivi T et al. A cognitive-behavioral weight reduction program in the treatment of obstructive sleep apnea syndrome with or without initial nasal CPAP: a randomized study. Sleep Med 2004; 5: 125–31. 193. Sampol G, Munoz X, Sagales MT et al. Long-term efficacy of dietary weight loss in sleep apnoea/hypopnea syndrome. Eur Respir J 1998; 12: 1156–9. 194. Guardiano SA, Scott JA, Ware JC et al. The Long-Term Results of Gastric Bypass on Indexes of Sleep Apnea. Chest 2003; 124: 1615–9. 195. Scheuller M, Weider D. Bariatric surgery for treatment of sleep apnea syndrome in 15 morbidly obese patients: Long-term results. Otolaryngol Head Neck Surg 2001; 125: 299-302. 196. Valencia-Flores M, Orea A, Herrera M et al. Effect of Bariatric Surgery on Obstructive Sleep Apnea and Hypopnea Syndrome, Electrocardiogram, and Pulmonary Arterial Pressure. Obes Surg 2004; 14: 755–62. 197. Buchwald H, Avidor Y, Braundwald E et al. Bariatric surgery: a systematic review and meta-analysis. JAMA 2004; 292: 1724–37. 198. Williams B, Mancia G, Spiering W et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens 2018; 36 (10): 1953–2041. 199. Сукмарова З.Н., Литвин А.Ю., Чазова И.Е., Рогоза А.Н. Эффективность комплексной медикаментозной и CPAP-терапии у пациентов с артериальной гипертонией 2–3-й степени и тяжелой степенью синдрома обструктивного апноэ во время сна. ФГУ РКНПК Минздравсоцразвития РФ, Москва. Системные гипертензии. 2011; 8 (1): 40. [Sukmarova Z.N., Litvin A.Iu., Chazova I.E., Rogoza A.N. Effektivnost' kompleksnoi medikamentoznoi i CPAP-terapii u patsientov s arterial'noi gipertoniei 2–3-i stepeni i tiazheloi stepen'iu sindroma obstruktivnogo apnoe vo vremia sna. FGU RKNPK Minzdravsotsrazvitiia RF, Moskva. Systemic Hypertension. 2011; 8 (1): 40 (in Russian).] 200. International Diabetes Federation. IDF Diabetes Atlas. 9th ed. IDF, 2019. 201. International Diabetes Federation. IDF Diabetes Atlas. 4th ed. IDF, 2009. 202. Дедов И.И., Шестакова М.В., Викулова О.К. и др. Атлас регистра сахарного диабета Российской Федерации. Статус 2018 г. Сахарный диабет. 2019; 22 (2S): 4–61. [Dedov I.I., Shestakova M.V., Vikulova O.K. et al. Atlas registra sakharnogo diabeta Rossiiskoi Federatsii. Status 2018 g. Sakharnyi diabet. 2019; 22 (2S): 4–61 (in Russian).] 203. Дедов И.И., Шестакова М.В., Галстян Г.Р. Распространенность сахарного диабета 2 типа у взрослого населения России (исследование NATION). Сахарный диабет. 2016; 19 (2): 104–12. [Dedov I.I., Shestakova M.V., Galstian G.R. Rasprostranennost' sakharnogo diabeta 2 tipa u vzroslogo naseleniia Rossii (issledovanie NATION). Sakharnyi diabet. 2016; 19 (2): 104–12 (in Russian).] 204. World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications : report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus. Geneva; 1999. 205. World Health Organization, International Diabetes Federation. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia. Report of a WHO/IDF consultation. Geneva, 2006. 206. Дедов И.И., Шестакова М.В., Аметов А.С. и др. Инициация и интенсификация сахароснижающей терапии у больных сахарным диабетом 2 типа: обновление консенсуса совета экспертов Российской ассоциации эндокринологов (2015). Сахарный диабет. 2015; 18 (1): 5–23. [Dedov I.I., Shestakova M.V., Ametov A.S. i dr. Initsiatsiia i intensifikatsiia sakharosnizhaiushchei terapii u bol'nykh sakharnym diabetom 2 tipa: obnovlenie konsensusa soveta ekspertov Rossiiskoi assotsiatsii endokrinologov (2015). Sakharnyi diabet. 2015; 18 (1): 5–23. (in Russian).] 207. Davies MJ, D'Alessio DA, Fradkin J et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2018; 61 (12): 2461–98. DOI: 10.1007/s00125-018-4729-5 208. Garber AJ, Abrahamson MJ, Barzilay JI et al. Consensus statement by the american association of clinical endocrinologists and american college of endocrinology on the comprehensive type 2 diabetes management algorithm – 2019 executive summary. Endocr Pract 2019; 25 (1): 69–100. 209. FDA Drug Safety Communication: FDA requires removal of some prescribing and dispensing restrictions for rosiglitazone-containing diabetes medicines. https://www.fda.gov/drugs/drugsafety/ucm376389.htm 210. Dormandy JA, Charbonnel B, Eckland DJ et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005; 366 (9493): 1279–89. 211. Kernan WN, Viscoli CM, Furie KL et al. Pioglitazone after Ischemic Stroke or Transient Ischemic Attack. N Engl J Med 2016; 374 (14): 1321–31. 212. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352 (9131): 837–53. 213. ADVANCE Collaborative Group, Patel A, MacMahon S et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008; 358: 2560–72. 214. Matthews DR, Paldánius PM, Proot P et al. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial. Lancet 2019; 394 (10208): 1519–29. 215. Scirica BM, Bhatt DL, Braunwald E et al. Saxagliptin and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus. N Engl J Med 2013; 369 (14): 1317–26. 216. White WB, Cannon CP, Heller SR et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 2013; 369 (14): 1327–35. 217. Green JB, Bethel MA, Armstrong PW et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2015; 373 (3): 232–42. 218. Rosenstock J, Perkovic V, Johansen OE et al. Effect of Linagliptin vs Placebo on Major Cardiovascular Events in Adults With Type 2 Diabetes and High Cardiovascular and Renal Risk: The CARMELINA Randomized Clinical Trial. JAMA 2019; 321 (1): 69–79. 219. Marso SP, Daniels GH, Brown-Frandsen K et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2016; 375 (4): 311–22. 220. Marso SP, Bain SC, Consoli A et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med 2016; 375 (19): 1834–44. 221. Gerstein HC, Colhoun HM, Dagenais GR et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 2019; 394 (10193): 121–30. 222. Mann JFE, Ørsted DD, Brown-Frandsen K et al. Liraglutide and Renal Outcomes in Type 2 Diabetes. N Engl J Med 2017; 377 (9): 839–48. 223. Gerstein HC, Colhoun HM, Dagenais GR et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet 2019; 394 (10193): 131–8. 224. Zinman B, Wanner C, Lachin JM et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 2015; 373 (22): 2117–28. 225. Neal B, Perkovic V, Mahaffey KW et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med 2017; 377 (7): 644–57. 226. Wiviott SD, Raz I, Bonaca MP et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2019; 380 (4): 347–57. 227. Furtado RHM, Bonaca MP, Raz I et al. Dapagliflozin and Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus and Previous Myocardial Infarction. Circulation 2019; 139 (22): 2516–27. 228. Zelniker TA, Wiviott SD, Raz I et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019; 393 (10166): 31–9. 229. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998; 352 (9131): 854–65. 230. Wanner C, Inzucchi SE, Lachin JM et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med 2016; 375 (4): 323–34. 231. Perkovic V, Jardine MJ, Neal B et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med 2019; 380 (24): 2295–306. 232. McMurray JJV, Solomon SD, Inzucchi SE et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019; 381: 1995–2008. 233. Arab JP, Karpen SJ, Dawson PA et al. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology 2017; 65 (1): 350–62. DOI: 10.1002/hep.28709 234. Phase IIa clinical trial of chiglitazar completed. Chipscreen biosciences. 2007. http://www.chipscreen.com/News/201309140810501322442224.html. Accessed 15 Aug 2016. 235. Gerich JE. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med 2010; 27: 136–42. 236. Hediger MA, Rhoads DB. Molecular physiology of sodium–glucose cotransporters. Physiol Rev 1994; 74: 993–1026. 237. Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev 2011; 91: 733–94. 238. Clinical trials: sotagliflozin (LX4211). Lexicon pharmaceuticals. 2016. http://www.lexpharma.com/pipeline/lx4211.html. Accessed 23 Aug 2016. 239. Tan T, Bloom S. Gut hormones as therapeutic agents in treatment of diabetes and obesity. Curr Opin Pharmacol 2013; 13: 996–1001. 240. Mancini AD, Poitout V. GPR40 agonists for the treatment of type 2 diabetes: life after ‘TAKing’ a hit. Diabetes Obes Metab 2015; 17: 622–9. 241. Bharate SB, Nemmani KV, Vishwakarma RA. Progress in the discovery and development of small-molecule modulators of G-protein-coupled receptor 40 (GPR40/FFA1/FFAR1): an emerging target for type 2 diabetes. Expert Opin Ther Pat 2009; 19: 237–64. 242. Friedrich Mittermayer, Erica Caveney, Claudia De Oliveira et al. Addressing Unmet Medical Needs in Type 2 Diabetes: A Narrative Review of Drugs under Development. Curr Diabetes Rev 2015; 11 (1): 17–31. 243. Siebenhofer A, Jeitler K, Horvath K et al. Long-term effects of weight-reducing drugs in hypertensive patients (Review). The Cochrane Library 2013, Issue 3. 244. Franz MJ, Boucher JL, Rutten-Ramos S, VanWormer JJ. Lifestyle weight-loss intervention outcomes in overweight and obese adults with type 2 diabetes: a systematic review and meta-analysis of randomized clinical trials. J Acad Nutr Diet 2015; 115: 1447–63. 245. Wang P, Smith SE, Garg R et al. Identification of monosodium urate crystal deposits in patients with asymptomatic hyperuricemia using dual-energy CT. RMD Open 2018; 4 (1): 1–6. DOI: 10.1136/rmdopen-2017-000593 246. Feher MD, Hepburn AL, Hogarth MB et al. Fenofibrate enhances urate reduction in men treated with allopurinol for hyperuricaemia and gout. Rheumatology 2003; 42 (2): 321–5. DOI: 10.1093/rheumatology/keg103 247. Cosentino F, Grant PJ, Aboyans V et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 2020; 41 (2): 255–323. DOI: 10.1093/eurheartj/ehz486. 248. Holman RR, Paul SK, Bethel MA et al. 10-Year Follow-up of Intensive Glucose Control in Type 2 Diabetes. N Engl J Med 2008; 359 (15): 1577–89. 249. Maruthur NM, Tseng E, Hutfless S et al. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 2016; 164: 740–51. 250. Мустафина С.В., Рымар О.Д., Сазонова О.В. и др. Валидизация финской шкалы риска «FINDRISC» на европеоидной популяции Сибири. Сахарный диабет. 2016; 19 (2): 113–8. [Mustafina S.V., Rymar O.D., Sazonova O.V. i dr. Validizatsiia finskoi shkaly riska "FINDRISC' na evropeoidnoi populiatsii Sibiri. Sakharnyi diabet. 2016; 19 (2): 113–8 (in Russian).] 251. Kannangara DRW, Ramasamy SN, Indraratna PL et al. Fractional clearance of urate: Validation of measurement in spot-urine samples in healthy subjects and gouty patients. Arthritis Res Ther 2012; 14 (4): R189. DOI: 10.1186/ar4020 252. Roddy E, Choi H. Epidemiology of Gout. Rheum Dis Clin North Am 2014; 40 (2): 155–75. DOI: 10.1016/j.rdc.2014.01.001 253. Dennis M, Benos DJ, Editor D et al. Physiology in medicine: a series of articles linking medicine with science Review Pathogenesis of Gout. Ann Intern Med 2005; 143 (7): 499–516. DOI: 10.7326/0003-4819-143-7-200510040-00009
________________________________________________
1. Muromtseva G.A., Kontsevaia A.V., Konstantinov V.V. et al. Rasprostranennost' faktorov riska neinfektsionnykh zabolevanii v rossiiskoi populiatsii v 2012–2013 gg. Rezul'taty issledovaniia ESSE-RF. Kardiovaskuliarnaia terapiia i profilaktika. 2014; 13 (6): 4–11 (in Russian). 2. Zhernakova Iu.V., Chazova I.E., Oshchepkova E.V. et al. Rasprostranennost' sakharnogo diabeta v populiatsii bol'nykh arterial'noi gipertoniei. Po dannym issledovaniia ESSE-RF. Systemic Hypertension. 2018; 15 (1): 56–62 (in Russian). 3. Oshchepkova E.V., Lazareva N.V., Chazova I.E. Otsenka kachestva obsledovaniia bol'nykh arterial'noi gipertoniei v pervichnom zvene zdravookhraneniia (po dannym rossiiskogo Registra arterial'noi gipertonii). Systemic Hypertension. 2017; 14 (2): 29–35 (in Russian). 4. Piepoli MF, Hoes AW, Agewall S et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice. Eur Heart J 2016; 37: 2315–81. 5. Boitsov S.A., Pogosova N.V., Bubnova M.G. et al. Kardiovaskuliarnaia profilaktika 2017. Rossiiskie natsional'nye rekomendatsii. Ros. kardiolog. zhurn. 2018; 23 (6): 7–122 (in Russian). 6. Cosentino F, Grant PJ, Aboyans V et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD) European Heart Journal 2019; 1-69 7. Chazova I.E., Zhernakova Iu.V. ot imeni ekspertov. Klinicheskie rekomendatsii. Diagnostika i lechenie arterial'noi gipertonii. Systemic Hypertension. 2019; 16 (1): 6–31 (in Russian). 8. Aktas MK, Ozduran V, Pothier CE et al. Global risk scores and exercise testing for predicting all-cause mortality in a preventive medicine program. JAMA 2004; 292: 1462–8. 9. Chazova I.E. i dr. Rasprostranennost' faktorov riska serdechno-sosudistykh zabolevanii v rossiiskoi populiatsii bol'nykh arterial'noi gipertoniei. Kardiologiia. 2014; 10 (54): 4–12. (in Russian). 10. Sharma AM. Is there a rational for angiotensin blockade in the management of obesity hypertension. Hypertension 2004; 44: 12–9. 11. Peppard PE, Young T, Palta M et al. Prospective study of the association between sleep-disodeaders breathing and hypertension. N Eng J Med 2000; 342: 1378–84. 12. Siebenhofer A, Jeitler K, Horvath K et al. Long-term effect of weight reducing drug in people with hypertension. Cochraine Database Syst Rev 2016; 3: CD007654. 13. Lambert E, Sari CI, Dawood T et al. Sympathetic nervous system activity is associated with obesity-induced subclinical organ damage in young adults. Hypertension 2010; 56 (3): 351–8. 14. Lambert GW, Straznicky NE, Lambert EA et al. Sympathetic nervous activation in obesity and the metabolic syndrome – causes, consequences and therapeutic implications. Pharmacol Ther 2010; 126 (2): 159–72. 15. Vasilios Kotsis, Jens Jordan, Dragan Micic et al. Obesity and cardiovascular risk: a call for action from the European Society of Hypertension Working Group of Obesity, Diabetes and the High-risk Patient and European Association for the Study of Obesity: partA: mechanisms of obesity induced hypertension, diabetes and dyslipidemia and practice guidelines for treatment. J Hypertens 2018; 36: 1427–40. 16. Johnson AK, Xue B. Central nervous system neuroplasticity and the sensitization of hypertension. Nat Rev Nephrol 2018; 14 (12): 750–66. 17. McManus RJ, Mant J, Franssen M et al; TASMINH Investigators. Efficacy of self-monitored blood pressure, with or without telemonitoring, for titration of antihypertensive medication (TASMINH4): an unmasked randomised controlled trial. Lancet 2018; 391: 949–59. 18. Mancia G, Facchetti R, Bombelli M et al. Long-term risk of mortality associated with selective and combined elevation in office, home, and ambulatory blood pressure. Hypertension 2006; 47: 846–53. 19. Valensi P, Lorgis L, Cottin Y. Prevalence, incidence, predictive factors and prognosis of silent myocardial infarction: a review of the literature. Arch Cardiovasc Dis 2011; 104: 178–88. 20. Hadaegh F, Ehteshami-Afshar S, Hajebrahimi MA et al. Silent coronary artery disease and incidence of cardiovascular and mortality events at different levels of glucose regulation; results of greater than a decade follow-up. Int J Cardiol 2015; 182: 334–9. 21. Katakami N, Mita T, Gosho M et al. Clinical utility of carotid ultrasonography in the prediction of cardiovascular events in patients with diabetes: a combined analysis of data obtained in five longitudinal studies. J Atheroscler Thromb 2018; 25: 1053–66. 22. Kavousi M, Desai CS, Ayers C et al. Prevalence and prognostic implications of coronary artery calcification in low-risk women: a meta-analysis. JAMA 2016; 316: 2126–34. 23. Lorenz MW, Polak JF, Kavousi M et al. PROG-IMT Study Group. Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): a meta-analysis of individual participant data. Lancet 2012; 379: 2053–62. 24. Valenti V, Hartaigh BO, Cho I et al. Absence of coronary artery calcium identifies asymptomatic diabetic individuals at low near-term but not long-term risk of mortality: a 15-year follow-up study of 9715 patients. Circ Cardiovasc Imaging 2016; 9: e003528. 25. Wackers FJ, Young LH, Inzucchi SE et al. Detection of Ischemia in Asymptomatic Diabetics Investigators. Detection of silent myocardial ischemia in asymptomatic diabetic subjects: the DIAD study. Diabetes Care 2004; 27: 1954–61. 26. Zellweger MJ, Maraun M, Osterhues HH et al. Progression to overt or silent CAD in asymptomatic patients with diabetes mellitus at high coronary risk: main findings of the prospective multicenter BARDOT trial with a pilot randomized treatment substudy. JACC Cardiovasc Imaging 2014; 7: 1001–10. 27. Lièvre MM, Moulin P, Thivolet C et al, DYNAMIT investigators. Detection of silent myocardial ischemia in asymptomatic patients with diabetes: results of a randomized trial and metaanalysis assessing the effectiveness of systematic screening. Trials 2011; 12: 23. 28. Clerc OF, Fuchs TA, Stehli J et al. Non-invasive screening for coronary artery disease in asymptomatic diabetic patients: a systematic review and meta-analysis of randomised controlled trials. Eur Heart J Cardiovasc Imaging 2018; 19: 838–46. 29. Muhlestein JB, Lappe DL, Lima JA et al. Effect of screening for coronary artery disease using CT angiography on mortality and cardiac events in high-risk patients with diabetes: the FACTOR-64 randomized clinical trial. JAMA 2014; 312: 2234–43. 30. Young LH, Wackers FJ, Chyun DA et al; DIAD Investigators. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA 2009; 301: 1547–55. 31. Faglia E, Manuela M, Antonella Q et al. Risk reduction of cardiac events by screening of unknown asymptomatic coronary artery disease in subjects with type 2 diabetes mellitus at high cardiovascular risk: an open-label randomized pilot study. Am Heart J 2005; 149: e1–e6. 32. Turrini F, Scarlini S, Mannucci C et al. Does coronary Atherosclerosis Deserve to be Diagnosed earlY in Diabetic patients? The DADDY-D trial. Screening diabetic patients for unknown coronary disease. Eur J Intern Med 2015; 26: 407–13. 33. Hanssen NM, Huijberts MS, Schalkwijk CG et al. Associations between the ankle-brachial index and cardiovascular and allcause mortality are similar in individuals without and with type 2 diabetes: nineteen-year follow-up of a population-based cohort study. Diabetes Care 2012; 35: 1731–5. 34. Malik S, Budoff MJ, Katz R et al. Impact of subclinical atherosclerosis on cardiovascular disease events in individuals with metabolic syndrome and diabetes: the multi-ethnic study of atherosclerosis. Diabetes Care 2011; 34: 2285–90. 35. Den Ruijter HM, Peters SA, Anderson TJ et al. Common carotid intimamedia thickness measurements in cardiovascular risk prediction: a meta-analysis. JAMA 2012; 308: 796–803. 36. Emerging Risk Factors Collaboration. Kaptoge S, Di Angelantonio E, Pennells L et al. Creactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med 2012; 367: 1310–20. 37. Perkovic V, Verdon C, Ninomiya T et al. The relationship between proteinuria and coronary risk: a systematic review and meta-analysis. PLoS Med 2008; 5 (10): e207. 38. Gaede P, Vedel P, Parving HH, Pedersen O. Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study. Lancet 1999; 353: 617–22. 39. Gaede P, Oellgaard J, Carstensen B et al. Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno- 2 randomised trial. Diabetologia 2016; 59: 2298–307. 40. De Buyzere ML, Clement DL. Management of hypertension in peripheral arterial disease. Prog Cardiovasc Dis 2008; 50: 238–63. 41. Lewington S, Clarke R, Qizilbash N et al. Age-specific relevance of usual blood pressure to vascular mortality: a metaanalysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903–13. 42. Thomopoulos C, Parati G, Zanchetti A. Effects of blood-pressure-lowering treatment on outcome incidence in hypertension: 10 – Should blood pressure management differ in hypertensive patients with and without diabetes mellitus? Overview and meta-analyses of randomized trials. J Hypertens 2017; 35: 922–44. 43. D’Agostino RB Sr, Vasan RS, Pencina MJ et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008; 117: 743–53. 44. Perk J, De Backer G, Gohlke H et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012): The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J 2012; 33: 1635–701. 45. Sundstrom J, Arima H, Jackson R et al, Blood Pressure-Lowering Treatment Trialists’ Collaboration. Effects of blood pressure reduction in mild hypertension: a systematic review and meta-analysis. Ann Intern Med 2015; 162: 184–91. 46. Lonn EM, Bosch J, Lopez-Jaramillo P, Zhu J et al, HOPE-3 Investigators. Blood-pressure lowering in intermediate-risk persons without cardiovascular disease. N Engl J Med 2016; 374: 2009–20. 47. Zanchetti A, Grassi G, Mancia G. When should antihypertensive drug treatment be initiated and to what levels should systolic blood pressure be lowered? A critical reappraisal. J Hypertens 2009; 27: 923–34. 48. Brunstrom M, Carlberg B. Association of blood pressure lowering with mortality and cardiovascular disease across blood pressure levels: a systematic review and meta-analysis. JAMA Intern Med 2018; 178: 28–36. 49. Wald DS, Law M, Morris JK et al. Combination therapy versus monotherapy in reducing blood pressure: meta-analysis on 11,000 participants from 42 trials. Am J Med 2009; 122: 290–300. 50. MacDonald TM, Williams B, Webb DJ et al, British Hypertension Society Programme of Prevention And Treatment of Hypertension With Algorithm-based Therapy (PATHWAY). Combination therapy is superior to sequential monotherapy for the initial treatment of hypertension: a double-blind randomized controlled trial. J Am Heart Assoc 2017; 6: e006986. 51. Thomopoulos C, Parati G, Zanchetti A. Effects of blood-pressure-lowering treatment in hypertension: 9. Discontinuations for adverse events attributed to different classes of antihypertensive drugs: meta-analyses of randomized trials. J Hypertens 2016; 34: 1921–32. 52. Yusuf S, Lonn E, Pais P et al, HOPE-3 Investigators. Blood-pressure and cholesterol lowering in persons without cardiovascular disease. N Engl J Med 2016; 374: 2032–43. 53. Corrao G, Zambon A, Parodi A et al. Discontinuation of and changes in drug therapy for hypertension among newly-treated patients: a population-based study in Italy. J Hypertens 2008; 26: 819–24. 54. Gupta AK, Arshad S, Poulter NR. Compliance, safety, and effectiveness of fixed-dose combinations of antihypertensive agents: a meta-analysis. Hypertension 2010; 55: 399–407. 55. Weir MR, Hsueh WA, Nesbitt SD et al. A titrate-to-goal study of switching patients uncontrolled on antihypertensive monotherapy to fixed-dose combinations of amlodipine and olmesartan medoxomil ± hydrochlorothiazide. J Clin Hypertens (Greenwich) 2011; 13: 404–12. 56. Volpe M, Christian Rump L, Ammentorp B, Laeis P. Efficacy and safety of triple antihypertensive therapy with the olmesartan/amlodipine/hydrochlorothiazide combination. Clin Drug Investig 2012; 32: 649–64. 57. Williams B, MacDonald TM, Morant S et al, British Hypertension Society’s PATHWAY Studies Group. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet 2015; 386: 2059–68. 58. Ettehad D, Emdin CA, Kiran A et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 2016; 387: 957–67. 59. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure-lowering on outcome incidence in hypertension: 5. Head-to-head comparisons of various classes of antihypertensive drugs – overview and meta-analyses. J Hypertens 2015; 33: 1321–41. 60. Emdin CA, Rahimi K, Neal B et al. Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA 2015; 313: 603–15. 61. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension: 7. Effects of more vs. less intensive blood pressure lowering and different achieved blood pressure levels – updated overview and meta-analyses of randomized trials. J Hypertens 2016; 34: 613–22. 62. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension: 2. Effects at different baseline and achieved blood pressure levels–overview and meta-analyses of randomized trials. J Hypertens 2014; 32: 2296–304. 63. Zoungas S, Chalmers J, Neal B et al; ADVANCE-ON Collaborative Group. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N Engl J Med 2014; 371: 1392–1406. 64. Williams B, Mancia G, Spiering W et al; ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018; 39: 3021–104. 65. Holman RR, Paul SK, Bethel MA et al. Long-term follow-up after tight control of blood pressure in type 2 diabetes. N Engl J Med 2008; 359: 1565–76. 66. McBrien K, Rabi DM, Campbell N et al. Intensive and standard blood pressure targets in patients with type 2 diabetes mellitus: systematic review and meta-analysis. Arch Intern Med 2012; 172: 1296–1303. 67. Xie X, Atkins E, Lv J et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet 2016; 387: 435–43. 68. Sacks FM, Svetkey LP, Vollmer WM et al; DASHSodium Collaborative Research Group. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N Engl J Med 2001; 344: 3–10. 69. Kastorini CM, Milionis HJ, Esposito K et al. The effect of Mediterranean diet on metabolic syndrome and its components: a meta-analysis of 50 studies and 534,906 individuals. J Am Coll Cardiol 2011; 57: 1299–1313. 70. Toledo E, Hu FB, Estruch R et al. Effect of the Mediterranean diet on blood pressure inthe PREDIMED trial: results from a randomized controlled trial. BMC Med 2013; 11: 207. 71. Lindholm LH, Ibsen H, Dahlof B et al; LIFE Study Group. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002; 359: 1004–1010. 72. Niskanen L, Hedner T, Hansson L et al; CAPPP Study Group. Reduced cardiovascular morbidity and mortality in hypertensive diabetic patients on first-line therapy with an ACE inhibitor compared with a diuretic/beta-blocker-based treatment regimen: a subanalysis of the Captopril Prevention Project. Diabetes Care 2001; 24: 2091–96. 73. Ostergren J, Poulter NR, Sever PS et al; ASCOT Investigators. The Anglo-Scandinavian Cardiac Outcomes Trial: blood pressure-lowering limb: effects in patients with type II diabetes. J Hypertens 2008; 26: 2103–11. 74. Weber MA, Bakris GL, Jamerson K et al; ACCOMPLISH Investigators. Cardiovascular events during differing hypertension therapies in patients with diabetes. J Am Coll Cardiol 2010; 56: 77–85. 75. Tocci G, Paneni F, Palano F et al. Angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers and diabetes: a meta-analysis of placebo-controlled clinical trials. Am J Hypertens 2011; 24: 582–90. 76. DREAM Trial Investigators, Bosch J, Yusuf S, Gerstein HC et al. Effect of ramipril on the incidence of diabetes. N Engl J Med 2006; 355: 1551–62. 77. NAVIGATOR Study Group, McMurray JJ, Holman RR, Haffner SM et al. Effect of valsartan on the incidence of diabetes and cardiovascular events. N Engl J Med 2010; 362: 1477–90. 78. World Health Organization. Obesity: preventing and managing the global epidemic. Geneva: WHO, 1997. Kardiovaskuliarnaia terapiia i profilaktika. 2014; 13 (6): 4–11. 79. Stamler J. Epidemic Obesity in the United States. Arch Intern Med 1993; 153 (9): 1040–4. 80. Chandra A, Neeland IJ, Berry JD et al. The relationship of body mass and fat distribution with incident hypertension: Observations from the dallas heart study. J Am Coll Cardiol 2014; 64 (10): 997–1002. 81. Booth HP, Prevost AT, Gulliford MC. Severity of obesity and management of hypertension, hypercholesterolaemia and smoking in primary care: population-based cohort study. J Hum Hypertens 2016; 30: 40–5. 82. Boitsov S.A., Balanova Iu.A., Shal'nova S.A. i dr. Arterial'naia gipertoniia sredi lits 25–64 let: rasprostranennost', osvedomlennost', lechenie i kontrol'. Po materialam issledovaniia ESSE. Kardiovaskuliarnaia terapiia i profilaktika. 2014; 14 (4): 4–14 (in Russian). 83. Lim K, Jackson KL, Sata Y et al. Factors Responsible for Obesity-Related Hypertension. Curr Hypertens Rep 2017; 19 (7): 53. 84. Hall JE, do Carmo JM, da Silva AA et al. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res 2015; 116: 991–1006. 85. Neter JE, Stam BE, Kok FJ et al. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension 2003; 42: 878–84. 86. Jebb SA, Ahern AL, Olson AD et al. Primary care referral to a commercial provider for weight loss treatment versus standard care: a randomised controlled trial. Lancet 2011; 378: 1485–92. 87. Prospective Studies Collaboration, Whitlock G, Lewington S, Sherliker P et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 2009; 373: 1083–96. 88. Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 2013; 309: 71–82. 89. Global BMI Mortality Collaboration, Di Angelantonio E, Bhupathiraju Sh N, Wormser D et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 2016; 388: 776–86. 90. Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc 2013; 2: e004473. 91. Leitzmann MF, Park Y, Blair A et al. Physical activity recommendations and decreased risk of mortality. Arch Intern Med 2007; 167: 2453–60. 92. Rossi A, Dikareva A, Bacon SL, Daskalopoulou SS. The impact of physical activity on mortality in patients with high blood pressure: a systematic review. J Hypertens 2012; 30: 1277–88. 93. Endocrinology. National leadership. Pod red. I.I.Dedova, G.A. Mel'nichenko. Moscow: GEOTAR-Media, 2019; p. 589–92 (in Russian). 94. Rucker D, Padwal R, Li S et al. Long term pharmacotherapy for obesity and overweight updated meta-analysis. Br Med J 2007; 335: 1194–99. 95. Avenell A, Broom J, Brown T et al. Systematic review of the long-term effects and economic consequences of treatments for obesity and implications for health improvement. Health Technol Assess 2004; 8: iii-iv, 1–182. 96. Sjostrom L, Rissanen A, Andersen T et al. Randomised placebo-controlled trial of orlistat for weight loss and prevention of weight regain in obese patients. Lancet 1998; 352: 167–72. 97. Torgeson JS, Hauptman J. XENical in the prevention of diabetes in obese subjects (XENDOS) study. Diabetes Care 2004; 27: 155–61. 98. Rossner S, Sjostrom L, Noack R et al. Weight loss, weight maintenance, and improved cardiovascular risk factors after 2 years treatment with orlistat for obesity. European Orlistat Obesity Study Group. Obes Res 2000; 8 (1): 49–61. 99. Pi-Sunyer X, Astrup A, Fujioka K et al. A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. N Engl J Med 2015; 373 (1): 11–22. DOI: https://doi.org/10.1056/NEJMoa1411892 100. le Roux CW, Astrup A, Fujioka K et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet 2017; 389 (10077): 1399–1409. DOI: 10.1016/s0140-6736(17)30069-7 101. Blackman A, Foster GD, Zammit G et al. Effect of liraglutide 3.0 mg in individuals with obesity and moderate or severe obstructive sleep apnea: the SCALE Sleep Apnea randomized clinical trial. Int J Obes (Lond) 2016; 40 (8): 1310–19. DOI: 10.1038/ij o.2016.52 102. Wadden TA, Hollander P, Klein S et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: The SCALE Maintenance randomized study. Int J Obes 2013; 37: 1443–51. DOI: 10.1038/ijo.2013.120 103. Marso SP, Daniels GH, Brown-Frandsen K et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375 (4): 311–22. DOI: 10.1056/NEJMoa1603827 104. Jordan J, Yumuk V, Schlaich M et al. Joint statement of the European Association for the Study of Obesity and the European Society of Hypertension: obesity and difficult to treat arterial hypertension. J Hypertens 2012; 30: 1047–55. 105. Owen J, Yazdi F, Reisin E. Bariatric surgery and hypertension. Am J Hypertens 2018; 31 (1): 11–7. 106. Ricci C, Gaeta M, Rausa E et al. Long-term effects of bariatric surgery on type II diabetes, hypertension and hyperlipidemia: a meta-analysis and meta-regression study with 5-year follow-up. Obes Surg 2015; 25: 397–405. 107. Wilhelm SM, Young J, Kale-Pradhan PB. Effect of bariatric surgery on hypertension: a meta-analysis. Ann Pharmacother 2014; 48: 674–82. 108. Heneghan HM, Meron-Eldar S, Brethauer SA et al. Effect of bariatric surgery on cardiovascular risk profile. Am J Cardiol 2011; 108: 1499–507. 109. Vest AR, Heneghan HM, Agarwal S et al. Bariatric surgery and cardiovascular outcomes: a systematic review. Heart 2012; 98: 1763–77. 110. Sarkhosh K, Birch DW, Shi X et al. The impact of sleeve gastrectomy on hypertension: a systematic review. Obes Surg 2012; 22: 832–7. 111. Hallersund P, Sjöström L, Olbers T et al. Gastric bypass surgery is followed by lowered blood pressure and increased diuresis – long term results from the Swedish Obese Subjects (SOS) study. PLoS One 2012; 7: e49696. 112. Buchwald H, Estok R, Fahrbach K et al. Weight and Type 2 Diabetes after Bariatric Surgery: Systematic Review and Meta-analysis. Am J Med 2009; 122 (3): 248–56.e245. DOI: 10.1016/j.amjmed.2008.09.041. 113. Balk EM, Earley A, Raman G et al. Combined diet and physical activity promotion programs to prevent type 2 diabetes among persons at increased risk: a systematic review for the Community Preventive Services Task Force. Ann Intern Med 2015; 163: 437–51. 114. MacLeod J, Franz MJ, Handu D et al. Academy of Nutrition and Dietetics Nutrition Practice Guideline for Type 1 and Type 2 Diabetes in Adults: nutrition intervention evidence reviews and recommendations. J Acad Nutr Diet 2017; 117: 1637–58. 115. Hamdy O, Mottalib A, Morsi A et al. Long-term effect of intensive lifestyle intervention on cardiovascular risk factors in patients with diabetes in real-world clinical practice: a 5-year longitudinal study. BMJ Open Diabetes Res Care 2017; 5: e000259. 116. Brown MJ, Williams B, Morant SV et al. Effect of amiloride, or amiloride plus hydrochlorothiazide, versus hydrochlorothiazide on glucose tolerance and blood pressure (PATHWAY-3): a parallel-group, double-blind randomised phase 4 trial. Lancet Diabetes Endocrinol 2016; 4: 136–47. 117. Dondo TB, Hall M, West RM et al. Beta-blockers and mortality after acute myocardial infarction in patients without heart failure or ventricular dysfunction. J Am Coll Cardiol 2017; 69: 2710–20. 118. Buchwald H, Avidor Y, Braunwald E et al. Bariatric Surgery A Systematic Review and Meta-Analysis. JAMA 2004; 292 (14): 1724. DOI: 10.1001/jama.292.14.1724 119. International Diabetes Federation. IDF Diabetes Atlas. 9th edition. IDF; 2019; c.168. 120. Algoritmy spetsializirovannoi meditsinskoi pomoshchi bol'nym sakharnym diabetom. Pod red. I.I. Dedova, M.V. Shestakovoi, A.Iu. Maiorova. 9-i vyp. Sakharnyi diabet. 2019; 22 (1S) (in Russian) 121. The Diabetes Prevention Program Research Group: The Diabetes Prevention Program (DPP): description of lifestyle intervention. Diabetes Care 2002; 25: 2165–71. 122. American Diabetes Association. Standards of medical care in diabetes – 2019. Diabetes Care 2019; 42; (Suppl. 1): S1–193. 123. Griffin SJ, Borch-Johnsen K, Davies MJ et al. Effect of early intensive multifactorial therapy on 5-year cardiovascular outcomes in individuals with type 2 diabetes detected by screening (ADDITION-Europe): a cluster-randomised trial. Lancet 2011; 378: 156–67. 124. Herman WH, Ye W, Griffin SJ et al. Early detection and treatment of type 2 diabetes reduce cardiovascular morbidity and mortality: a simulation of the results of the Anglo-DanishDutch Study of Intensive Treatment in People with Screen-Detected Diabetes in Primary Care (ADDITION-Europe). Diabetes Care 2015; 38: 1449–55. 125. Johnson SL, Tabaei BP, Herman WH. The efficacy and cost of alternative strategies for systematic screening for type 2 diabetes in the U.S. population 45–74 years of age. Diabetes Care 2005; 28: 307–11 World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate and hyperglycaemia. Report of a WHO/IDF consultation. http:// www.who.int/diabetes/publications/diagnosis_diabetes2006/en/ (June 14 2019). 126. World Health Organization. Use of Ggycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus: abbreviated report of a WHO consultation. http:// www.who.int/diabetes/publications/report-hba1c_2011.pdf (June 14 2019). 127. Opie LH. Metabolic management of acute myocardial infarction comes to the fore and extends beyond control of hyperglycemia. Circulation 2008; 117: 2172–7. 128. Moin T, Schmittdiel JA, Flory JH et al. Review of metformin use for type 2 diabetes prevention. Am J Prev Med 2018; 55: 565–74. 129. Tuomilehto J, Lindstro¨m J, Eriksson JG et al; Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344: 1343–50. 130. Li G, Zhang P, Wang J et al. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: a 23-year follow-up study. Lancet Diabetes Endocrinol 2014;2:474_480. 131. Campion EW, Glynn RJ, Delabry LO. Asymptomatic hyperuricemia. Risks and consequences in the normative aging study. Am J Med 1987; 82 (3): 421–6. DOI: 10.1016/0002-9343(87)90441-4 132. Haig A. On uric acid and arterial tension. Br Med J 1889; 1 (1467): 288–91. DOI: 10.1136/bmj.1.1467.288 133. Alderman MH. Uric acid and cardiovascular risk. Curr Opin Pharmacol 2002; 2 (2): 126–30. DOI: 10.1016/S1471-4892(02)00143-1 134. Johnson RJ, Feig DI, Herrera-Acosta J, Kang DH. Resurrection of uric acid as a causal risk factor in essential hypertension. Hypertension 2005; 45 (1): 18–20. DOI: 10.1161/01.HYP.0000150785.39055.e8 135. Forman JP, Choi H, Curhan GC. Uric acid and insulin sensitivity and risk of hypertension. Arch Intern Med 2009; 169 (2): 155–62. DOI: 10.1001/archinternmed.2008.521 136. Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: The National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum 2011; 63 (10): 3136–41. DOI: 10.1002/art.30520 137. Richette P, Doherty M, Pascual E et al. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann Rheum Dis 2017; 76 (1): 29–42. DOI: 10.1136/annrheumdis-2016-209707 138. Mumford SL, Dasharathy SS, Pollack AZ, et al. Serum uric acid in relation to endogenous reproductive hormones during the menstrual cycle: findings from the BioCycle study. Hum Reprod 2013; 28 (7): 1853–62. DOI: 10.1093/humrep/det085 139. Elisabeth AE, Choi HK. Menopause, postmenopausal hormone use and serum uric acid levels in US women – The Third National Health and Nutrition Examination Survey. Arthritis Res Ther 2008; 10 (5): 1–7. DOI: 10.1186/ar2519 140. Sumino H, Ichikawa S, Kanda T et al. Reduction of serum uric acid by hormone replacement therapy in postmenopausal women with hyperuricaemia. Lancet 1999; 354 (9179): 650. DOI: 10.1016/S0140-6736(99)92381-4 141. Shal'nova S.A., Deev A.D., Artamonova G.V. et al. Giperurikemiia i ee korreliaty v rossiiskoi populiatsii (rezul'taty epidemilogicheskogo issledovaniia ESSE-RF). Ratsional'naia farmakoterapiia v kardiologii. 2014; 10 (2): 153–9 (in Russian). 142. Nugent BCA, Tyler FH. The renal excretion of uric acid in patients with gout and in nongouty subjects. t. 1959: 1890–8. 143. Perez-Ruiz F, Calabozo M, Erauskin GG et al. Renal underexcretion of uric acid is present in patients with apparent high urinary uric acid output. Arthritis Rheum 2002; 47 (6): 610–3. DOI: 10.1002/art.10792 144. Ichida K, Matsuo H, Takada T et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun 2012; 3: 764–7. DOI: 10.1038/ncomms1756 145. Choi HK, Soriano LC, Zhang Y, Rodríguez LAG. Antihypertensive drugs and risk of incident gout among patients with hypertension: population based case-control study. BMJ 2012; 344: d8190-d8190. DOI: 10.1136/bmj.d8190 146. Choi HK, Athinson K, Karlson EW, Curhan G. Obesity, weight change, hypertension, diuretic use, and risk of gout in men: The health professionals follow-up study. Arch Intern Med 2005; 165 (7): 742–8. DOI: 10.1001/archinte.165.7.742 147. Pineda C, Amezcua-Guerra LM, Solano C et al. Joint and tendon subclinical involvement suggestive of gouty arthritis in asymptomatic hyperuricemia: An ultrasound controlled study. Arthritis Res Ther 2011; 13 (1): R4. DOI: 10.1186/ar3223 148. Howard R, Pillinger M, Gyftopoulos S. Reproducibility of Musculoskeletal Ultrasound for Determining Monosodium Urate Deposition: Concordance Between Readers. Arthritis Care Res 2011; 63 (10): 1456–62. DOI: 10.1002/acr.20527 149. Dalbeth N, House ME, Aati O et al. Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: A dual energy CT study. Ann Rheum Dis 2015; 74 (5): 908–11. DOI: 10.1136/annrheumdis-2014-206397 150. Kang DH, Nakagawa T, Feng L et al. A role for uric acid in the progression of renal disease. J Am Soc Nephrol 2002; 13 (12): 2888–97. DOI: 10.1097/01.ASN.0000034910.58454.FD 151. Mazzali M, Hughes J, Kim YG et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 2001; 38 (5): 1101–6. DOI: 10.1161/hy1101.092839 152. Langford HG, Blaufox MD, Borhani NO et al. Is Thiazide-Produced Uric Acid Elevation Harmful?: Analysis of Data From the Hypertension Detection and Follow-up Program. Arch Intern Med 1987; 147 (4): 645–9. DOI: 10.1001/archinte.1987.00370040027005 153. Mandal AK, Mount DB. The Molecular Physiology of Uric Acid Homeostasis. Annu Rev Physiol 2015; 77 (1): 323–45. DOI: 10.1146/annurev-physiol-021113-170343 154. Khanna D, Fitzegarld J, Khanna P et al. 2012 American College of Rheumatology Guidelines for Management of Gout Part I: Systematic Non-pharmacologic and Pharmacologic Therapeutic Approaches to Hyperuricemia. Arthritis Care Res 2012; 64 (10): 1431–46. DOI: 10.1002/acr.21772. 155. Hui M, Carr A, Cameron S et al. The British Society for Rheumatology Guideline for the Management of Gout. Rheumatology. 2017; 56 (7): 1246. DOI: 10.1093/rheumatology/kex250. 156. Fotherby MD, Potter JF. Metabolic and orthostatic blood pressure responses to a low-sodium diet in elderly hypertensives. J Hum Hypertens 1997; 11 (6): 361–6, in Pubmed: 9249230. 157. Singh JA, Reddy SG, Kundukulam J. Risk factors for gout and prevention: a systematic review of the literature. Curr Opin Rheumatol 2011; 23 (2): 192–202. DOI: 10.1097/BOR.0b013e3283438e13, in Pubmed: 21285714. 158. Jansen TLTA, Janssen M. Gout lessons from 2018: CARES, a direct comparison of febuxostat vs allopurinol, and CANTOS, IL1 blocker for cardiovascular risk minimisation. Clin Rheumatol 2019; 38 (1): 263–5. DOI: 10.1007/s10067-018-4396-4 159. Thanassoulis G, Brophy JM, Richard H et al. Gout, allopurinol use, and heart failure outcomes. Arch Intern Med 2010; 170 (15): 1358–64. DOI: 10.1001/archinternmed.2010.198, in Pubmed: 20696962 160. Schumacher HR, Becker MA, Wortmann RL et al. Effects of febuxostat versus allopurinol and placebo in reducing serum urate in subjects with hyperuricemia and gout: A 28-week, phase III, randomized, double-blind, parallel-group trial. Arthritis Care Res 2008; 59 (11): 1540–8. DOI: 10.1002/art.24209 161. Taylor TH, Mecchella JN, Larson RJ et al. Initiation of allopurinol at first medical contact for acute attacks of gout: A randomized clinical trial. Am J Med 2012; 125 (11): 1126–34.e7. DOI: 10.1016/j.amjmed.2012.05.025 162. Perez-Ruiz F, Herrero-Beites AM, Carmona L. A two-stage approach to the treatment of hyperuricemia in gout: The “dirty Dish” hypothesis. Arthritis Rheum 2011; 63 (12): 4002–6. DOI: 10.1002/art.30649 163. Würzner G, Gerster J-C, Chiolero A et al. Comparative effects of losartan and irbesartan on serum uric acid in hypertensive patients with hyperuricaemia and gout. J Hypertens 2001; 19 (10). https://journals.lww.com/jhypertension/Fulltext/2001/10000/Comparative_effects_of_losartan_and_irbes.... 164. Metel'skaia V.A., Shal'nova S.A., Deev A.D. i dr. Analiz rasprostranennosti pokazatelei, kharakterizuiushchikh aterogennost' spektra lipoproteinov, u zhitelei Rossiiskoi Federatsii (po dannym issledovaniia ESSE-RF). Profilakticheskaia meditsina. 2016; 19 (1): 15–23 (in Russian). 165. Ezhov M.V., Bazhan S.S. Ershova A.I. i dr. Klinicheskie rekomendatsii po semeinoi giperkholesterinemiiiu Ateroskleroz i dislipidemii. 2019; 1 (34): 5–43. (in Russian). 166. Langsted A, Nordestgaard BG. Nonfasting versus fasting lipid profile for cardiovascular risk prediction. Pathology 2019; 51 (2): 131–41. DOI: 10.1016/j.pathol.2018.09.062 167. Mach F, Baigent C, Catapano AL et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41 (1): 111–88. DOI: doi/10.1093/eurheartj/ehz455 168. Langsted A, Nordestgaard BG. Nonfasting Lipids, Lipoproteins, and Apolipoproteins in Individuals with and without Diabetes: 58 434 Individuals from the Copenhagen General Population Study. Clin Chem 2010; 57 (3): 482–9. DOI: 10.1373/clinchem.2010.157164 169. Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent C, Blackwell L, Emberson J et al. Cholesterol Treatment Trialists' (CTT) Collaboration. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet 2010; 376 (9753): 1670–81. 170. Cholesterol Treatment Trialists’ (CTT) Collaborators, Mihaylova B, Emberson J, Blackwell L et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 2012; 380: 581–90. 171. Giugliano RP, Cannon CP, Blazing MA et al; IMPROVE-IT Investigators. Benefit of adding ezetimibe to statin therapy on cardiovascular outcomes and safety in patients with versus without diabetes mellitus: results from IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial). Circulation 2018;137: 1571–82. 172. Cannon CP, Blazing MA, Giugliano RP et al, IMPROVE-IT Investigators. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 2015; 372: 2387–97. 173. Sabatine MS, Giugliano RP, Keech AC et al, Fourier Steering Committee and Investigators. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 2017; 376: 1713–22. 174. Sabatine MS, Leiter LA, Wiviott SD et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol 2017; 5: 941–50. 175. Schwartz GG, Steg PG, Szarek M et al, Odyssey Outcomes Committees and Investigators. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med 2018; 379: 2097–107. 176. Ray KK, Colhoun HM, Szarek M et al, Committees OO, Investigators. Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial. Lancet Diabetes Endocrinol 2019; 7: 618–28. 177. Moriarty PM, Thompson PD, Cannon CP et al, ODYSSEY ALTERNATIVE Investigators. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: The ODYSSEY ALTERNATIVE randomized trial. J Clin Lipidol 2015; 9: 758769 178. Nissen SE, Stroes E, Dent-Acosta RE et al, Gauss-3 Investigators. Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance: the GAUSS-3 randomized clinical trial. JAMA 2016; 315: 15801590 179. Schreml J, Gouni-Berthold I. Role of anti-PCSK9 antibodies in the treatment of patients with statin intolerance. Curr Med Chem 2018; 25: 15381548. 180. National Center for Health Statistics, Division of Health Interview Statistics. Crude and age-adjusted percentage of civilian, noninstitutionalized adults with diagnosed diabetes, United States, 1980– 2010. National Center for Chronic Disease Prevention and Health Promotion, Ed. Atlanta, GA, Centers for Disease Control and Prevention, Division of Diabetes Translation, 2012. 181. Obesity collaborators GBD, Afshin A, Forouzanfar MH, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 2017; 377: 13–27. 182. Mohammad G. Saklayen The Global Epidemic of the Metabolic. Syndrome. Curr Hypertens Rep 2018; 20: 12. 183. Grundy SM. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 2008; 28: 629–36. 184. Mendrick DL, Diehl AM, Topor LS et al. Metabolic Syndrome and Associated Diseases: From the Bench to the Clinic. Toxicol Sci 2018; 162 (1): 36–42. 185. Lakka HM, Laaksonen DЈ, Lakka ТА et al. The metabolic syndrome and total cardiovascular disease mortality in middle-aged men. JAMA 2002; 288 (21): 2709–16. 186. Isomaa B et al. Botnia study. Diabetes Care 2005; 683–9. 187. Eschwege E. The dysmetabolic syndrome, insulin resistance and increased cardiovascular morbidity and mortality in type 2 diabetes: etiological factors in the development of CV complications. Diabetes Metab 2003; 29: 19–27. 188. Linz D, Woehrle H, Bitter T et al. The importance of sleep-disordered breathing in cardiovascular disease. Clin Res Cardiol 2015; 104: 705–18. 189. Young T, Palta M, Dempsey J et al. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 1993; 328 (17): 1230–5. 190. Apilak Worachartcheewan, Nalini Schaduangrat, Virapong Prachayasittikul, Chanin Nantasenamat. Data mining for the identification of metabolic syndrome status. EXCLI J 2018; 17: 72–88. 191. Rauscher H, Formanek D, Popp W et al. Nasal CPAP and weight loss in hypertensive patients with obstructive sleep apnoea. Thorax 1993; 48: 529–33. 192. Kajaste S, Brander PE, Telakivi T et al. A cognitive-behavioral weight reduction program in the treatment of obstructive sleep apnea syndrome with or without initial nasal CPAP: a randomized study. Sleep Med 2004; 5: 125–31. 193. Sampol G, Munoz X, Sagales MT et al. Long-term efficacy of dietary weight loss in sleep apnoea/hypopnea syndrome. Eur Respir J 1998; 12: 1156–9. 194. Guardiano SA, Scott JA, Ware JC et al. The Long-Term Results of Gastric Bypass on Indexes of Sleep Apnea. Chest 2003; 124: 1615–9. 195. Scheuller M, Weider D. Bariatric surgery for treatment of sleep apnea syndrome in 15 morbidly obese patients: Long-term results. Otolaryngol Head Neck Surg 2001; 125: 299-302. 196. Valencia-Flores M, Orea A, Herrera M et al. Effect of Bariatric Surgery on Obstructive Sleep Apnea and Hypopnea Syndrome, Electrocardiogram, and Pulmonary Arterial Pressure. Obes Surg 2004; 14: 755–62. 197. Buchwald H, Avidor Y, Braundwald E et al. Bariatric surgery: a systematic review and meta-analysis. JAMA 2004; 292: 1724–37. 198. Williams B, Mancia G, Spiering W et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens 2018; 36 (10): 1953–2041. 199. Sukmarova Z.N., Litvin A.Iu., Chazova I.E., Rogoza A.N. Effektivnost' kompleksnoi medikamentoznoi i CPAP-terapii u patsientov s arterial'noi gipertoniei 2–3-i stepeni i tiazheloi stepen'iu sindroma obstruktivnogo apnoe vo vremia sna. FGU RKNPK Minzdravsotsrazvitiia RF, Moskva. Systemic Hypertension. 2011; 8 (1): 40 (in Russian).] 200. International Diabetes Federation. IDF Diabetes Atlas. 9th ed. IDF, 2019. 201. International Diabetes Federation. IDF Diabetes Atlas. 4th ed. IDF, 2009. 202. Dedov I.I., Shestakova M.V., Vikulova O.K. et al. Atlas registra sakharnogo diabeta Rossiiskoi Federatsii. Status 2018 g. Sakharnyi diabet. 2019; 22 (2S): 4–61 (in Russian). 203. Dedov I.I., Shestakova M.V., Galstian G.R. Rasprostranennost' sakharnogo diabeta 2 tipa u vzroslogo naseleniia Rossii (issledovanie NATION). Sakharnyi diabet. 2016; 19 (2): 104–12 (in Russian). 204. World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications : report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus. Geneva; 1999. 205. World Health Organization, International Diabetes Federation. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia. Report of a WHO/IDF consultation. Geneva, 2006. 206. Dedov I.I., Shestakova M.V., Ametov A.S. i dr. Initsiatsiia i intensifikatsiia sakharosnizhaiushchei terapii u bol'nykh sakharnym diabetom 2 tipa: obnovlenie konsensusa soveta ekspertov Rossiiskoi assotsiatsii endokrinologov (2015). Sakharnyi diabet. 2015; 18 (1): 5–23. (in Russian). 207. Davies MJ, D'Alessio DA, Fradkin J et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2018; 61 (12): 2461–98. DOI: 10.1007/s00125-018-4729-5 208. Garber AJ, Abrahamson MJ, Barzilay JI et al. Consensus statement by the american association of clinical endocrinologists and american college of endocrinology on the comprehensive type 2 diabetes management algorithm – 2019 executive summary. Endocr Pract 2019; 25 (1): 69–100. 209. FDA Drug Safety Communication: FDA requires removal of some prescribing and dispensing restrictions for rosiglitazone-containing diabetes medicines. https://www.fda.gov/drugs/drugsafety/ucm376389.htm 210. Dormandy JA, Charbonnel B, Eckland DJ et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005; 366 (9493): 1279–89. 211. Kernan WN, Viscoli CM, Furie KL et al. Pioglitazone after Ischemic Stroke or Transient Ischemic Attack. N Engl J Med 2016; 374 (14): 1321–31. 212. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352 (9131): 837–53. 213. ADVANCE Collaborative Group, Patel A, MacMahon S et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008; 358: 2560–72. 214. Matthews DR, Paldánius PM, Proot P et al. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial. Lancet 2019; 394 (10208): 1519–29. 215. Scirica BM, Bhatt DL, Braunwald E et al. Saxagliptin and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus. N Engl J Med 2013; 369 (14): 1317–26. 216. White WB, Cannon CP, Heller SR et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 2013; 369 (14): 1327–35. 217. Green JB, Bethel MA, Armstrong PW et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2015; 373 (3): 232–42. 218. Rosenstock J, Perkovic V, Johansen OE et al. Effect of Linagliptin vs Placebo on Major Cardiovascular Events in Adults With Type 2 Diabetes and High Cardiovascular and Renal Risk: The CARMELINA Randomized Clinical Trial. JAMA 2019; 321 (1): 69–79. 219. Marso SP, Daniels GH, Brown-Frandsen K et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2016; 375 (4): 311–22. 220. Marso SP, Bain SC, Consoli A et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med 2016; 375 (19): 1834–44. 221. Gerstein HC, Colhoun HM, Dagenais GR et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 2019; 394 (10193): 121–30. 222. Mann JFE, Ørsted DD, Brown-Frandsen K et al. Liraglutide and Renal Outcomes in Type 2 Diabetes. N Engl J Med 2017; 377 (9): 839–48. 223. Gerstein HC, Colhoun HM, Dagenais GR et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet 2019; 394 (10193): 131–8. 224. Zinman B, Wanner C, Lachin JM et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 2015; 373 (22): 2117–28. 225. Neal B, Perkovic V, Mahaffey KW et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med 2017; 377 (7): 644–57. 226. Wiviott SD, Raz I, Bonaca MP et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2019; 380 (4): 347–57. 227. Furtado RHM, Bonaca MP, Raz I et al. Dapagliflozin and Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus and Previous Myocardial Infarction. Circulation 2019; 139 (22): 2516–27. 228. Zelniker TA, Wiviott SD, Raz I et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019; 393 (10166): 31–9. 229. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998; 352 (9131): 854–65. 230. Wanner C, Inzucchi SE, Lachin JM et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med 2016; 375 (4): 323–34. 231. Perkovic V, Jardine MJ, Neal B et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med 2019; 380 (24): 2295–306. 232. McMurray JJV, Solomon SD, Inzucchi SE et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019; 381: 1995–2008. 233. Arab JP, Karpen SJ, Dawson PA et al. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology 2017; 65 (1): 350–62. DOI: 10.1002/hep.28709 234. Phase IIa clinical trial of chiglitazar completed. Chipscreen biosciences. 2007. http://www.chipscreen.com/News/201309140810501322442224.html. Accessed 15 Aug 2016. 235. Gerich JE. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med 2010; 27: 136–42. 236. Hediger MA, Rhoads DB. Molecular physiology of sodium–glucose cotransporters. Physiol Rev 1994; 74: 993–1026. 237. Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev 2011; 91: 733–94. 238. Clinical trials: sotagliflozin (LX4211). Lexicon pharmaceuticals. 2016. http://www.lexpharma.com/pipeline/lx4211.html. Accessed 23 Aug 2016. 239. Tan T, Bloom S. Gut hormones as therapeutic agents in treatment of diabetes and obesity. Curr Opin Pharmacol 2013; 13: 996–1001. 240. Mancini AD, Poitout V. GPR40 agonists for the treatment of type 2 diabetes: life after ‘TAKing’ a hit. Diabetes Obes Metab 2015; 17: 622–9. 241. Bharate SB, Nemmani KV, Vishwakarma RA. Progress in the discovery and development of small-molecule modulators of G-protein-coupled receptor 40 (GPR40/FFA1/FFAR1): an emerging target for type 2 diabetes. Expert Opin Ther Pat 2009; 19: 237–64. 242. Friedrich Mittermayer, Erica Caveney, Claudia De Oliveira et al. Addressing Unmet Medical Needs in Type 2 Diabetes: A Narrative Review of Drugs under Development. Curr Diabetes Rev 2015; 11 (1): 17–31. 243. Siebenhofer A, Jeitler K, Horvath K et al. Long-term effects of weight-reducing drugs in hypertensive patients (Review). The Cochrane Library 2013, Issue 3. 244. Franz MJ, Boucher JL, Rutten-Ramos S, VanWormer JJ. Lifestyle weight-loss intervention outcomes in overweight and obese adults with type 2 diabetes: a systematic review and meta-analysis of randomized clinical trials. J Acad Nutr Diet 2015; 115: 1447–63. 245. Wang P, Smith SE, Garg R et al. Identification of monosodium urate crystal deposits in patients with asymptomatic hyperuricemia using dual-energy CT. RMD Open 2018; 4 (1): 1–6. DOI: 10.1136/rmdopen-2017-000593 246. Feher MD, Hepburn AL, Hogarth MB et al. Fenofibrate enhances urate reduction in men treated with allopurinol for hyperuricaemia and gout. Rheumatology 2003; 42 (2): 321–5. DOI: 10.1093/rheumatology/keg103 247. Cosentino F, Grant PJ, Aboyans V et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 2020; 41 (2): 255–323. DOI: 10.1093/eurheartj/ehz486. 248. Holman RR, Paul SK, Bethel MA et al. 10-Year Follow-up of Intensive Glucose Control in Type 2 Diabetes. N Engl J Med 2008; 359 (15): 1577–89. 249. Maruthur NM, Tseng E, Hutfless S et al. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 2016; 164: 740–51. 250. Мустафина С.В., Рымар О.Д., Сазонова О.В. и др. Валидизация финской шкалы риска «FINDRISC» на европеоидной популяции Сибири. Сахарный диабет. 2016; 19 (2): 113–8. [Mustafina S.V., Rymar O.D., Sazonova O.V. i dr. Validizatsiia finskoi shkaly riska "FINDRISC' na evropeoidnoi populiatsii Sibiri. Sakharnyi diabet. 2016; 19 (2): 113–8 (in Russian).] 251. Kannangara DRW, Ramasamy SN, Indraratna PL et al. Fractional clearance of urate: Validation of measurement in spot-urine samples in healthy subjects and gouty patients. Arthritis Res Ther 2012; 14 (4): R189. DOI: 10.1186/ar4020 252. Roddy E, Choi H. Epidemiology of Gout. Rheum Dis Clin North Am 2014; 40 (2): 155–75. DOI: 10.1016/j.rdc.2014.01.001 253. Dennis M, Benos DJ, Editor D et al. Physiology in medicine: a series of articles linking medicine with science Review Pathogenesis of Gout. Ann Intern Med 2005; 143 (7): 499–516. DOI: 10.7326/0003-4819-143-7-200510040-00009
Авторы
Председатель – академик РАН Чазова И.Е. (Москва), сопредседатель – академик РАН Шестакова М.В. (Москва), секретарь – доктор медицинских наук Жернакова Ю.В. (Москва)
Доктор медицинских наук Маркова Т.Н. (Москва), кандидат медицинских наук Мазурина Н.В. (Москва), доктор медицинских наук Ежов М.В. (Москва), кандидат медицинских наук Миронова О.Ю. (Москва), доктор медицинских наук Литвин А.Ю. (Москва), кандидат медицинских наук Елфимова Е.М. (Москва), кандидат медицинских наук Блинова Н.В. (Москва), кандидат медицинских наук Сухарева О.Ю. (Москва)